Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns
Abstract
:1. Introduction
2. Experimental Data
2.1. Parameter Selection
2.2. Standards for Data Collection
- (a)
- All columns are confined with GFRP.
- (b)
- The geometric and material properties of the columns and the geometric and material properties of the FRP in the sample are well defined.
3. Model Evaluation
3.1. Existing Models
3.2. Model Evaluation
4. Construction of the Data-Driven Model
4.1. Model Construction & Evaluation
4.2. Parametric Study
4.2.1. Importance Analysis
4.2.2. Sensitivity Analysis
5. Conclusions
- The gathered models have contributed to the study of GFRP-confined columns. Still, the coefficients of variation of the models are all around 18% and suffer from over or conservative estimates of the compressive strength.
- The established BP neural network model showed better accuracy and stability in predicting the compressive strength of the confined columns compared to the gathered models. In addition, the model is adaptive, and its accuracy and stability will be further improved in the future as the dataset is expanded.
- The data collected in this paper is relatively minor and the traditional BP neural network is used for modelling, future data collection and model selection (e.g., deep learning) need to be increased to build a better model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saadatmanesh, H.; Ehsani, M.R.; Li, M.W. Strength and ductility of concrete columns externally reinforced with fiber composite straps. Struct. J. 1994, 91, 434–447. [Google Scholar]
- Elsanadedy, H.M.; Al-Salloum, Y.A.; Abbas, H.; Alsayed, S.H. Prediction of strength parameters of FRP-confined concrete. Compos. Part B Eng. 2012, 43, 228–239. [Google Scholar] [CrossRef]
- Li, G.; Hu, T.; Bai, D. BP neural network improved by sparrow search algorithm in predicting debonding strain of FRP-strengthened RC beams. Adv. Civ. Eng. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Valente, M.; Milani, G. Alternative retrofitting strategies to prevent the failure of an under-designed reinforced concrete frame. Eng. Fail. Anal. 2018, 89, 271–285. [Google Scholar] [CrossRef]
- Valente, M. Seismic upgrading strategies for non-ductile plan-wise irregular R/C structures. Procedia Eng. 2013, 54, 539–553. [Google Scholar] [CrossRef]
- Toutanji, H.; Balaguru, P. Durability characteristics of concrete columns wrapped with FRP tow sheets. J. Mater. Civ. Eng. 1998, 10, 52–57. [Google Scholar] [CrossRef]
- Lin, C.T.; Li, Y.F. An effective peak stress formula for concrete confined with carbon fiber reinforced plastics. Can. J. Civ. Eng. 2003, 30, 882–889. [Google Scholar] [CrossRef]
- Rochette, P.; Labossiere, P. Axial testing of rectangular column models confined with composites. J. Compos. Constr. 2000, 4, 129–136. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, H. Compressive behavior of concrete confined by carbon fiber composite jackets. J. Mater. Civ. Eng. 2000, 12, 139–146. [Google Scholar] [CrossRef]
- Shehata, I.A.; Carneiro, L.A.; Shehata, L.C. Strength of short concrete columns confined with CFRP sheets. Mater. Struct. 2002, 35, 50–58. [Google Scholar] [CrossRef]
- Fardis, M.N.; Khalili, H.H. FRP-encased concrete as a structural material. Mag. Concr. Res. 1982, 34, 191–202. [Google Scholar] [CrossRef]
- Newman, K.; Newman, J.B. Failure theories and design criteria for plain concrete. Struct. Solid Mech. Eng. Des. 1971, 963–995. [Google Scholar]
- Mander, J.B.; Priestley, M.J.; Park, R. Theoretical stress-strain model for confined concrete. J. Struct. Eng. 1988, 114, 1804–1826. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Gao, Y. Composite jacketed concrete under uniaxial compression—Verification of simple design equations. J. Mater. Civ. Eng. 1997, 9, 185–193. [Google Scholar] [CrossRef]
- Samaan, M.; Mirmiran, A.; Shahawy, M. Model of concrete confined by fiber composites. J. Struct. Eng. 1998, 124, 1025–1031. [Google Scholar] [CrossRef]
- Lam, L.; Teng, J.G. Design-oriented stress–strain model for FRP-confined concrete. Constr. Build. Mater. 2003, 17, 471–489. [Google Scholar] [CrossRef]
- Sadeghian, P.; Fam, A. Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses. Eng. Struct. 2015, 87, 162–182. [Google Scholar] [CrossRef]
- Ma, G.; Liu, K. Prediction of compressive strength of CFRP-confined concrete columns based on BP neural network. J. Hunan Univ. 2021, 48, 88–97. [Google Scholar]
- ACI 440.2R-08; Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute: Farmington, MI, USA, 2008.
- Wakjira, T.G.; Ibrahim, M.; Ebead, U.; Alam, M.S. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. Eng. Struct. 2022, 255, 113903. [Google Scholar] [CrossRef]
- Fu, B.; Feng, D.C. A machine learning-based time-dependent shear strength model for corroded reinforced concrete beams. J. Build. Eng. 2021, 36, 102118. [Google Scholar] [CrossRef]
- Xu, J.G.; Chen, S.Z.; Xu, W.J.; Shen, Z.S. Concrete-to-concrete interface shear strength prediction based on explainable extreme gradient boosting approach. Constr. Build. Mater. 2021, 308, 125088. [Google Scholar] [CrossRef]
- Naderpour, H.; Mirrashid, M.; Parsa, P. Failure mode prediction of reinforced concrete columns using machine learning methods. Eng. Struct. 2021, 248, 113263. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Liu, J.; Zou, X.; Sneed, L.H.; Bao, Y.; Wang, L. Prediction of FRP-concrete interfacial bond strength based on machine learning. Eng. Struct. 2023, 274, 115156. [Google Scholar] [CrossRef]
- Vu, Q.V.; Truong, V.H.; Thai, H.T. Machine learning-based prediction of CFST columns using gradient tree boosting algorithm. Compos. Struct. 2021, 259, 113505. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, H.; Zhou, J. Prediction of the debonding failure of beams strengthened with FRP through machine learning models. Buildings 2023, 13, 608. [Google Scholar] [CrossRef]
- Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater. 2021, 266, 120950. [Google Scholar] [CrossRef]
- Huang, L.; Chen, J.; Tan, X. BP-ANN based bond strength prediction for FRP reinforced concrete at high temperature. Eng. Struct. 2022, 257, 114026. [Google Scholar] [CrossRef]
- Kshirsagar, S.; Lopez-Anido, R.A.; Gupta, R.K. Environmental aging of fiber-reinforced polymer-wrapped concrete cylinders. Mater. J. 2000, 97, 703–712. [Google Scholar]
- Aire, C.; Gettu, R.; Casas, J.R. Study of the compressive behavior of concrete confined by fiber reinforced composites. Carbon 2001, 1, 239–243. [Google Scholar]
- Micelli, F.; Myers, J.J.; Murthy, S. Effect of environmental cycles on concrete cylinders confined with FRP. In Proceedings of the CCC2001 International Conference on Composites in Construction, Porto, Portugal, 10–12 October 2001. [Google Scholar]
- Pessiki, S.; Harries, K.A.; Kestner, J.; Sause, R.; Ricles, J.M. The axial behavior of concrete confined with fiber reinforced composite jackets. J. Compos. Constr. 2001, 5, 237–245. [Google Scholar] [CrossRef]
- Toutanji, H. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets. Mater. J. 1999, 96, 397–404. [Google Scholar]
- Lam, L.; Teng, J.G. Ultimate condition of fiber reinforced polymer-confined concrete. J. Compos. Constr. 2004, 8, 539–548. [Google Scholar] [CrossRef]
- Silva, M.A.; Rodrigues, C.C. Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP. J. Mater. Civ. Eng. 2006, 18, 334–342. [Google Scholar] [CrossRef]
- Berthet, J.F.; Ferrier, E.; Hamelin, P. Compressive behavior of concrete externally confined by composite jackets. Part A: Experimental study. Constr. Build. Mater. 2005, 19, 223–232. [Google Scholar] [CrossRef]
- Youssef, M.N.; Feng, M.Q.; Mosallam, A.S. Stress–strain model for concrete confined by FRP composites. Compos. Part B Eng. 2007, 38, 614–628. [Google Scholar] [CrossRef]
- Harries, K.A.; Kharel, G. Behavior of variably confined concrete. ACI Mater. J. 2002, 99, 180–189. [Google Scholar]
- Kharel, G. Behavior and Modeling of Variably Confined Concrete. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2001. [Google Scholar]
- Bullo, S. Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete. In Proceedings of the International Conference Composites in Construction, Cosenza, Italy, 16–19 September 2003; pp. 16–19. [Google Scholar]
- Cui, C.; Sheikh, S.A. Experimental study of normal-and high-strength concrete confined with fiber-reinforced polymers. J. Compos. Constr. 2010, 14, 553–561. [Google Scholar] [CrossRef]
- Demers, M.; Neale, K.W. Strengthening of concrete columns with unidirectional composite sheets. Dev. Short Medium Span Bridge Eng. 1994, 895–905. [Google Scholar]
- Jiang, T.; Teng, J.G. Analysis-oriented models for FRP-confined concrete: A comparative assessment. Eng. Struct. 2007, 29, 2968–2986. [Google Scholar] [CrossRef]
- Mastrapa, J.C. The Effect of Construction Bond on Confinement with FRP Composites. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 1997. [Google Scholar]
- Teng, J.G.; Yu, T.; Wong, Y.L.; Dong, S.L. Hybrid FRP–concrete–steel tubular columns: Concept and behavior. Constr. Build. Mater. 2007, 21, 846–854. [Google Scholar] [CrossRef]
- Almusallam, T.H. Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos. Part B Eng. 2007, 38, 629–639. [Google Scholar] [CrossRef]
- Micelli, F.; Modarelli, R. Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete. Compos. Part B Eng. 2013, 45, 1420–1431. [Google Scholar] [CrossRef]
- Zohrevand, P.; Mirmiran, A. Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers. J. Mater. Civ. Eng. 2011, 23, 1727–1734. [Google Scholar] [CrossRef]
- Hu, T.; Li, G. Machine Learning-based model in predicting the plate-end debonding of FRP-strengthened RC beams in flexure. Adv. Civ. Eng. 2022, 2022. [Google Scholar] [CrossRef]
Reference | D | t | f′co | εfrp | Ef | f′cc |
---|---|---|---|---|---|---|
[29] | 102 | 1.42 | 38 | 1.74 | 20 | 57 |
102 | 1.42 | 39.4 | 2.07 | 20 | 63.1 | |
102 | 1.42 | 39.5 | 1.89 | 20 | 60.4 | |
[30] | 150 | 0.15 | 42 | 0.55 | 65 | 41 |
150 | 0.45 | 42 | 1.3 | 65 | 61 | |
150 | 0.89 | 42 | 1.1 | 65 | 85 | |
[31] | 102 | 0.35 | 32 | 1.25 | 72 | 52 |
[32] | 152 | 1 | 26.2 | 1.15 | 22 | 38.4 |
152 | 2 | 26.2 | 1.24 | 22 | 52.5 | |
[33] | 76 | 0.24 | 30.9 | 1.63 | 73 | 60.8 |
[34] | 152 | 1.27 | 38.5 | 1.44 | 22 | 51.9 |
152 | 1.27 | 38.5 | 1.89 | 22 | 58.3 | |
152 | 2.54 | 38.5 | 1.76 | 22 | 75.7 | |
152 | 2.54 | 38.5 | 1.67 | 22 | 77.3 | |
[35] | 150 | 2.54 | 27.4 | 1.99 | 21 | 91.6 |
150 | 2.54 | 27.4 | 1.89 | 21 | 89.4 | |
[36] | 160 | 0.33 | 25 | 1.66 | 74 | 42.8 |
160 | 0.33 | 25 | 1.64 | 74 | 42.3 | |
160 | 0.33 | 25 | 1.67 | 74 | 43.1 | |
160 | 0.22 | 40.1 | 1.37 | 74 | 44.8 | |
160 | 0.22 | 40.1 | 1.25 | 74 | 46.3 | |
160 | 0.22 | 40.1 | 1.08 | 74 | 49.8 | |
160 | 0.33 | 40.1 | 0.9 | 74 | 50.8 | |
160 | 0.33 | 40.1 | 1.28 | 74 | 50.8 | |
160 | 0.33 | 40.1 | 1.2 | 74 | 51.8 | |
160 | 0.55 | 40.1 | 1.55 | 74 | 66.7 | |
160 | 0.55 | 40.1 | 1.82 | 74 | 68.2 | |
160 | 0.55 | 40.1 | 1.58 | 74 | 67.7 | |
160 | 0.5 | 52 | 1.19 | 74 | 64.7 | |
160 | 0.5 | 52 | 1.27 | 74 | 75.1 | |
160 | 0.5 | 52 | 1.27 | 74 | 76.1 | |
[37] | 406 | 1.68 | 29.4 | 0.83 | 18 | 44.1 |
406 | 3.35 | 29.4 | 1.53 | 18 | 49.5 | |
406 | 4.47 | 29.4 | 0.6 | 18 | 55.2 | |
406 | 7.26 | 29.4 | 1.4 | 18 | 73.1 | |
153 | 1.68 | 44.1 | 1.71 | 18 | 65.5 | |
153 | 2.24 | 44.1 | 1.87 | 18 | 80.5 | |
153 | 3.35 | 44.1 | 2.09 | 18 | 91.8 | |
[38] | 153 | 0.51 | 31.8 | 1.21 | 61 | 37.2 |
153 | 1.53 | 31.8 | 1.43 | 61 | 53.2 | |
[39] | 153 | 0.17 | 32.1 | 0.45 | 61 | 36.3 |
153 | 0.34 | 32.1 | 0.65 | 61 | 35.6 | |
153 | 0.51 | 32.1 | 0.74 | 61 | 34.3 | |
153 | 1.02 | 32.1 | 0.79 | 61 | 38.2 | |
153 | 1.53 | 32.1 | 0.94 | 61 | 46.7 | |
153 | 2.04 | 32.1 | 0.91 | 61 | 50.2 | |
153 | 2.55 | 32.1 | 0.89 | 61 | 60 | |
153 | 0.4 | 32.1 | 1.5 | 101 | 44.4 | |
153 | 0.8 | 32.1 | 1.28 | 101 | 62.1 | |
[40] | 150 | 0.46 | 32.5 | 2.15 | 65 | 72.4 |
150 | 0.46 | 32.5 | 2.17 | 65 | 73.6 | |
150 | 0.46 | 32.5 | 2.04 | 65 | 75.8 | |
150 | 1.15 | 32.5 | 1.97 | 65 | 118.8 | |
150 | 1.15 | 32.5 | 1.91 | 65 | 130.2 | |
150 | 1.15 | 32.5 | 1.81 | 65 | 135.8 | |
[41] | 152 | 1.25 | 47.7 | 2.02 | 21 | 59.1 |
152 | 1.25 | 47.7 | 2.14 | 21 | 59.8 | |
152 | 2.5 | 47.7 | 2.03 | 21 | 88.9 | |
152 | 2.5 | 47.7 | 2.11 | 21 | 88 | |
152 | 3.75 | 47.7 | 2.11 | 21 | 113.2 | |
152 | 3.75 | 47.7 | 2.11 | 21 | 112.5 | |
152 | 1.25 | 47.7 | 2.18 | 21 | 63.4 | |
152 | 1.25 | 47.7 | 2.12 | 21 | 62.4 | |
152 | 2.5 | 47.7 | 2.07 | 21 | 89.7 | |
152 | 2.5 | 47.7 | 2.05 | 21 | 88.3 | |
152 | 3.75 | 47.7 | 1.89 | 21 | 108 | |
152 | 1.25 | 79.9 | 2.02 | 21 | 66.7 | |
152 | 1.25 | 79.9 | 2.42 | 21 | 74.7 | |
152 | 2.5 | 79.9 | 1.39 | 21 | 92.5 | |
152 | 2.5 | 79.9 | 1.69 | 21 | 94.1 | |
152 | 3.75 | 79.9 | 2.01 | 21 | 120.8 | |
152 | 3.75 | 79.9 | 1.92 | 21 | 126.1 | |
152 | 2.5 | 79.9 | 1.19 | 21 | 106.3 | |
152 | 2.5 | 79.9 | 1.08 | 21 | 100.3 | |
152 | 5 | 79.9 | 1.4 | 21 | 174.6 | |
152 | 5 | 79.9 | 1.54 | 21 | 172.9 | |
[42] | 152 | 1.05 | 32.2 | 1.65 | 11 | 48.3 |
152 | 1.05 | 32.2 | 1.83 | 11 | 48.3 | |
[43] | 152 | 0.17 | 33.1 | 2.08 | 80 | 42.4 |
152 | 0.17 | 33.1 | 1.76 | 80 | 41.6 | |
152 | 0.17 | 45.9 | 1.52 | 80 | 48.4 | |
152 | 0.17 | 45.9 | 1.92 | 80 | 46 | |
152 | 0.34 | 45.9 | 1.64 | 80 | 52.8 | |
152 | 0.34 | 45.9 | 1.8 | 80 | 55.2 | |
152 | 0.51 | 45.9 | 1.59 | 80 | 64.6 | |
152 | 0.51 | 45.9 | 1.94 | 80 | 65.9 | |
[44] | 153 | 0.61 | 29.8 | 2.06 | 19 | 33.7 |
153 | 1.84 | 31.2 | 2.23 | 19 | 67.5 | |
153 | 1.84 | 31.2 | 1.97 | 19 | 64.7 | |
153 | 3.07 | 31.2 | 1.8 | 19 | 91 | |
153 | 3.07 | 31.2 | 1.77 | 19 | 96.9 | |
[45] | 152 | 0.17 | 39.6 | 1.87 | 80 | 41.5 |
152 | 0.17 | 39.6 | 1.61 | 80 | 40.8 | |
152 | 0.34 | 39.6 | 2.04 | 80 | 54.6 | |
152 | 0.34 | 39.6 | 2.06 | 80 | 56.3 | |
152 | 0.51 | 39.6 | 1.96 | 80 | 65.7 | |
152 | 0.51 | 39.6 | 1.67 | 80 | 60.9 | |
[46] | 150 | 1.3 | 47.7 | 0.84 | 27 | 56.7 |
150 | 3.9 | 47.7 | 0.8 | 27 | 100.1 | |
150 | 1.3 | 50.8 | 1 | 27 | 55.5 | |
150 | 3.9 | 50.8 | 0.8 | 27 | 90.8 | |
150 | 1.3 | 60 | 0.5 | 27 | 62.4 | |
150 | 3.9 | 60 | 0.7 | 27 | 99.6 | |
150 | 1.3 | 80.8 | 0.24 | 27 | 88.9 | |
150 | 3.9 | 80.8 | 0.86 | 27 | 100.9 | |
150 | 1.3 | 90.3 | 0.26 | 27 | 97 | |
150 | 3.9 | 90.3 | 0.82 | 27 | 110 | |
150 | 1.3 | 107.8 | 0.3 | 27 | 116 | |
150 | 3.9 | 107.8 | 0.3 | 27 | 125.2 | |
[47] | 150 | 0.23 | 28.4 | 4.98 | 85 | 53.3 |
[48] | 108 | 2.04 | 188.2 | 0.1 | 26 | 188.4 |
108 | 3.06 | 188.2 | 1.2 | 26 | 226.6 | |
108 | 4.08 | 188.2 | 1.35 | 26 | 273.5 | |
108 | 5.1 | 188.2 | 1.4 | 26 | 298.9 |
Models | Year | Calculation Formula |
---|---|---|
Newman | 1971 | |
Mander | 1988 | |
Karbhari | 1997 | |
Samaan | 1998 | |
Toutanji | 1999 | |
Lam and Teng | 2002 | |
Sadeghian and Fam | 2015 | |
Ma and Liu | 2021 |
p | p | ||||
---|---|---|---|---|---|
Hidden | Output | ||||
H (1:1) | H (1:2) | H (1:3) | f′cc | ||
Input | Bias | 0.209 | −1.369 | −0.567 | |
D | 0.536 | −0.092 | −0.391 | ||
t | −0.478 | −0.051 | −0.402 | ||
f′co | 0.090 | 0.553 | 0.048 | ||
εfrp | −1.130 | −0.132 | 0.984 | ||
Ef | 0.243 | 0.007 | −0.583 | ||
Hidden | Bias | 1.310 | |||
H (1:1) | −1.726 | ||||
H (1:2) | 2.002 | ||||
H (1:3) | −1.594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, D.; Hu, T. Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Buildings 2023, 13, 1309. https://doi.org/10.3390/buildings13051309
Li H, Yang D, Hu T. Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Buildings. 2023; 13(5):1309. https://doi.org/10.3390/buildings13051309
Chicago/Turabian StyleLi, Haolin, Dongdong Yang, and Tianyu Hu. 2023. "Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns" Buildings 13, no. 5: 1309. https://doi.org/10.3390/buildings13051309
APA StyleLi, H., Yang, D., & Hu, T. (2023). Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Buildings, 13(5), 1309. https://doi.org/10.3390/buildings13051309