Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid
Abstract
:1. Introduction
2. Materials and Preparation
2.1. Raw Materials
2.2. Preparation of Samples
3. Experimental Methods
3.1. LAS
3.2. Fatigue-Healing Test
3.3. Radar Chart Method
3.4. SARA Fractionation
4. Results
4.1. Linear Amplitude Sweep Test
4.2. Self-Healing Property
4.2.1. Fatigue Life Recovery
4.2.2. Modulus Recovery
4.2.3. Dissipated Energy Recovery
4.3. Optimum Proportion of WCO/PPA
4.4. SARA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anupam, K.; Akinmade, D.; Kasbergen, C.; Erkens, S.; Adebiyi, F. A state-of-the-art review of Natural bitumen in pavement: Underlining challenges and the way forward. J. Clean. Prod. 2023, 382, 134957. [Google Scholar] [CrossRef]
- Praticò, F.G.; Giunta, M.; Mistretta, M.; Gulotta, T.M. Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads. Sustainability 2020, 12, 704. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, M.; Zhao, Y.; Wu, S.; Fan, Y.; Gan, Z.; Zhang, Y. Comprehensive assessment of the durability deterioration of asphalt pavement in salt environment: A literature review. Case Stud. Constr. Mater. 2022, 17, e01706. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Chen, Y.; Hossiney, N.; Ma, Z.; Wang, H. Insight into the effects of waste vegetable oil on self-healing behavior of bitumen binder. Constr. Build. Mater. 2023, 363, 129888. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, Y.; Sha, A.; Wang, W.; Song, R.; Lou, B. Mechanism, rheology and self-healing properties of carbon nanotube modified asphalt. Constr. Build. Mater. 2022, 346, 128431. [Google Scholar] [CrossRef]
- Lv, Q.; Huang, W.; Zhu, X.; Xiao, F. On the investigation of self-healing behavior of bitumen and its influencing factors. Mater. Des. 2017, 117, 7–17. [Google Scholar] [CrossRef]
- Anupam, B.R.; Sahoo, U.C.; Chandrappa, A.K. A methodological review on self-healing asphalt pavements. Constr. Build. Mater. 2022, 321, 126395. [Google Scholar] [CrossRef]
- Guo, X.-X.; Zhang, C.; Cui, B.-x.; Wang, D.; Tsai, J. Analysis of impact of transverse slope on hydroplaning risk level. Procedia-Soc. Behav. Sci. 2013, 96, 2310–2319. [Google Scholar] [CrossRef]
- Varma, R.; Balieu, R.; Kringos, N. A state-of-the-art review on self-healing in asphalt materials: Mechanical testing and analysis approaches. Constr. Build. Mater. 2021, 310, 125197. [Google Scholar] [CrossRef]
- Wan, P.; Wu, S.; Liu, Q.; Zou, Y.; Zhao, Z.; Chen, S. Recent advances in calcium alginate hydrogels encapsulating rejuvenator for asphalt self-healing. J. Road Eng. 2022, 2, 181–220. [Google Scholar] [CrossRef]
- Sun, G.; Li, B.; Sun, D.; Zhang, J.; Wang, C.; Zhu, X. Roles of aging and bio-oil regeneration on self-healing evolution behavior of asphalts within wide temperature range. J. Clean. Prod. 2021, 329, 129712. [Google Scholar] [CrossRef]
- Zahoor, M.; Nizamuddin, S.; Madapusi, S.; Giustozzi, F. Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. J. Clean. Prod. 2021, 278, 123304. [Google Scholar] [CrossRef]
- Li, H.B.; Zhang, M.M.; Temitope, A.A.; Guo, X.Y.; Sun, J.M.; Yombah, M.; Zou, X.L. Compound reutilization of waste cooking oil and waste engine oil as asphalt rejuvenator: Performance evaluation and application. Environ. Sci. Pollut. Res. 2022, 29, 90463–90478. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, M.; Cui, X.; Wang, W. Properties and components of recycled engine oil bottom rejuvenated asphalt and its grey relationship analysis. Adv. Mater. Sci. Eng. 2019, 2019, 2462487. [Google Scholar] [CrossRef]
- Asli, H.; Ahmadinia, E.; Zargar, M.; Karim, M.R. Investigation on physical properties of waste cooking oil—Rejuvenated bitumen binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar] [CrossRef]
- de Barros, A.G.; Lucena, L.; Hernandez, A.G. Addition of Encapsulated Soybean Oil and Waste Cooking Oil in Asphalt Mixtures: Effects on Mechanical Properties and Self-Healing of Fatigue Damage. J. Mater. Civ. Eng. 2022, 34, 04022002. [Google Scholar] [CrossRef]
- Yamaç, Ö.E.; Yilmaz, M.; Yalçın, E.; Kök, B.V.; Norambuena-Contreras, J.; Garcia, A. Self-healing of asphalt mastic using capsules containing waste oils. Constr. Build. Mater. 2021, 270, 121417. [Google Scholar] [CrossRef]
- Jiang, X.M.; Li, P.L.; Ding, Z.; Yang, L.D.; Zhao, J.K. Investigations on viscosity and flow behavior of polyphosphoric acid (PPA) modified asphalt at high temperatures. Constr. Build. Mater. 2019, 228, 116610. [Google Scholar] [CrossRef]
- Hao, P.; Zhai, R.; Zhang, Z.; Cao, X. Investigation on performance of polyphosphoric acid (PPA)/SBR compound-modified asphalt mixture at high and low temperatures. Road Mater. Pavement Des. 2019, 20, 1376–1390. [Google Scholar] [CrossRef]
- Liu, H.Y.; Chen, Z.J.; Wang, Y.D.; Zhang, Z.X.; Hao, P.W. Effect of poly phosphoric acid (PPA) on creep response of base and polymer modified asphalt binders/mixtures at intermediate-low temperature. Constr. Build. Mater. 2018, 159, 329–337. [Google Scholar] [CrossRef]
- Cao, W.D.; Liu, S.T.; Mao, H.L. Experimental Study on Polyphosphoric Acid (PPA) Modified Asphalt Binders. In Proceedings of the International Conference on Advances in Materials and Manufacturing Processes, Shenzhen, China, 6–8 November 2010; pp. 288–294. [Google Scholar]
- Yuechao, Z.; Meizhu, C.; Shaopeng, W.; Qi, J. Rheological properties and microscopic characteristics of rejuvenated asphalt using different components from waste cooking oil. J. Clean. Prod. 2022, 370, 133556. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Zhang, X.; Wu, S.; Zhou, X.; Jiang, Q. Effect of chemical component characteristics of waste cooking oil on physicochemical properties of aging asphalt. Constr. Build. Mater. 2022, 344, 128236. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S.; Wang, Y. Waste engine oil and polyphosphoric acid enhanced the sustainable self-healing of asphalt binder and its fatigue behavior. J. Clean. Prod. 2022, 339, 130767. [Google Scholar] [CrossRef]
- Feng, L.; Liu, J.; Hu, L. Rheological behavior of asphalt binder and performances of asphalt mixtures modified by waste soybean oil and lignin. Constr. Build. Mater. 2023, 362, 129735. [Google Scholar] [CrossRef]
- Hintz, C.; Bahia, H. Simplification of linear amplitude sweep test and specification parameter. Transp. Res. Rec. 2013, 2370, 10–16. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y. Laboratory research on asphalt mastic modified with activated carbon powder: Rheology, micro-structure, and adhesion. Road Mater. Pavement Des. 2021, 22, 1424–1441. [Google Scholar] [CrossRef]
- Saboo, N. New damage parameter for fatigue analysis of asphalt binders in linear amplitude sweep test. J. Mater. Civ. Eng. 2020, 32, 04020126. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, S.; Wang, Y.; Chen, H. Induction heating and fatigue-damage induction healing of steel fiber–reinforced asphalt mixture. J. Mater. Civ. Eng. 2019, 31, 04019180. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Meng, Y.; Han, Z.; Jin, T. Comprehensive performance evaluation of steel fiber-reinforced asphalt mixture for induction heating. Int. J. Pavement Eng. 2022, 23, 3838–3849. [Google Scholar] [CrossRef]
- Uchoa, A.F.; Rocha, W.S.; Feitosa, J.P.; Brito, D.H.; Gondim, L.M.; Ricardo, N.M.; Soares, J.B.; Soares, S.A. Exploiting epoxidized cashew nut shell liquid as a potential bio-additive to improve asphalt binder performance. J. Clean. Prod. 2021, 314, 128061. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, S.; Peng, A. Evaluation of polyphosphoric acid on the performance of polymer modified asphalt binders. J. Appl. Polym. Sci. 2020, 137, 48984. [Google Scholar] [CrossRef]
- Hung, A.M.; Mousavi, M.; Fini, E.H. Implication of wax on hindering self-healing processes in bitumen. Appl. Surf. Sci. 2020, 523, 146449. [Google Scholar] [CrossRef]
- Chen, H.; He, J.; Chen, Y.; Hua, H. Performance of a common rail diesel engine using biodiesel of waste cooking oil and gasoline blend. J. Energy Inst. 2018, 91, 856–866. [Google Scholar] [CrossRef]
- Dai, J.; Ma, F.; Fu, Z.; Li, C.; Jia, M.; Shi, K.; Wen, Y.; Wang, W. Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement. Renew. Energy 2021, 175, 748–759. [Google Scholar] [CrossRef]
- Zhang, C.C.; Xu, T.; Shi, H.Q.; Wang, L.L. Physicochemical and pyrolysis properties of SARA fractions separated from asphalt binder. J. Therm. Anal. Calorim. 2015, 122, 241–249. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Wang, D.; Liu, P.; Li, X. The Synergistic Effect of Polyphosphates Acid and Different Compounds of Waste Cooking Oil on Conventional and Rheological Properties of Modified Bitumen. Materials 2022, 15, 8681. [Google Scholar] [CrossRef]
- Jia, M.; Sha, A.; Jiang, W.; Li, X.; Jiao, W. Developing a solid–solid phase change heat storage asphalt pavement material and its application as functional filler for cooling asphalt pavement. Energy Build. 2023, 285, 112935. [Google Scholar] [CrossRef]
- Xintao, Z.; Meizhu, C.; Yuechao, Z.; Shaopeng, W.; Dongyu, C.; Yuanhang, S. Influence of macromolecular substances in waste cooking oil on rejuvenation properties of asphalt with different aging degrees. Constr. Build. Mater. 2022, 361, 129522. [Google Scholar] [CrossRef]
- Cai, J.; Wen, Y.; Wang, D.; Li, R.; Zhang, J.; Pei, J.; Xie, J. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus. Constr. Build. Mater. 2020, 261, 120011. [Google Scholar] [CrossRef]
- Hugener, M.; Wang, D.; Cannone Falchetto, A.; Porot, L.; Kara De Maeijer, P.; Orešković, M.; Sa-da-Costa, M.; Tabatabaee, H.; Bocci, E.; Kawakami, A. Recommendation of RILEM TC 264 RAP on the evaluation of asphalt recycling agents for hot mix asphalt. Mater. Struct. 2022, 55, 31. [Google Scholar] [CrossRef]
- Büchler, S.; Cannone Falchetto, A.C.; Walther, A.; Riccardi, C.; Wang, D.; Wistuba, M.P. Wearing course mixtures prepared with high reclaimed asphalt pavement content modified by rejuvenators. Transp. Res. Rec. 2018, 2672, 96–106. [Google Scholar] [CrossRef]
Technical Indexes | Measured Results | Test Method |
---|---|---|
Ductility (15 °C, cm) | 93.1 | T0604 |
Penetration (25 °C, 0.1 mm) | >150 | T0605 |
Softening Point (°C) | 46.2 | T0604 |
Index | Unit | Test Results |
---|---|---|
Density (25 °C) | g/cm3 | 2.15 |
Viscosity (85 °C) | mPa.s | 562 |
Surface tension | N·cm−1 | 7.5 × 10−4 |
Index | Test Results | ||
---|---|---|---|
LC | IC | HC | |
Viscosity (50 °C, cP) | 66 | 85 | 219 |
Flash point (°C) | 197 | 219 | 242 |
Fire point (°C) | 216 | 233 | 264 |
Density (g/cm3) | 0.89 | 0.92 | 0.97 |
Mechanical impurity (%) | 0.425 | 0.002 | 0 |
Types | A | B | Fatigue Life Recovery | Modulus Recovery | Dissipated Energy Recovery |
---|---|---|---|---|---|
Virgin bitumen | 0.5315 | 1.0185 | 1.1128 | 1.1637 | 1.0866 |
WP-LC0.5 | 0.6214 | 1.032 | 1.1956 | 1.2031 | 1.3066 |
WP-LC1 | 0.6347 | 1.1263 | 1.1196 | 1.2138 | 1.1945 |
WP-LC1.5 | 0.5388 | 1.0506 | 1.1542 | 1.1599 | 1.1043 |
WP-LC2 | 1.028 | 0.9025 | 1.4133 | 1.1285 | 1.8021 |
WP-IC0.5 | 0.5832 | 1.1344 | 1.1966 | 1.2201 | 1.1023 |
WP-IC1 | 0.7936 | 0.9458 | 1.3724 | 1.2166 | 1.563 |
WP-IC1.5 | 0.8125 | 1.1369 | 1.2524 | 1.3488 | 1.2595 |
WP-IC2 | 0.9853 | 1.021 | 1.5634 | 1.0224 | 1.637 |
WP-HC0.5 | 0.4695 | 1.3025 | 1.1589 | 1.2733 | 1.4692 |
WP-HC1 | 0.8516 | 1.3024 | 1.4428 | 1.3016 | 1.5201 |
WP-HC1.5 | 1.0238 | 1.002 | 1.4369 | 1.2456 | 1.5348 |
WP-HC2 | 0.9213 | 1.1148 | 1.4698 | 1.4261 | 1.5674 |
Si | Wi | |
---|---|---|
s11, s12 | 0.4322, 0.6971 | 0.5488 |
s21, s22 | 0.5193, 0.7408 | 0.6202 |
s31, s32 | 0.6251, 0.7852 | 0.7006 |
s41, s42 | 0.6785, 0.7932 | 0.7336 |
s51, s52 | 0.7341, 0.8793 | 0.8034 |
s61, s62 | 0.6371, 0.8489 | 0.7354 |
s71, s72 | 0.6856, 0.9037 | 0.7871 |
s81, s82 | 0.7595, 0.9579 | 0.8526 |
s91, s92 | 0.9227, 0.9566 | 0.9394 |
s101, s102 | 0.6476, 0.8038 | 0.7215 |
s111, s112 | 0.7155, 0.8643 | 0.7864 |
s121, s122 | 0.7596, 0.8961 | 0.8251 |
s131, s132 | 0.7668, 0.9543 | 0.8554 |
Value | Virgin | WP-LC0.5 | WP-LC1 | WP-LC1.5 | WP-LC2 | WP-IC0.5 | WP-IC1 | WP-IC1.5 | WP-IC2 | WP-HC0.5 | WP-HC1 | WP-HC1.5 | WP-HC2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 2.88 | 4.18 | 3.81 | 3.44 | 3.2 | 5.54 | 5.21 | 5.09 | 4.88 | 4.87 | 4.81 | 4.59 | 5.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Guo, D.; Liu, C.; Falchetto, A.C.; Li, X.; Wang, T. Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid. Buildings 2023, 13, 1188. https://doi.org/10.3390/buildings13051188
Wang W, Guo D, Liu C, Falchetto AC, Li X, Wang T. Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid. Buildings. 2023; 13(5):1188. https://doi.org/10.3390/buildings13051188
Chicago/Turabian StyleWang, Wentong, Dedong Guo, Congcong Liu, Augusto Cannone Falchetto, Xinzhou Li, and Teng Wang. 2023. "Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid" Buildings 13, no. 5: 1188. https://doi.org/10.3390/buildings13051188
APA StyleWang, W., Guo, D., Liu, C., Falchetto, A. C., Li, X., & Wang, T. (2023). Exploring the Self-Healing Capability and Fatigue Performance of Modified Bitumen Incorporating Waste Cooking Oil and Polyphosphoric Acid. Buildings, 13(5), 1188. https://doi.org/10.3390/buildings13051188