Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of SFCGC Columns
2.3. Test Preparation
2.3.1. Location of Measurement Points
2.3.2. Preparation for DIC
2.3.3. Test Loading Scheme
3. Experimental Results
3.1. Failure Modes
3.2. Concrete Strain of the Mid-Height Section
3.3. Strains of the Concrete
3.4. Strains of the Longitudinal Steel Bars
3.5. Load-Displacement Analysis
3.5.1. Load-Axial Displacement Analysis
3.5.2. Load-Lateral Displacement Analysis
- In the elastic stage, although small cracks appeared on the tensile side of the specimens, the stiffness of the specimens did not drop significantly due to the presence of reinforcement and steel fibres which inhibited the development of cracks, and the curves were straighter.
- In the plastic stage, as the load increases, the reinforcement gradually yields, the cracks expand faster, the stiffness of the specimens decreases, their lateral deflection increases nonlinearly, the slope of the curves decreases, and the specimens enter the plastic stage.
- In the descending stage, after reaching the ultimate load, the load decreases, and the lateral deflection increases.
3.6. Effect of Coal Gangue Replacement Rate on the Bearing Capacity of Specimens
3.7. Effect of Volume Content of Steel Fibres on the Bearing Capacity of Specimens
4. Discussion
4.1. Calculation of Cracking Load Capacity
4.2. Calculation of the Ultimate Bearing Capacity
4.3. Average Crack Spacing
4.4. Average Crack Width
4.5. Maximum Crack Width
5. Conclusions
- (1)
- The whole process of loading the SFCGC column to the ultimate state is in accordance with the plane cross-section assumption. During the loading process, the lateral displacement curve of the SFCGC column is approximately sinusoidal and symmetrically distributed in the middle. Under the same eccentricity, the coal gangue replacement rate of the SFCGC columns has little effect on the lateral displacement corresponding to the ultimate load. The final damage mode of the SFCGC columns resembled that of the NAC columns, and their bearing capacity was greatly influenced by eccentricity.
- (2)
- The increased crack resistance of SFCGC columns is directly associated with their increased tensile strength. By means of applying the corresponding tensile strength (fft) of SFCGC, the formula for NAC columns can be used for SFCGC columns.
- (3)
- The cracking spacing decreased with an increase in steel fibres. The reduction of longitudinal reinforcement stress contributed to the decline of crack width. On the basis of the regression analysis of experiment results, the equations for computing the average crack spacing and average crack width of SFCGC columns were presented. For these results, there is excellent consistency with the experimental results.
- (4)
- A salutary effect of steel fibres in improving the load-bearing capacity of SFCGC columns is shown. Considering the beneficial contribution of steel fibres in the tension zone, equations are presented to predict the axial load under load-bearing conditions. Acceptable prediction accuracy indicates the suitability of SFCGC for its structural applications.
- (5)
- The increase in the coal gangue replacement rate will lead to a certain degree of reduction in the bearing capacity of the specimens. Compared with the replacement rate of the 30% SFCGC column, when the gangue replacement rate is at 50% and 70%, the reduction of the ultimate bearing capacity of the specimens increases significantly. It is recommended that the coal gangue replacement rate for SFCGC columns is about 30%.
- (6)
- Steel fibres can effectively compensate for the negative impact of gangue on the bearing capacity of SFCGC columns. As the volume content of steel fibres increases from 0% to 0.5% and 1%, the ultimate load capacity of the SFCGC increases by 7.1% and 9.3%, respectively. When the steel fibre content exceeds 1% by volume to 1.5%, the increase in ultimate load capacity of the SFCGC column begins to slow down and only increases by 5.4%. In view of the load-bearing performance and cost-effectiveness of the specimens, it is suggested that the volume content of steel fibres for SFCGC columns be about 1%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, J.; Du, G.; Du, J.; Shi, X. Current Situation of the Comprehensive Utilization of Coal Gangue in China and the Related Problems and Recommendations. China Environ. Prot. Ind. 2022, 8, 13. [Google Scholar]
- Wang, B.; Ma, Y.N.; Lee, X.Q.; Wu, P.; Liu, F.; Zhang, X.; Li, L.; Chen, M. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2020, 758, 143664. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Yan, J.; Liu, J.; Yu, H. Biology Migration and Distribution Characteristics of Trace Elements in Reconstructed Soil with Coal Gangue Filling. Agric. Sci. Technol. 2016, 17, 2167–2170. [Google Scholar]
- Pone, J.D.N.; Hein, K.A.A.; Stracher, G.B.; Annegarn, H.J.; Finkleman, R.B.; Blake, D.R.; Mccormack, J.K.; Schroeder, P. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. Int. J. Coal Geol. 2007, 72, 124–140. [Google Scholar] [CrossRef]
- Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; Drooge, B.L.V.; Moreno, T.; Grimalt, J.O.; Elvira, J. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: Are view and new experimental data. Int. J. Coal Geol. 2011, 85, 2–22. [Google Scholar] [CrossRef]
- Laurance, W.F.; Peletierjellema, A.; Geenen, B.; Koster, H.; Verweij, P.A.; Dijck, P.V.; Lovejoy, T.E.; Schleicher, J.; Kuijk, M.V. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 2015, 25, 259–262. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Al-Oraimi, S.K.; Taha, R.; Hassan, H.F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete. Construct. Build. Mater. 2006, 20, 499–503. [Google Scholar] [CrossRef]
- Wu, J.; Bai, G.L.; Wang, P.; Liu, Y. Mechanical properties of a new type of block made from shale and coal gangue. Constr. Build. Mater. 2018, 190, 796–804. [Google Scholar] [CrossRef]
- Qin, J.G.; Zhao, R.D.; Chen, T.J.; Zi, Z.Y.; Wu, J.H. Co-combustion of municipal solid waste and coal gangue in a circulating fluidized bed combustor. Int. J. Coal. Sci. Technol. 2019, 6, 218–224. [Google Scholar] [CrossRef]
- Guo, Y.; Yan, K.; Cui, L.; Cheng, F. Improved extraction of alumina from coal gangue by surface mechanically grinding modification. Powder Technol. 2016, 302, 33–41. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Liu, X.M.; Sun, H.H.; Ni, W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 2013, 109, 527–533. [Google Scholar] [CrossRef]
- Sun, Y.X.; Li, X.D. Development and design of coal gangue concrete filling material. Adv. Mater. Res. 2011, 295, 1198–1201. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, N. Influence of coal gangue aggregate grading on strength properties of concrete. Wuhan Univ. J. Nat. Sci. 2015, 20, 66–72. [Google Scholar] [CrossRef]
- Ma, H.Q.; Zhu, H.G.; Wu, C.; Chen, H.Y.; Sun, J.W.; Liu, J.Y. Study on compressive strength and durability of alkali-activated coal gangue-slag concrete and its mechanism. Powder Technol. 2020, 368, 112–124. [Google Scholar] [CrossRef]
- Li, X.; Pan, M.; Tao, M.; Liu, W.; Gao, Z.; Ma, C. Preparation of high closed porosity foamed ceramics from coal gangue waste for thermal insulation applications. Ceram. Int. 2022, 48, 37055–37063. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, Y.; Vatin, N.I.; Guan, X.; Sultanov, S.; Khemarak, K. Damage constitutive model of coal gangue concrete under freeze-thaw cycles. Constr. Build. Mater. 2020, 264, 120720. [Google Scholar] [CrossRef]
- Xiao, M.; Ju, F.; He, Z.Q. Research on shotcrete in mine using non-activated waste coal gangue aggregate. J. Clean. Prod. 2020, 259, 120810. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q.; Wang, Q.; Zhang, Y. Prediction of the elastic modulus of concrete with spontaneous-combustion and rock coal gangue aggregates. Structures 2020, 28, 774–785. [Google Scholar] [CrossRef]
- Ma, H.Q.; Yi, C.; Zhu, H.G.; Dong, Z.C.; Chen, H.Y.; Wang, J.X.; Li, D.Y. Compressive strength and durability of coal gangue aggregate concrete. Mater. Rev. 2018, 32, 2390–2395. [Google Scholar]
- Gao, S.; Zhao, G.; Guo, L.; Zhou, L.; Yuan, K. Utilization of coal gangue as coarse aggregates in structural concrete. Constr. Build. Mater. 2021, 268, 121212. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, S.; Li, W.; Li, Z.; Fan, J.; Shen, Z. Study of mechanical properties and durability of alkali-activated coal gangue-slag concrete. Materials 2020, 13, 5576. [Google Scholar] [CrossRef] [PubMed]
- Chen, B. Strength of coal gangue Concrete. Ind. Constr. 1994, 7, 29–32. [Google Scholar]
- Guan, X.; Qiu, J.; Song, H.; Qin, Q.; Zhang, C. Stress–strain behaviour and acoustic emission characteristic of gangue concrete under axial compression in frost environment. Constr. Build. 2019, 220, 476–488. [Google Scholar]
- Moghadam, M.J.; Ajalloeian, R.; Hajiannia, A. Preparation and application of alkaliactivated materials based on waste glass and coal gangue: A review. Constr. Build. Mater. 2019, 221, 84–98. [Google Scholar] [CrossRef]
- Katzer, J.; Domski, J. Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Constr. Build. Mater. 2012, 34, 243–248. [Google Scholar] [CrossRef]
- Atiş, C.D.; Karahan, O. Properties of steel fibre reinforced fly ash concrete. Constr. Build. Mater. 2009, 23, 392–399. [Google Scholar] [CrossRef]
- Wang, L.; Shen, N.; Zhang, M.; Fu, F.; Qian, K. Bond performance of Steel-CFRP bar reinforced coral concrete beams. Constr. Build. Mater. 2020, 245, 118456. [Google Scholar] [CrossRef]
- Li, L.; Qin, H.G. Study of interface bonding performance of steel fibres within cement mortar. J. Luoyang Univ. 2002, 17, 82–85. [Google Scholar]
- Cheng, J.; Liu, J.P.; Zhang, L.H. Testing and mechanism analysis of the fibre-matrix bonding properties of ultrahigh performance concrete. China Concr. Cem. Prod. 2016, 5, 62–66. [Google Scholar]
- Campione, G.; La Mendola, L. Behavior in compression of lightweight fibre reinforced concrete confined with transverse steel reinforcement. Cem. Concr. Compos. 2004, 26, 645–656. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sheikh, S.A.; Bhargava, P. Tie-confined fibre-reinforced high-strength concrete short columns. Mag. Concr. Res. 2007, 59, 757–769. [Google Scholar] [CrossRef]
- Li, Y.J.; Geng, X.; Zhang, X.; Yan, X. Experimental study on the durability of the concrete with coal gangue aggregate. J. China Coal Soc. 2013, 38, 1215–1219. [Google Scholar]
- Zhang, J.X.; Chen, W.L.; Jin, S.S.; Chen, C.Z.; Yang, R.J. Investigation on durability of coal gangue aggregate concrete. J. Beijing Univ. Technol. 2011, 37, 115–125. [Google Scholar]
- Liu, H.; Bai, G.; Gu, Y.; Yan, F. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns. Case Stud. Constr. Mater. 2022, 17, e01315. [Google Scholar] [CrossRef]
- Luo, D.M.; Wang, Y.; Zhang, S.H.; Niu, D.T.; Song, Z.P. Frost resistance of coal gangue aggregate concrete modified by steel fibre and slag powder. Appl. Sci. 2020, 10, 3229. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Deng, W.; Xing, J.; Liang, J. Factors affecting brittleness behavior of coal-gangue ceramsite lightweight aggregate concrete. Front. Mater. 2020, 7, 554718. [Google Scholar] [CrossRef]
- Le, D.B.; Tran, S.D.; Dao, V.T.; Torero, J. Deformation capturing of concrete structures at elevated temperatures. Procedia Eng. 2017, 210, 613–621. [Google Scholar]
- Yu, K.; Yu, J.; Lu, Z.; Chen, Q. Determination of the softening curve and fracture toughness of high-strength concrete exposed to high temperature. Eng. Fract. Mech. 2015, 149, 156–169. [Google Scholar] [CrossRef]
- JGJ 51-2002; Technical Specification for Light Aggregate Concrete. China Architecture & Building Press: Beijing, China, 2002.
- GB 175-2020; Common Portland Cement. China Standardization Administration Press: Beijing, China, 2020.
- GB 50010-2010; Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC). China Building Industry Press: Beijing, China, 2010.
- Lin, G.; Zeng, J.J.; Teng, J.G.; Li, L.J. Behavior of large-scale FRP-confined rectangular RC columns under eccentric compression. Eng. Struct. 2022, 216, 110759. [Google Scholar] [CrossRef]
- Hadi, M.N. Behaviour of eccentric loading of FRP confined fibre steel reinforced concrete columns. Constr. Build. Mater. 2009, 23, 1102–1108. [Google Scholar] [CrossRef]
- Qing, K.; Han, F.; Xing, L.; Wang, X. Experimental study on the flexural performance of BFRP reinforced steel fibre recycled concrete beams. Fiber Reinf. Plast./Compos. 2019, 11, 5. [Google Scholar]
- CECS 38:2004; China Association for Engineering Construction Standardization. China Planning Press: Beijing, China, 2004.
- Li, C.Y.; Ding, X.X.; Zhao, S.B.; Zhang, X.Y.; Li, X.K. Cracking resistance of reinforced SFRFLC superposed beams with partial ordinary concrete in compression zone. Open Civ. Eng. J. 2016, 10, 727–737. [Google Scholar] [CrossRef]
- Zhao, S.B. Design Principles of Concrete Structures, 2nd ed.; Tongji University Press: Beijing, China, 2013. [Google Scholar]
Steel Fibre | Length (mm) | Width (mm) | Thickness (mm) | Equivalent Diameter (mm) | Aspect Ratio | Density (g/cm3) |
---|---|---|---|---|---|---|
CSF | 38 | 1 | 0.35–0.5 | 0.76 | 50 | 7.8 |
Chemical Composition | SiO2 | Al2O3 | MgO | Na2O | CaO | Fe2O3 | f-CaO | K2O |
---|---|---|---|---|---|---|---|---|
Content (%) | 22.4 | 4.6 | 3.00 | 0.4 | 64.2 | 3.5 | 1.3 | 0.6 |
Cement | Conservation Times (Day) | Rupture Strength (Mpa) | Compressive Strength (Mpa) |
---|---|---|---|
P-O42.5 | 3 | 5.5 | 8.4 |
28 | 8.4 | 51.6 |
Chemical Composition | SiO2 | Al2O3 | FeO | MgO | BaO | Na2O | TiO2 | Fe2O3 | P2O5 | MnO | K2O |
---|---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 36.83 | 36.83 | 5.83 | 5.00 | 5.66 | 2.83 | 1.77 | 3.51 | 0.39 | 0.15 | 1.65 |
Specimens | Vc (%) | Vf (%) | e0 (mm) | C | W | S | CA (kg/m3) | Wr | |
---|---|---|---|---|---|---|---|---|---|
(kg/m3) | (kg/m3) | (kg/m3) | N | CG | (kg/m3) | ||||
S-0-1 | 0 | 1 | 50 | 503.7 | 201.5 | 623 | 1155.5 | 0 | 5.04 |
S-30-1 | 30 | 1 | 50 | 503.7 | 201.5 | 623 | 1048.8 | 360 | 5.04 |
S-50-1 | 50 | 1 | 50 | 503.7 | 201.5 | 623 | 749.6 | 598.5 | 5.04 |
L-0-1 | 0 | 1 | 100 | 503.7 | 201.5 | 623 | 1155.5 | 0 | 5.04 |
L-30-1 | 30 | 1 | 100 | 503.7 | 201.5 | 623 | 1048.8 | 598.5 | 5.04 |
L-50-1 | 50 | 1 | 100 | 503.7 | 201.5 | 623 | 749.6 | 598.5 | 5.04 |
L-70-1 | 70 | 1 | 100 | 503.7 | 201.5 | 623 | 450.3 | 840 | 5.04 |
L-50-0 | 50 | 0 | 100 | 503.7 | 201.5 | 623 | 749.6 | 598.5 | 5.04 |
L-50-0.5 | 50 | 0.5 | 100 | 503.7 | 201.5 | 623 | 749.6 | 598.5 | 5.04 |
L-50-1.5 | 50 | 1.5 | 100 | 503.7 | 201.5 | 623 | 749.6 | 598.5 | 5.04 |
Specimens | fcu (Mpa) | fft (Mpa) | Ncr (kN) | Nu (kN) | ||||
---|---|---|---|---|---|---|---|---|
Nexp | Ntheo | Nexp/Ntheo | Nexp | Ntheo | Nexp/Ntheo | |||
S-0-1 | 39.96 | 3.63 | 452.6 | 475.42 | 0.952 | 731 | 722.13 | 1.012 |
S-30-1 | 36.36 | 3.55 | 450.5 | 457.71 | 0.984 | 665.2 | 677.63 | 0.982 |
S-50-1 | 33.09 | 3.27 | 447.9 | 441.25 | 1.015 | 605.3 | 636.89 | 0.951 |
L-0-1 | 39.96 | 3.63 | 90.4 | 94.03 | 0.961 | 553 | 506.13 | 1.093 |
L-30-1 | 36.36 | 3.55 | 89 | 89.89 | 0.991 | 503.2 | 461.88 | 1.089 |
L-50-1 | 33.09 | 3.27 | 82.5 | 85.98 | 0.959 | 457.9 | 421.41 | 1.087 |
L-70-1 | 30.44 | 3.12 | 80.3 | 82.71 | 0.972 | 421.3 | 388.53 | 1.084 |
L-50-0 | 27.87 | 2.97 | 75 | 79.45 | 0.944 | 385.9 | 356.59 | 1.082 |
L-50-0.5 | 30.12 | 3.11 | 78.3 | 82.29 | 0.951 | 416.7 | 384.41 | 1.084 |
L-50-1.5 | 36.07 | 3.36 | 82.83 | 87.71 | 0.944 | 480.8 | 458.24 | 1.047 |
Specimens | Lm | ||
---|---|---|---|
Tested | Calculated | Tested/Calculated | |
S-0-1 | 61.3 | 61.26 | 1.001 |
S-30-1 | 63.0 | 61.26 | 1.028 |
S-50-1 | 60.9 | 61.26 | 0.994 |
L-0-1 | 62.3 | 61.26 | 1.017 |
L-30-1 | 61.2 | 61.26 | 0.998 |
L-50-1 | 60.1 | 61.26 | 1.038 |
L-70-1 | 63.6 | 61.26 | 1.012 |
L-50-0 | 66.8 | 66.77 | 0.996 |
L-50-0.5 | 64.3 | 63.84 | 1.007 |
L-50-1.5 | 60.7 | 58.95 | 1.029 |
Specimens | N/Nu | wm | wmax | ||||
---|---|---|---|---|---|---|---|
Tested | Calculated | Tested/ Calculated | Tested | Calculated | Tested/ Calculated | ||
S-0-1 | 70% | 0.016 | 0.0172 | 0.930 | 0.030 | 0.0286 | 1.050 |
80% | 0.021 | 0.0222 | 0.946 | 0.038 | 0.0368 | 1.032 | |
90% | 0.027 | 0.0272 | 0.994 | 0.046 | 0.0451 | 1.020 | |
S-30-1 | 70% | 0.014 | 0.0159 | 0.878 | 0.028 | 0.0265 | 1.057 |
80% | 0.021 | 0.0206 | 1.018 | 0.035 | 0.0342 | 1.022 | |
90% | 0.026 | 0.0253 | 1.028 | 0.041 | 0.0420 | 0.976 | |
S-50-1 | 70% | 0.015 | 0.0148 | 1.011 | 0.024 | 0.0246 | 0.975 |
80% | 0.021 | 0.0192 | 1.092 | 0.034 | 0.0319 | 1.065 | |
90% | 0.024 | 0.0236 | 1.016 | 0.042 | 0.0392 | 1.071 | |
L-0-1 | 30% | 0.011 | 0.0095 | 1.158 | 0.016 | 0.0157 | 1.014 |
50% | 0.030 | 0.0276 | 1.087 | 0.050 | 0.0458 | 1.091 | |
70% | 0.049 | 0.0457 | 1.072 | 0.077 | 0.0759 | 1.015 | |
L-30-1 | 30% | 0.009 | 0.0080 | 1.122 | 0.014 | 0.0133 | 1.051 |
50% | 0.024 | 0.0245 | 0.978 | 0.045 | 0.0407 | 1.104 | |
70% | 0.041 | 0.0410 | 0.999 | 0.073 | 0.0682 | 1.071 | |
L-50-1 | 30% | 0.008 | 0.0067 | 1.195 | 0.013 | 0.0111 | 1.169 |
50% | 0.022 | 0.0218 | 1.011 | 0.040 | 0.0361 | 1.107 | |
70% | 0.037 | 0.0368 | 1.004 | 0.064 | 0.0612 | 1.047 | |
L-70-1 | 30% | 0.006 | 0.0056 | 1.063 | 0.010 | 0.0094 | 1.067 |
50% | 0.021 | 0.0195 | 1.075 | 0.036 | 0.0324 | 1.110 | |
70% | 0.036 | 0.0334 | 1.077 | 0.058 | 0.0555 | 1.045 | |
L-50-0 | 30% | 0.005 | 0.0057 | 0.869 | 0.011 | 0.0096 | 1.152 |
50% | 0.022 | 0.0205 | 1.072 | 0.033 | 0.0341 | 0.969 | |
70% | 0.034 | 0.0353 | 0.964 | 0.060 | 0.0586 | 1.024 | |
L-50-0.5 | 30% | 0.007 | 0.0064 | 1.093 | 0.012 | 0.0106 | 1.129 |
50% | 0.022 | 0.0219 | 1.005 | 0.038 | 0.0363 | 1.046 | |
70% | 0.041 | 0.0374 | 1.097 | 0.061 | 0.0621 | 0.983 | |
L-50-1.5 | 30% | 0.008 | 0.0072 | 1.108 | 0.011 | 0.0120 | 0.918 |
50% | 0.023 | 0.0219 | 1.052 | 0.037 | 0.0363 | 1.019 | |
70% | 0.038 | 0.0365 | 1.041 | 0.061 | 0.0606 | 1.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, B.; Bai, B.; Duan, W.; Wang, L.; Wang, S. Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns. Buildings 2023, 13, 1290. https://doi.org/10.3390/buildings13051290
Cai B, Bai B, Duan W, Wang L, Wang S. Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns. Buildings. 2023; 13(5):1290. https://doi.org/10.3390/buildings13051290
Chicago/Turabian StyleCai, Bin, Bingyang Bai, Wenfeng Duan, Lin Wang, and Shengda Wang. 2023. "Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns" Buildings 13, no. 5: 1290. https://doi.org/10.3390/buildings13051290
APA StyleCai, B., Bai, B., Duan, W., Wang, L., & Wang, S. (2023). Study on the Eccentric Compressive Performance of Steel Fibre Reinforced Coal Gangue Concrete Columns. Buildings, 13(5), 1290. https://doi.org/10.3390/buildings13051290