Investigating the Effects of Concrete Mix Design on the Environmental Impacts of Reinforced Concrete Structures
Abstract
:1. Introduction
2. Methodology
2.1. LCA Method
2.2. Carbon Footprint Analysis (CFA)
3. Model Description
4. Results and Discussion
4.1. The Environmental Impacts of the Concrete Mix Design Parameters
4.2. The Environmental Impacts of Structures for Different Concrete Mix Designs
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goglio, P.; Williams, A.G.; Balta-Ozkan, N.; Harris, N.R.P.; Williamson, P.; Huisingh, D.; Zhang, Z.; Tavoni, M. Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. J. Clean. Prod. 2020, 244, 118896. [Google Scholar] [CrossRef]
- Sandanayake, M.; Lokuge, W.; Zhang, G.; Setunge, S.; Thushar, Q. Greenhouse gas emissions during timber and concrete building construction—A scenario based comparative case study. Sustain. Cities Soc. 2018, 38, 91–97. [Google Scholar] [CrossRef]
- Colangelo, F.; Navarro, T.G.; Farina, I.; Petrillo, A. Comparative LCA of concrete with recycled aggregates: A circular economy mindset in Europe. Int. J. Life Cycle Assess. 2020, 25, 1790–1804. [Google Scholar] [CrossRef]
- Manjunatha, M.; Preethi, S.; Mounika, H.G.; Niveditha, K.N. Life cycle assessment (LCA) of concrete prepared with sustainable cement-based materials. Mater. Today Proc. 2021, 47, 3637–3644. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Deng, M.; Tse, K.T.; Chan, C.M.; Lo, I.M.C.; Cheng, J.C.P. Holistic BIM framework for sustainable low carbon design of high-rise buildings. J. Clean. Prod. 2018, 195, 1091–1104. [Google Scholar] [CrossRef]
- Cavalliere, C.; Habert, G.; Dell’Osso, G.R.; Hollberg, A. Continuous BIM-based assessment of embodied environmental impacts throughout the design process. J. Clean. Prod. 2019, 211, 941–952. [Google Scholar] [CrossRef]
- Heydari, P.; Mostofinejad, D.; Mostafaei, H.; Ahmadi, H. Strengthening of deep RC coupling beams with FRP composites: A numerical study. Structures 2023, 51, 435–454. [Google Scholar] [CrossRef]
- Mostafaei, H.; Mousavi, H.; Barmchi, M.A. Finite Element Analysis of Structures by ABAQUS: For Civil Engineers; Simay-e-Danesh Publication: Tehran, Iran, 2023. [Google Scholar]
- Mostafaei, H.; Mostofinejad, D.; Ghamami, M.; Wu, C. A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam. Structures 2023, 50, 255–271. [Google Scholar] [CrossRef]
- GlobalAbc—Global Alliance for Buildings and Construction; International Energy Agency and United Nations Environment Programme. In 2019 Global Status Report for Buildings and Construction: Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector; UN Environment Programme: Nairobi, Kenya, 2019.
- Taffese, W.Z.; Abegaz, K.A. Embodied Energy and CO2 Emissions of Widely Used Building Materials: The Ethiopian Context. Buildings 2019, 9, 136. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F.; Kelishadi, M.; Aghababaie, M. The effects of friction coefficient on the nonlinear behavior of an arch dam with jointed foundation. Numer. Methods Civ. Eng. 2021, 5, 36–45. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F. Wedge Movement Effects on the Nonlinear Behavior of an Arch Dam Subjected to Seismic Loading. Int. J. Geomech. 2022, 22, 04021289. [Google Scholar] [CrossRef]
- Colangelo, F.; Forcina, A.; Farina, I.; Petrillo, A. Life cycle assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings 2018, 8, 70. [Google Scholar] [CrossRef]
- Hossein, A.H.; AzariJafari, H.; Khoshnazar, R. The role of performance metrics in comparative LCA of concrete mixtures incorporating solid wastes: A critical review and guideline proposal. Waste Manag. 2022, 140, 40–54. [Google Scholar] [CrossRef]
- Pushkar, S. Life-Cycle Assessment of the Substitution of Sand with Coal Bottom Ash in Concrete: Two Concrete Design Methods. Appl. Sci. 2019, 9, 3620. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Van den Heede, P.; De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Habert, G.; Arribe, D.; Dehove, T.; Espinasse, L.; Le Roy, R. Reducing environmental impact by increasing the strength of concrete: Quantification of the improvement to concrete bridges. J. Clean. Prod. 2012, 35, 250–262. [Google Scholar] [CrossRef]
- Liu, C.; Ahn, C.R.; An, X.; Lee, S. Life-cycle assessment of concrete dam construction: Comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manag. 2013, 139, A4013009. [Google Scholar] [CrossRef]
- Faleschini, F.; De Marzi, P.; Pellegrino, C. Recycled concrete containing EAF slag: Environmental assessment through LCA. Eur. J. Environ. Civ. Eng. 2014, 18, 1009–1024. [Google Scholar] [CrossRef]
- Celik, K.; Meral, C.; Gursel, A.P.; Mehta, P.K.; Horvath, A.; Monteiro, P.J.M. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015, 56, 59–72. [Google Scholar] [CrossRef]
- Tait, M.W.; Cheung, W.M. A comparative cradle-to-gate life cycle assessment of three concrete mix designs. Int. J. Life Cycle Assess. 2016, 21, 847–860. [Google Scholar] [CrossRef]
- Roh, S.; Kim, R.; Park, W.-J.; Ban, H. Environmental Evaluation of Concrete Containing Recycled and By-Product Aggregates Based on Life Cycle Assessment. Appl. Sci. 2020, 10, 7503. [Google Scholar] [CrossRef]
- Asadollahfardi, G.; Katebi, A.; Taherian, P.; Panahandeh, A. Environmental life cycle assessment of concrete with different mixed designs. Int. J. Constr. Manag. 2021, 21, 665–676. [Google Scholar] [CrossRef]
- Xing, W.; Tam, V.W.Y.; Le, K.N.; Butera, A.; Hao, J.L.; Wang, J. Effects of mix design and functional unit on life cycle assessment of recycled aggregate concrete: Evidence from CO2 concrete. Constr. Build. Mater. 2022, 348, 128712. [Google Scholar] [CrossRef]
- Raugei, M.; Bargigli, S.; Ulgiati, S. A multi-criteria life cycle assessment of molten carbonate fuel cells (MCFC)—A comparison to natural gas turbines. Int. J. Hydrogen Energy 2005, 30, 123–130. [Google Scholar] [CrossRef]
- Pérez-López, P.; Gschwind, B.; Blanc, P.; Frischknecht, R.; Stolz, P.; Durand, Y.; Heath, G.; Ménard, L.; Blanc, I. ENVI-PV: An interactive Web Client for multi-criteria life cycle assessment of photovoltaic systems worldwide. Prog. Photovolt. Res. Appl. 2017, 25, 484–498. [Google Scholar] [CrossRef]
- Shmlls, M.; Abed, M.; Fořt, J.; Horvath, T.; Bozsaky, D. Towards closed-loop concrete recycling: Life cycle assessment and multi-criteria analysis. J. Clean. Prod. 2023, 410, 137179. [Google Scholar] [CrossRef]
- Mostafaei, H.; Behnamfar, F.; Alembagheri, M. Reliability and sensitivity analysis of wedge stability in the abutments of an arch dam using artificial neural network. Earthq. Eng. Eng. Vib. 2022, 21, 1019–1033. [Google Scholar] [CrossRef]
- Mostafaei, H.; Keshavarz, Z.; Rostampour, M.A.; Mostofinejad, D.; Wu, C. Sustainability Evaluation of a Concrete Gravity Dam: Life Cycle Assessment, Carbon Footprint Analysis, and Life Cycle Costing. Structures 2023, 53, 279–295. [Google Scholar] [CrossRef]
- Delnavaz, M.; Sahraei, A.; Delnavaz, A.; Farokhzad, R.; Amiri, S.; Bozorgmehrnia, S. Production of concrete using reclaimed water from a ready-mix concrete batching plant: Life cycle assessment (LCA), mechanical and durability properties. J. Build. Eng. 2022, 45, 103560. [Google Scholar] [CrossRef]
- Raposo, C.; Rodrigues, F.; Rodrigues, H. BIM-based LCA assessment of seismic strengthening solutions for reinforced concrete precast industrial buildings. Innov. Infrastruct. Solut. 2019, 4, 51. [Google Scholar] [CrossRef]
- Václavík, V.; Ondová, M.; Dvorský, T.; Eštoková, A.; Fabiánová, M.; Gola, L. Sustainability Potential Evaluation of Concrete with Steel Slag Aggregates by the LCA Method. Sustainability 2020, 12, 9873. [Google Scholar] [CrossRef]
- Monteiro, N.B.R.; Neto, J.M.M.; da Silva, E.A. Environmental assessment in concrete industries. J. Clean. Prod. 2021, 327, 129516. [Google Scholar] [CrossRef]
- Angelo, A.C.M.; Saraiva, A.B.; Clímaco, J.C.N.; Infante, C.E.; Valle, R. Life Cycle Assessment and Multi-criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. J. Clean. Prod. 2017, 143, 744–756. [Google Scholar] [CrossRef]
- Cheng, B.; Li, J.; Tam, V.W.Y.; Yang, M.; Chen, D. A BIM-LCA Approach for Estimating the Greenhouse Gas Emissions of Large-scale Public Buildings: A Case Study. Sustainability 2020, 12, 685. [Google Scholar] [CrossRef]
- Li, X.-J.; Zheng, Y.-d. Using LCA to research carbon footprint for precast concrete piles during the building construction stage: A China study. J. Clean. Prod. 2020, 245, 118754. [Google Scholar] [CrossRef]
- Trovato, M.R.; Nocera, F.; Giuffrida, S. Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings. Sustainability 2020, 12, 3460. [Google Scholar] [CrossRef]
- Schwartz, Y.; Raslan, R.; Mumovic, D. The life cycle carbon footprint of refurbished and new buildings—A systematic review of case studies. Renew. Sustain. Energy Rev. 2018, 81, 231–241. [Google Scholar] [CrossRef]
- Huang, W.; Li, F.; Cui, S.-h.; Huang, L.; Lin, J.-y. Carbon footprint and carbon emission reduction of urban buildings: A case in Xiamen City, China. Procedia Eng. 2017, 198, 1007–1017. [Google Scholar] [CrossRef]
- ACI 211.1-91; Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009). American Concrete Institute: Farming Hills, MI, USA, 2009.
- Rostampour, M.A. Calculations of the Building Dead Loads based on the Various Construction Details; Simaye Danesh Publication: Tehran, Iran, 2023. [Google Scholar]
- The Iranian Standard No. 2800; Iranian Code of Practice for Seismic Resistance Design of Buildings. Iran National Standards Organization (INSO): Industrial City, Iran, 2015.
- Ministry of Roads and Urban Development. Design of Reinforced Concrete Structures; Ministry of Roads and Urban Development: Tehran, Iran, 2020; Chapter 9.
Concrete ID | 28-Day Compressive Strength (MPa) | Cement (kg/m3) | Sand (kg/m3) | Gravel (kg/m3) | W/C Ratio | Superplasticizer (kg/m3) |
---|---|---|---|---|---|---|
C20 | 20 | 259 | 799 | 1146 | 0.69 | 1.4 |
C30 | 30 | 331 | 739 | 1146 | 0.54 | 1.7 |
C40 | 40 | 425 | 660 | 1146 | 0.42 | 2.0 |
Concrete ID | Concrete (m3) | Concrete Block (ton) | Rebars (ton) | Transportation (ton.km) |
---|---|---|---|---|
C20 | 320 | 67 | 38.72 | 31,796 |
C30 | 311 | 67 | 35.08 | 30,111 |
C40 | 304 | 67 | 33.95 | 29,348 |
Method | Unit of Measurement | C20 | C30 | C40 | |
---|---|---|---|---|---|
IMPACT 2002+ | Human health | DALY | 0.000133 | 0.000158 | 0.000191 |
Ecosystem quality | PDF.m2.yr | 42.129 | 49.750 | 59.662 | |
Climate change | kg CO2 eq. | 267.193 | 332.572 | 417.819 | |
Resources | MJ primary | 1524.054 | 1810.962 | 2183.168 | |
CML baseline 2000 | Acidification | kg SO2 eq. | 0.66281 | 0.79334 | 0.96335 |
Eutrophication | kg PO4 eq. | 0.17710 | 0.21087 | 0.25482 | |
Global warming | kg CO2 eq. | 270.366 | 336.409 | 422.518 | |
Human toxicity | kg 1,4 DB eq. | 68.473 | 80.793 | 96.761 |
Method | C20 | C30 | C40 | |
---|---|---|---|---|
IMPACT 2002+ | Human health | 150,375.9 | 189,873.4 | 209,424.1 |
Ecosystem quality | 0.475 | 0.603 | 0.670 | |
Climate change | 0.075 | 0.090 | 0.096 | |
Resources | 0.013 | 0.017 | 0.018 | |
CML baseline 2000 | Acidification | 30.2 | 37.8 | 41.5 |
Eutrophication | 112.9 | 142.3 | 157.0 | |
Global warming | 0.074 | 0.089 | 0.095 | |
Human toxicity | 0.292 | 0.371 | 0.413 |
Method | Unit of Measurement | C20 | C30 | C40 | |
---|---|---|---|---|---|
IMPACT 2002+ | Human health | DALY | 0.000063 | 0.000066 | 0.000071 |
Ecosystem quality | PDF.m2.yr | 16.194 | 17.287 | 19.128 | |
Climate change | kg CO2 eq. | 123.190 | 131.326 | 147.194 | |
Resources | MJ primary | 1085.988 | 1078.720 | 1133.345 | |
CML baseline 2000 | Acidification | kg SO2 eq. | 0.41500 | 0.41793 | 0.44504 |
Eutrophication | kg PO4 eq. | 0.06412 | 0.06925 | 0.07759 | |
Global warming | kg CO2 eq. | 125.672 | 133.784 | 149.778 | |
Human toxicity | kg 1,4 DB eq. | 25.032 | 27.070 | 30.132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafaei, H.; Badarloo, B.; Chamasemani, N.F.; Rostampour, M.A.; Lehner, P. Investigating the Effects of Concrete Mix Design on the Environmental Impacts of Reinforced Concrete Structures. Buildings 2023, 13, 1313. https://doi.org/10.3390/buildings13051313
Mostafaei H, Badarloo B, Chamasemani NF, Rostampour MA, Lehner P. Investigating the Effects of Concrete Mix Design on the Environmental Impacts of Reinforced Concrete Structures. Buildings. 2023; 13(5):1313. https://doi.org/10.3390/buildings13051313
Chicago/Turabian StyleMostafaei, Hasan, Baitollah Badarloo, Niyousha Fallah Chamasemani, Muhammad Ali Rostampour, and Petr Lehner. 2023. "Investigating the Effects of Concrete Mix Design on the Environmental Impacts of Reinforced Concrete Structures" Buildings 13, no. 5: 1313. https://doi.org/10.3390/buildings13051313
APA StyleMostafaei, H., Badarloo, B., Chamasemani, N. F., Rostampour, M. A., & Lehner, P. (2023). Investigating the Effects of Concrete Mix Design on the Environmental Impacts of Reinforced Concrete Structures. Buildings, 13(5), 1313. https://doi.org/10.3390/buildings13051313