Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. Bibliometric Analysis
3. Overview
3.1. Amount of Papers
3.2. Publication Sources
3.3. International Collaboration
3.4. Co-Cited Authors
- Mani Golparvar-Fard (with 320 co-citations), whose research direction includes CV, machine learning, BIM, construction monitoring, and project controls.
- Jochen Teizer (with 276 co-citations), who mainly studies project management, safety and health, BIM, automation, and robotics.
- Rafael Sacks (with 234 co-citations), whose research directions are construction management, BIM, lean construction, and digital twin construction.
- Hyoungkwan Kim (with 225 co-citations), whose research focuses on project management and construction automation.
- Satish Nagarajaiah (with 164 co-citations), whose research directions include structural dynamics, seismic isolation, adaptive stiffness structure system, system identification, and physics-guided machine learning.
4. Research Cluster Analysis
4.1. Bibliometric Analysis of Documents from China
4.1.1. Information Integration and Digital Twins
4.1.2. Intelligent Algorithms in the Whole Life Cycle of Construction Projects
4.2. Bibliometric Analysis of Documents from Developed Countries
4.2.1. Knowledge Representation, Learning, and Utilization
4.2.2. Construction Industrialization and Construction Robots
4.2.3. Three-Dimensional Reconstruction
4.2.4. Information Integration
4.2.5. Structure Operation and Maintenance
5. Comparison of Documents from China and Developed Countries
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, X.Z.; Liao, W.J.; Zhang, Y.; Huang, Y.L. Intelligent Structural Design of Shear Wall Residence Using Physics-enhanced Generative Adversarial Networks. Earthq. Eng. Struct. D 2022, 51, 1657–1676. [Google Scholar] [CrossRef]
- Zhao, P.J.; Liao, W.J.; Xue, H.J.; Lu, X.Z. Intelligent Design Method for Beam and Slab of Shear Wall Structure Based on Deep Learning. J. Build. Eng. 2022, 57, 104838. [Google Scholar] [CrossRef]
- Fei, Y.F.; Liao, W.J.; Zhang, S.; Yin, P.F.; Han, B.; Zhao, P.; Chen, X.; Lu, X. Integrated Schematic Design Method for Shear Wall Structures: A Practical Application of Generative Adversarial Networks. Buildings 2022, 12, 1295. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, J.S. Semantic Rule-Based Construction Procedural Information Extraction to Guide Jobsite Sensing and Monitoring. J. Comput. Civ. Eng. 2021, 35, 04021026. [Google Scholar] [CrossRef]
- Doukari, O.; Seck, B.; Greenwood, D. The Creation of Construction Schedules in 4D BIM: A Comparison of Conventional and Automated Approaches. Buildings 2022, 12, 1145. [Google Scholar] [CrossRef]
- Chiachío, M.; Megía, M.; Chiachío, J.; Fernandez, J.; Jalón, M.L. Structural Digital Twin Framework: Formulation and Technology Integration. Autom. Constr. 2022, 140, 104333. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Chiu, K.C.; Hsieh, Y.M.; Yang, I.T.; Chou, J.S.; Wu, Y.W. BIM Integrated Smart Monitoring Technique for Building Fire Prevention and Disaster Relief. Autom. Constr. 2017, 84, 14–30. [Google Scholar] [CrossRef]
- Biulding Industrialization. Available online: https://ind-building.cscec.com/hyzx/zh/201912/3000048.html (accessed on 25 April 2023). (In Chinese).
- The State Council of the People’s Republic of China. Available online: http://www.gov.cn/zhengce/zhengceku/2020-07/28/content_5530762.htm (accessed on 25 April 2023). (In Chinese)
- Liu, Z.S.; Sun, X.T.; Shi, G.L. Summary of Application of Intelligent Construction in Civil Engineering Construction. Archit. Technol. 2021, 50, 40–53. (In Chinese) [Google Scholar]
- Fan, Q.X.; Lin, P.; Wei, P.C.; Ning, Z.Y.; Li, G. Closed-loop control theory of intelligent construction. J. Tsinghua Univ. (Sci. Technol.) 2021, 61, 660–670. (In Chinese) [Google Scholar]
- Wu, C.K.; Li, X.; Guo, Y.J.; Wang, J.; Ren, Z.L.; Wang, M.; Yang, Z.L. Natural Language Processing for Smart Construction: Current Status and Future Directions. Autom. Constr. 2022, 134, 104059. [Google Scholar] [CrossRef]
- Qian, Q.H. The field of engineering construction should move towards intelligent construction. Constr. Archit. 2020, 18, 17–18. (In Chinese) [Google Scholar]
- Chen, K.; Ding, L.Y. Development of Key Domain-Relevant Technologies for Smart Construction in China. Chin. J. Eng. Sci. 2021, 23, 64. [Google Scholar] [CrossRef]
- Liu, J.P.; Zhou, X.H.; Wu, Z.; Cao, L.; Feng, L.; Li, D.S. Intelligent Construction Basic Algorithm Tutorial; China Architecture & Building Press: Beijing, China, 2021. [Google Scholar]
- Liu, Z.; Lu, Y.; Peh, L.C. A Review and Scientometric Analysis of Global Building Information Modeling (BIM) Research in the Architecture, Engineering and Construction (AEC) Industry. Buildings 2019, 9, 210. [Google Scholar] [CrossRef]
- Tang, S.; Shelden, D.R.; Eastman, C.M.; Pishdad-Bozorgi, P.; Gao, X. A Review of Building Information Modeling (BIM) and the Internet of Things (IoT) Devices Integration: Present Status and Future Trends. Autom. Constr. 2019, 101, 127–139. [Google Scholar] [CrossRef]
- Wu, H.T.; Zhang, P.; Li, H.; Zhong, B.T.; Fung, I.W.H.; Lee, Y.Y.R. Blockchain Technology in the Construction Industry: Current Status, Challenges, and Future Directions. J. Constr. Eng. Manag. 2022, 148, 03122007. [Google Scholar] [CrossRef]
- Baghalzadeh Shishehgarkhaneh, M.; Keivani, A.; Moehler, R.C.; Jelodari, N.; Roshdi Laleh, S. Internet of Things (IoT), Building Information Modeling (BIM), and Digital Twin (DT) in Construction Industry: A Review, Bibliometric, and Network Analysis. Buildings 2022, 12, 1503. [Google Scholar] [CrossRef]
- Lin, J.R.; Hu, Z.Z.; Li, J.L.; Chen, L.M. Understanding on-site inspection of construction projects based on keyword extraction and topic modeling. IEEE Access 2020, 8, 198503–198517. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.M. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Xiao, B.; Chen, C.; Yin, X.F. Recent Advancements of Robotics in Construction. Autom. Constr. 2022, 144, 104591. [Google Scholar] [CrossRef]
- Wang, H.W.; Lin, J.R.; Zhang, J.P. Work Package-based Information Modeling for Resource-constrained Scheduling of Construction Projects. Autom. Constr. 2020, 109, 102958. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://zh.wikipedia.org/zh-cn/%E5%B7%B2%E9%96%8B%E7%99%BC%E5%9C%8B%E5%AE%B6#cite_note-14 (accessed on 13 May 2023). (In Chinese).
- Song, J.B.; Zhang, H.L.; Dong, W.L. A Review of Emerging Trends in Global PPP Research: Analysis and Visualization. Scientometrics 2016, 107, 1111–1147. [Google Scholar] [CrossRef]
- Pouris, A.; Pouris, A. Scientometrics of a Pandemic: HIV/AIDS Research in South Africa and the World. Scientometrics 2011, 86, 541–552. [Google Scholar] [CrossRef]
- Çevikbaş, M.; Işık, Z. An Overarching Review on Delay Analyses in Construction Projects. Buildings 2021, 11, 109. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.; Piroozfar, P. An Overall Review of Research on Prefabricated Construction Supply Chain Management. ECAM 2022. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Su, H.N. Investigating the Structure of Regional Innovation System Research through Keyword Co-Occurrence and Social Network Analysis. Innovation 2010, 12, 26–40. [Google Scholar] [CrossRef]
- Small, H. Co-Citation in the Scientific Literature: A New Measure of the Relationship between Two Documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Zhao, X. A Scientometric Review of Global BIM Research: Analysis and Visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Yin, X.F.; Liu, H.X.; Chen, Y.; Al-Hussein, M. Building Information Modelling for Off-Site Construction: Review and Future Directions. Autom. Constr. 2019, 101, 72–91. [Google Scholar] [CrossRef]
- Li, H.; Chan, G.; Wong, J.K.W.; Skitmore, M. Real-Time Locating Systems Applications in Construction. Autom. Constr. 2016, 63, 37–47. [Google Scholar] [CrossRef]
- Fang, Q.; Li, H.; Luo, X.C.; Ding, L.Y.; Luo, H.B.; Li, C.Q. Computer Vision Aided Inspection on Falling Prevention Measures for Steeplejacks in an Aerial Environment. Autom. Constr. 2018, 93, 148–164. [Google Scholar] [CrossRef]
- Zhang, J.S.; El-Gohary, N.M. Integrating Semantic NLP and Logic Reasoning into a Unified System for Fully-Automated Code Checking. Autom. Constr. 2017, 73, 45–57. [Google Scholar] [CrossRef]
- Zhang, J.S.; El-Gohary, N.M. Semantic NLP-Based Information Extraction from Construction Regulatory Documents for Automated Compliance Checking. J. Comput. Civ. Eng. 2016, 30, 04015014. [Google Scholar] [CrossRef]
- Pauwels, P.; Zhang, S.J.; Lee, Y.C. Semantic Web Technologies in AEC Industry: A Literature Overview. Autom. Constr. 2017, 73, 145–165. [Google Scholar] [CrossRef]
- Zhu, A.Y.; Pauwels, P.; Vries, B.D. Smart Component-Oriented Method of Construction Robot Coordination for Prefabricated Housing. Autom. Constr. 2021, 129, 103778. [Google Scholar] [CrossRef]
- Bosché, F. Automated Recognition of 3D CAD Model Objects in Laser Scans and Calculation of As-Built Dimensions for Dimensional Compliance Control in Construction. Adv. Eng. Inform. 2010, 24, 107–118. [Google Scholar] [CrossRef]
- Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The Value of Integrating Scan-to-BIM and Scan-vs-BIM Techniques for Construction Monitoring Using Laser Scanning and BIM: The Case of Cylindrical MEP Components. Autom. Constr. 2015, 49, 201–213. [Google Scholar] [CrossRef]
- Kim, C.; Son, H.; Kim, C. Automated Construction Progress Measurement Using a 4D Building Information Model and 3D Data. Autom. Constr. 2013, 31, 75–82. [Google Scholar] [CrossRef]
- Son, H.; Bosché, F.; Kim, C. As-Built Data Acquisition and Its Use in Production Monitoring and Automated Layout of Civil Infrastructure: A Survey. Adv. Eng. Inf. 2015, 29, 172–183. [Google Scholar] [CrossRef]
- Kim, J.; Chi, S.; Seo, J. Interaction Analysis for Vision-Based Activity Identification of Earthmoving Excavators and Dump Trucks. Autom. Constr. 2018, 87, 297–308. [Google Scholar] [CrossRef]
- Kim, J.; Chi, S. Action Recognition of Earthmoving Excavators Based on Sequential Pattern Analysis of Visual Features and Operation Cycles. Autom. Constr. 2019, 104, 255–264. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Z.K.; Wu, Z.Y. Vision-Based Action Recognition of Construction Workers Using Dense Trajectories. Adv. Eng. Inf. 2016, 30, 327–336. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, T.; Teizer, J.; Vela, P.A.; Shi, Z.K. A Performance Evaluation of Vision and Radio Frequency Tracking Methods for Interacting Workforce. Adv. Eng. Inf. 2011, 25, 736–747. [Google Scholar] [CrossRef]
- Xia, T.; Yang, J.; Chen, L. Automated Semantic Segmentation of Bridge Point Cloud Based on Local Descriptor and Machine Learning. Autom. Constr. 2022, 133, 103992. [Google Scholar] [CrossRef]
- Park, M.W.; Elsafty, N.; Zhu, Z.H. Hardhat-Wearing Detection for Enhancing On-Site Safety of Construction Workers. J. Constr. Eng. Manag. 2015, 141, 04015024. [Google Scholar] [CrossRef]
- Navon, R. Automated Project Performance Control of Construction Projects. Autom. Constr. 2005, 14, 467–476. [Google Scholar] [CrossRef]
- Navon, R.; Kolton, O. Model for Automated Monitoring of Fall Hazards in Building Construction. J. Constr. Eng. Manag. 2006, 132, 733–740. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J.; Migliaccio, G.C.; Gatti, U.C. Automated Task-Level Activity Analysis through Fusion of Real Time Location Sensors and Worker’s Thoracic Posture Data. Autom. Constr. 2013, 29, 24–39. [Google Scholar] [CrossRef]
- Cheng, T.; Mantripragada, U.; Teizer, J.; Vela, P.A. Automated Trajectory and Path Planning Analysis Based on Ultra Wideband Data. J. Comput. Civ. Eng. 2012, 26, 151–160. [Google Scholar] [CrossRef]
- Kurata, N.; Spencer, B.F.; Ruiz-Sandoval, M. Risk Monitoring of Buildings with Wireless Sensor Networks. Struct. Control Health Monit. 2005, 12, 315–327. [Google Scholar] [CrossRef]
- Yang, G.; Spencer, B.F.; Carlson, J.D.; Sain, M.K. Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Considerations. Eng. Struct. 2002, 24, 309–323. [Google Scholar] [CrossRef]
- Amezquita-Sanchez, J.P.; Park, H.S.; Adeli, H. A Novel Methodology for Modal Parameters Identification of Large Smart Structures Using MUSIC, Empirical Wavelet Transform, and Hilbert Transform. Eng. Struct. 2017, 147, 148–159. [Google Scholar] [CrossRef]
- Soto, M.G.; Adeli, H. Vibration Control of Smart Base-Isolated Irregular Buildings Using Neural Dynamic Optimization Model and Replicator Dynamics. Eng. Struct. 2018, 156, 322–336. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Bohn, J.; Teizer, J.; Savarese, S.; Peña-Mora, F. Evaluation of Image-Based Modeling and Laser Scanning Accuracy for Emerging Automated Performance Monitoring Techniques. Autom. Constr. 2011, 20, 1143–1155. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models. J. Comput. Civ. Eng. 2015, 29, 04014025. [Google Scholar] [CrossRef]
- Zhang, S.J.; Teizer, J.; Lee, J.K.; Eastman, C.M.; Venugopal, M. Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules. Autom. Constr. 2013, 29, 183–195. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Real-Time Resource Location Data Collection and Visualization Technology for Construction Safety and Activity Monitoring Applications. Autom. Constr. 2013, 34, 3–15. [Google Scholar] [CrossRef]
- Ergen, E.; Akinci, B.; Sacks, R. Tracking and Locating Components in a Precast Storage Yard Utilizing Radio Frequency Identification Technology and GPS. Autom. Constr. 2007, 16, 354–367. [Google Scholar] [CrossRef]
- Navon, R.; Sacks, R. Assessing Research Issues in Automated Project Performance Control (APPC). Autom. Constr. 2007, 16, 474–484. [Google Scholar] [CrossRef]
- Seo, J.; Han, S.; Lee, S.; Kim, H. Computer Vision Techniques for Construction Safety and Health Monitoring. Adv. Eng. Inf. 2015, 29, 239–251. [Google Scholar] [CrossRef]
- Park, S.; Bang, S.; Kim, H.; Kim, H. Patch-Based Crack Detection in Black Box Images Using Convolutional Neural Networks. J. Comput. Civ. Eng. 2019, 33, 04019017. [Google Scholar] [CrossRef]
- Sun, C.; Nagarajaiah, S. Study on Semi-Active Tuned Mass Damper with Variable Damping and Stiffness under Seismic Excitations: Semi-Active Tuned Mass Damper with Variable Damping and Stiffness. Struct. Control Health Monit. 2014, 21, 890–906. [Google Scholar] [CrossRef]
- Sun, T.; Lai, Z.L.; Nagarajaiah, S.; Li, H.-N. Negative Stiffness Device for Seismic Protection of Smart Base Isolated Benchmark Building: Nsd for Seismic Protection of Smart Base Isolated Benchmark Building. Struct. Control Health Monit. 2017, 24, e1968. [Google Scholar] [CrossRef]
- Li, C.Z.; Xue, F.; Li, X.; Hong, J.K.; Shen, G.Q. An Internet of Things-Enabled BIM Platform for on-Site Assembly Services in Prefabricated Construction. Autom. Constr. 2018, 89, 146–161. [Google Scholar] [CrossRef]
- Lin, J.R.; Hu, Z.Z.; Zhang, J.P.; Yu, F.Q. A Natural-Language-Based Approach to Intelligent Data Retrieval and Representation for Cloud BIM: Intelligent Data Retrieval and Representation. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 18–33. [Google Scholar] [CrossRef]
- Wu, L.T.; Lin, J.R.; Leng, S.; Li, J.L.; Hu, Z.Z. Rule-Based Information Extraction for Mechanical-Electrical-Plumbing-Specific Semantic Web. Autom. Constr. 2022, 135, 104108. [Google Scholar] [CrossRef]
- Tang, L. Developing a BIM GIS–Integrated Method for Urban Underground Piping Management in China: A Case Study. J. Constr. Eng. Manag. 2022, 148, 05022004. [Google Scholar] [CrossRef]
- Kim, M.K.; Cheng, J.C.P.; Sohn, H.; Chang, C.C. A Framework for Dimensional and Surface Quality Assessment of Precast Concrete Elements Using BIM and 3D Laser Scanning. Autom. Constr. 2015, 49, 225–238. [Google Scholar] [CrossRef]
- Chen, J.J.; Lu, W.S.; Lou, J.F. Automatic Concrete Defect Detection and Reconstruction by Aligning Aerial Images onto Semantic-rich Building Information Model. Comput. Aided Civ. Eng. 2022, 38, 1079–1098. [Google Scholar] [CrossRef]
- Zheng, Z.; Liao, W.J.; Lin, J.R.; Zhou, Y.C.; Zhang, C.; Lu, X.Z. Digital Twin-Based Investigation of a Building Collapse Accident. Adv. Civ. Eng. 2022, 2022, 9568967. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Cao, C.F.; Liu, Z.S. A Framework for Prefabricated Component Hoisting Management Systems Based on Digital Twin Technology. Buildings 2022, 12, 276. [Google Scholar] [CrossRef]
- Lin, J.R.; Zhang, J.P.; Zhang, X.Y.; Hu, Z.Z. Automating Closed-Loop Structural Safety Management for Bridge Construction through Multisource Data Integration. Adv. Eng. Softw. 2019, 128, 152–168. [Google Scholar] [CrossRef]
- Lin, J.R.; Wu, D.P. An Approach to Twinning and Mining Collaborative Network of Construction Projects. Autom. Constr. 2021, 125, 103643. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z. Research on Intelligent Dispatching System Management Platform for Construction Projects Based on Digital Twin and BIM Technology. Adv. Civ. Eng. 2022, 2022, 8273451. [Google Scholar] [CrossRef]
- Zhong, B.; Guo, J.D.; Zhang, L.; Wu, H.T.; Li, H.; Wang, Y.H. A Blockchain-Based Framework for on-Site Construction Environmental Monitoring: Proof of Concept. Build. Env. 2022, 217, 109064. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.Y.; Yuen, K.V. Construction Site Information Decentralized Management Using Blockchain and Smart Contracts. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1450–1467. [Google Scholar] [CrossRef]
- Tao, X.Y.; Liu, Y.H.; Wong, P.K.-Y.; Chen, K.Y.; Das, M.; Cheng, J.C.P. Confidentiality-Minded Framework for Blockchain-Based BIM Design Collaboration. Autom. Constr. 2022, 136, 104172. [Google Scholar] [CrossRef]
- Liao, W.J.; Lu, X.Z.; Huang, Y.L.; Zheng, Z.; Lin, Y. Automated Structural Design of Shear Wall Residential Buildings Using Generative Adversarial Networks. Autom. Constr. 2021, 132, 103931. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, Y.C.; Lu, X.Z.; Lin, J.R. Knowledge-Informed Semantic Alignment and Rule Interpretation for Automated Compliance Checking. Autom. Constr. 2022, 142, 104524. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Zheng, Z.; Lin, J.R.; Lu, X.Z. Integrating NLP and Context-Free Grammar for Complex Rule Interpretation towards Automated Compliance Checking. Comput. Ind. 2022, 142, 103746. [Google Scholar] [CrossRef]
- Fang, W.L.; Ding, L.Y.; Zhong, B.Y.; Love, P.E.D.; Luo, H.B. Automated Detection of Workers and Heavy Equipment on Construction Sites: A Convolutional Neural Network Approach. Adv. Eng. Inf. 2018, 37, 139–149. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Q.; Xie, X.Y.; Shahrour, I.; Huang, Y. Use of Deep Learning, Denoising Technic and Cross-Correlation Analysis for the Prediction of the Shield Machine Slurry Pressure in Mixed Ground Conditions. Autom. Constr. 2021, 128, 103741. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Lin, J.R.; Liu, M.; Ma, Z.L. Adaptive Control of Resource Flow to Optimize Construction Work and Cash Flow via Online Deep Reinforcement Learning. Autom. Constr. 2023, 150, 104817. [Google Scholar] [CrossRef]
- Liu, J.W.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.; Ding, L. Automated Pavement Crack Detection and Segmentation Based on Two-step Convolutional Neural Network. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [Google Scholar] [CrossRef]
- Cheng, J.C.P.; Wang, M.Z. Automated Detection of Sewer Pipe Defects in Closed-Circuit Television Images Using Deep Learning Techniques. Autom. Constr. 2018, 95, 155–171. [Google Scholar] [CrossRef]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment Anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Solaiman, I.; Brundage, M.; Clark, J.; Askell, A.; Herbert-Voss, A.; Wu, J.; Radford, A.; Krueger, G.; Kim, J.W.; Kreps, S.; et al. Release Strategies and the Social Impacts of Language Models. arXiv 2019, arXiv:1908.09203. [Google Scholar]
- OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. [Google Scholar]
- Zheng, Z.; Lu, X.Z.; Chen, K.Y.; Zhou, Y.C.; Lin, J.R. Pretrained Domain-Specific Language Model for Natural Language Processing Tasks in the AEC Domain. Comput. Ind. 2022, 142, 103733. [Google Scholar] [CrossRef]
- Duan, R.; Deng, H.; Tian, M.; Deng, Y.C.; Lin, J.R. SODA: A Large-Scale Open Site Object Detection Dataset for Deep Learning in Construction. Autom. Constr. 2022, 142, 104499. [Google Scholar] [CrossRef]
- Akanbi, T.; Zhang, J.S. Design Information Extraction from Construction Specifications to Support Cost Estimation. Autom. Constr. 2021, 131, 103835. [Google Scholar] [CrossRef]
- Zhang, J.S.; El-Gohary, N.M. Automated Information Transformation for Automated Regulatory Compliance Checking in Construction. J. Comput. Civ. Eng. 2015, 29, B4015001. [Google Scholar] [CrossRef]
- Zhang, S.J.; Boukamp, F.; Teizer, J. Ontology-Based Semantic Modeling of Construction Safety Knowledge: Towards Automated Safety Planning for Job Hazard Analysis (JHA). Autom. Constr. 2015, 52, 29–41. [Google Scholar] [CrossRef]
- Kebede, R.; Moscati, A.; Tan, H.; Johansson, P. Integration of Manufacturers’ Product Data in BIM Platforms Using Semantic Web Technologies. Autom. Constr. 2022, 144, 104630. [Google Scholar] [CrossRef]
- Kim, S.K.; Russell, J.S.; Koo, K.J. Construction Robot Path-Planning for Earthwork Operations. J. Comput. Civ. Eng. 2003, 17, 97–104. [Google Scholar] [CrossRef]
- Lublasser, E.; Adams, T.; Vollpracht, A.; Brell-Cokcan, S. Robotic Application of Foam Concrete onto Bare Wall Elements—Analysis, Concept and Robotic Experiments. Autom. Constr. 2018, 89, 299–306. [Google Scholar] [CrossRef]
- Hack, N.; Dörfler, K.; Walzer, A.N.; Wangler, T.; Mata-Falcón, J.; Kumar, N.; Buchli, J.; Kaufmann, W.; Flatt, R.J.; Gramazio, F.; et al. Structural Stay-in-Place Formwork for Robotic in Situ Fabrication of Non-Standard Concrete Structures: A Real Scale Architectural Demonstrator. Autom. Constr. 2020, 115, 103197. [Google Scholar] [CrossRef]
- Krishna Lakshmanan, A.; Elara Mohan, R.; Ramalingam, B.; Vu Le, A.; Veerajagadeshwar, P.; Tiwari, K.; Ilyas, M. Complete Coverage Path Planning Using Reinforcement Learning for Tetromino Based Cleaning and Maintenance Robot. Autom. Constr. 2020, 112, 103078. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Zhu, Q.; Du, J. Intuitive Robot Teleoperation for Civil Engineering Operations with Virtual Reality and Deep Learning Scene Reconstruction. Adv. Eng. Inform. 2020, 46, 101170. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Habibnezhad, M.; Jebelli, H. Brain-Computer Interface for Hands-Free Teleoperation of Construction Robots. Autom. Constr. 2021, 123, 103523. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.H.; Kamat, V.R. Proximity Prediction of Mobile Objects to Prevent Contact-Driven Accidents in Co-Robotic Construction. J. Comput. Civ. Eng. 2020, 34, 04020022. [Google Scholar] [CrossRef]
- Xiong, X.H.; Adan, A.; Akinci, B.; Huber, D. Automatic Creation of Semantically Rich 3D Building Models from Laser Scanner Data. Autom. Constr. 2013, 31, 325–337. [Google Scholar] [CrossRef]
- Park, J.; Cho, Y.K. Point Cloud Information Modeling: Deep Learning–Based Automated Information Modeling Framework for Point Cloud Data. J. Constr. Eng. Manag. 2022, 148, 04021191. [Google Scholar] [CrossRef]
- Pan, Y.D.; Braun, A.; Brilakis, I.; Borrmann, A. Enriching Geometric Digital Twins of Buildings with Small Objects by Fusing Laser Scanning and AI-Based Image Recognition. Autom. Constr. 2022, 140, 104375. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C.W. 3D As-Built Modeling from Incomplete Point Clouds Using Connectivity Relations. Autom. Constr. 2021, 130, 103855. [Google Scholar] [CrossRef]
- Braun, A.; Tuttas, S.; Borrmann, A.; Stilla, U. Improving Progress Monitoring by Fusing Point Clouds, Semantic Data and Computer Vision. Autom. Constr. 2020, 116, 103210. [Google Scholar] [CrossRef]
- Seo, J.Y.; Jang, W.; Kwak, M.S.; Ko, J.; Kim, H.; Kim, J.; Kim, J.-H.; Lee, J.; Kim, S. Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation. arXiv 2023, arXiv:2303.07937. [Google Scholar]
- Shen, Q.H.; Yang, X.Y.; Wang, X.C. Anything-3D: Towards Single-View Anything Reconstruction in the Wild. arXiv 2023, arXiv:2304.10261. [Google Scholar]
- Pan, Y.; Zhang, L.M. A BIM-Data Mining Integrated Digital Twin Framework for Advanced Project Management. Autom. Constr. 2021, 124, 103564. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R. Integrated Project Delivery with Blockchain: An Automated Financial System. Autom. Constr. 2020, 114, 103182. [Google Scholar] [CrossRef]
- Ahmadisheykhsarmast, S.; Sonmez, R. A Smart Contract System for Security of Payment of Construction Contracts. Autom. Constr. 2020, 120, 103401. [Google Scholar] [CrossRef]
- Civera, M.; Mugnaini, V.; Zanotti Fragonara, L. Machine Learning-based Automatic Operational Modal Analysis: A Structural Health Monitoring Application to Masonry Arch Bridges. Struct. Control Health Monit. 2022, 29, e3028. [Google Scholar] [CrossRef]
- Laflamme, S.; Kollosche, M.; Connor, J.J.; Kofod, G. Soft Capacitive Sensor for Structural Health Monitoring of Large-Scale Systems. Struct. Control Health Monit. 2012, 19, 70–81. [Google Scholar] [CrossRef]
- Ying, Y.J.; Garrett, J.H.; Oppenheim, I.J.; Soibelman, L.; Harley, J.B.; Shi, J.; Jin, Y. Toward Data-Driven Structural Health Monitoring: Application of Machine Learning and Signal Processing to Damage Detection. J. Comput. Civ. Eng. 2013, 27, 667–680. [Google Scholar] [CrossRef]
- Zonta, D.; Glisic, B.; Adriaenssens, S. Value of Information: Impact of Monitoring on Decision-Making: Value of Information: Impact of Monitoring on Decision-Making. Struct. Control Health Monit. 2014, 21, 1043–1056. [Google Scholar] [CrossRef]
- Giordano, P.F.; Limongelli, M.P. The Value of Structural Health Monitoring in Seismic Emergency Management of Bridges. Struct. Infrastruct. Eng. 2022, 18, 537–553. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Lin, C.W.; Yau, J.D. Extracting Bridge Frequencies from the Dynamic Response of a Passing Vehicle. J. Sound Vib. 2004, 272, 471–493. [Google Scholar] [CrossRef]
- Kim, J.; Lynch, J.P. Experimental Analysis of Vehicle–Bridge Interaction Using a Wireless Monitoring System and a Two-Stage System Identification Technique. Mech. Syst. Sig. Process. 2012, 28, 3–19. [Google Scholar] [CrossRef]
- Li, J.T.; Zhu, X.Q.; Law, S.S.; Samali, B.J. Indirect Bridge Modal Parameters Identification with One Stationary and One Moving Sensors and Stochastic Subspace Identification. J. Sound Vib. 2019, 446, 1–21. [Google Scholar] [CrossRef]
- Feng, M.; Fukuda, Y.; Mizuta, M.; Ozer, E. Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones. Sensors 2015, 15, 2980–2998. [Google Scholar] [CrossRef]
- Ozer, E.; Purasinghe, R.; Feng, M.Q. Multi-output Modal Identification of Landmark Suspension Bridges with Distributed Smartphone Data: Golden Gate Bridge. Struct. Control Health Monit. 2020, 27, e2576. [Google Scholar] [CrossRef]
- Quqa, S.; Giordano, P.F.; Limongelli, M.P. Shared Micromobility-Driven Modal Identification of Urban Bridges. Autom. Constr. 2022, 134, 104048. [Google Scholar] [CrossRef]
- Candaş, A.B.; Tokdemir, O.B. Automated Identification of Vagueness in the FIDIC Silver Book Conditions of Contract. J. Constr. Eng. Manag. 2022, 148, 04022007. [Google Scholar] [CrossRef]
- Tang, S.X.; Liu, H.; Almatared, M.; Abudayyeh, O.; Lei, Z.; Fong, A. Towards Automated Construction Quantity Take-Off: An Integrated Approach to Information Extraction from Work Descriptions. Buildings 2022, 12, 354. [Google Scholar] [CrossRef]
- Wu, M.H.; Lin, J.R.; Zhang, X.H. How Human-Robot Collaboration Impacts Construction Productivity: An Agent-Based Multi-Fidelity Modeling Approach. Adv. Eng. Inf. 2022, 52, 101589. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, L.X.; Wang, H.; Zeng, W.H.; Ding, Y.H.; Hu, T.; Zheng, T.; Liao, H.; Hu, J. Intelligent Spraying Robot for Building Walls with Mobility and Perception. Autom. Constr. 2022, 139, 104270. [Google Scholar] [CrossRef]
- Lam, T.F.; Blum, H.; Siegwart, R.; Gawel, A. SL Sensor: An Open-Source, Real-Time and Robot Operating System-Based Structured Light Sensor for High Accuracy Construction Robotic Applications. Autom. Constr. 2022, 142, 104424. [Google Scholar] [CrossRef]
- Momeni, M.; Relefors, J.; Khatry, A.; Pettersson, L.; Papadopoulos, A.V.; Nolte, T. Automated Fabrication of Reinforcement Cages Using a Robotized Production Cell. Autom. Constr. 2022, 133, 103990. [Google Scholar] [CrossRef]
Reference | Definition of IC |
---|---|
Liu et al., 2021 [10] | Intelligent construction encompasses all stages of a building’s life cycle, including design, construction, operation, and maintenance. It is based on civil engineering construction technology and is supported by modern information and intelligent technologies. Guided by project management theory, intelligent construction is represented by intelligent management information systems. By constructing a digital twin model and establishing a bidirectional mapping between the real and virtual worlds, intelligent construction enables the perception, analysis, and control of the construction process and buildings. The result is a refined, high-quality, and efficient civil engineering construction mode. |
Fan et al., 2021 [11] | Intelligent construction integrates sensing technology, communication technology, data technology, construction technology, project management knowledge, and other aspects to perceive, analyze, control, and optimize the construction process and activities of buildings, making the construction process safe, high-quality, green, and efficient. |
Wu et al., 2022 [12] | The essence of intelligent construction is to (1) generate a digital twin of a project through real-time data collection and integration; (2) simulate all life cycle activities, i.e., planning, design, construction, and operation and maintenance (O&M); (3) optimize decision making in the activities; (4) carry out the physical project by following optimized decisions, which brings various benefits, e.g., minimizing costs, compressing schedules, and increasing quality, safety, and productivity. |
Qian, 2020 [13] | Intelligent construction relies on information equipment such as sensors to perceive data, which are then transmitted in real time through communication systems such as the Internet of Things and the Internet. Through data analysis, processing, and simulation, this information assists in decision making. |
Chen and Ding, 2020 [14] | Intelligent construction is an innovative engineering construction model that results from the deep integration of modern information and intelligent technologies as the core, in addition to advanced construction technology led by industrialization. |
Zhou et al., 2021 [15] | Intelligent construction takes machine learning and other intelligent algorithms as its core, combining them with the new generation of information and engineering construction technology to design, produce, and construct buildings and infrastructure. By replacing complex tasks that traditionally require human intelligence, intelligent construction enables a high degree of automation in the construction industry. |
Journal Title | Links | Total Link Strength | Citations | Documents | Citations/Documents |
---|---|---|---|---|---|
Automation in Construction | 59 | 270,033 | 11,637 | 725 | 16.05 |
The Journal of Computing in Civil Engineering | 59 | 93,815 | 3101 | 186 | 16.67 |
The Journal of Construction Engineering and Management | 58 | 81,932 | 3770 | 132 | 28.56 |
Advanced Engineering Informatics | 59 | 77,613 | 2243 | 117 | 19.17 |
Construction and Building Materials | 59 | 34,871 | 1579 | 101 | 15.63 |
Engineering Structures | 58 | 23,804 | 1212 | 77 | 15.74 |
Computer-Aided Civil and Infrastructure Engineering | 59 | 35,765 | 1253 | 59 | 21.24 |
Building and Environment | 59 | 28,802 | 1005 | 41 | 24.21 |
Energy and Buildings | 59 | 38,015 | 1362 | 40 | 34.05 |
The Journal of Management in Engineering | 56 | 24,724 | 658 | 27 | 25.3 |
Countries/Regions | Links | Total Link Strength | Documents | Citations | Citations/Documents |
---|---|---|---|---|---|
China | 27 | 333 | 828 | 14,680 | 17.75 |
The United States | 29 | 367 | 791 | 25,689 | 32.48 |
Canada | 19 | 135 | 257 | 6838 | 26.61 |
South Korea | 16 | 136 | 233 | 6298 | 27.03 |
England | 24 | 155 | 179 | 4640 | 25.92 |
Australia | 21 | 144 | 174 | 4472 | 25.70 |
Iran | 18 | 69 | 97 | 1168 | 12.04 |
Italy | 16 | 40 | 94 | 1903 | 20.24 |
Germany | 19 | 58 | 89 | 2247 | 25.25 |
Spain | 17 | 45 | 67 | 1739 | 26.00 |
Research Direction | Reference | Cluster Color |
---|---|---|
Information perception and utilization in the AEC industry | Li et al., 2016 [34], Li et al., 2018 [35], Zhang et al., 2017 [36], Zhang et al., 2016 [37], Pauwels et al., 2017 [38], and Zhu et al., 2021 [39] | Red |
Information integration and utilization based on BIM | Bosche et al., 2010 [40], Bosche et al., 2015 [41], Kim et al., 2013 [42], and Son et al., 2015 [43] | Green |
CV in construction | Kim et al., 2018 [44], Kim et al., 2019 [45], Yang et al., 2016 [46], Yang et al., 2011 [47], Tian et al., 2022 [48], and Park et al., 2015 [49] | Blue |
Automation in the AEC industry | Navon et al., 2005 [50], Navon and Kolton, 2006 [51], Cheng et al., 2013 [52], and Cheng et al., 2012 [53] | Yellow |
Structural health monitoring, structural intelligent control, and decision making | Kurata et al., 2005 [54], Yang et al., 2002 [55], Amezquita-Sanchez et al., 2017 [56], and Gutierrez Soto and Adeli, 2018 [57] | Purple |
Cluster Color | Most Influential Author | Citations (All Scopes) | Masterpiece | Source |
---|---|---|---|---|
Green | Golparvar-Fard et al., 2011 [58] | 231 | “Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques” | Automation in Construction |
Green | Golparvar-Fard et al., 2015 [59] | 162 | “Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models” | Journal of Computing in Civil Engineering |
Yellow | Teizer et al., 2013 [60] | 453 | “Building Information Modeling (BIM) and Safety: Automatic Safety Checking of Construction Models and Schedules” | Automation in Construction |
Yellow | Teizer et al., 2013 [61] | 216 | “Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications” | Automation in Construction |
Red | Sacks et al., 2007 [62] | 149 | “Tracking and locating components in a precast storage yard utilizing radio frequency identification technology and GPS” | Automation in Construction |
Red | Sacks et al., 2007 [63] | 140 | “Assessing research issues in automated project performance control (APPC)” | Automation in Construction |
Blue | Kim et al., 2015 [64] | 251 | “Computer vision techniques for construction safety and health monitoring” | Automation in Construction |
Blue | Kim et al., 2019 [65] | 68 | “Patch-Based Crack Detection in Black Box Images Using Convolutional Neural Networks” | Journal of Computing in Civil Engineering |
Purple | Nagarajaiah et al., 2014 [66] | 85 | “Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations” | Structural Control Health Monitoring |
Purple | Nagarajaiah et al., 2017 [67] | 58 | “Negative stiffness device for seismic protection of smart base isolated benchmark building” | Structural Control Health Monitoring |
Research Direction | China | Developed Countries | ||
---|---|---|---|---|
Reference | Characteristics | Reference | Characteristics | |
Domain knowledge transformation | Lu et al., 2022 [1], Zhao et al., 2022 [2], and Zheng et al., 2022 [83] | Structural intelligence design and automated compliance checking | Ren et al., 2021 [4], Candas and Tokdemir, 2022 [127], and Tang et al., 2022 [128] | Economic disputes in the AEC industry |
Information perception, fusion, and decision making | Zhong et al., 2022 [79], Zhao et al., 2022 [75], Chen et al., 2022 [73], and Zhang et al., 2022 [80] | Pairwise fusion between different data sources | Kebede et al., 2022 [98], Ren et al., 2021 [4], Ahmadisheykhsarmast et al., 2020 [115], and Elghaish et al., 2020 [114] | Fusion and decision making of multiple data sources |
Embodied AI | Wu et al., 2022 [129] and Wang et al., 2022 [130] | Human–robot collaboration and on-site construction robotics (only two documents) | Zhu et al., 2021 [39], Lam et al., 2022 [131], Liu et al., 2021 [104], and Momeni, et al., 2022 [132] | Brain–computer interface; human–robot collaboration; on-site construction robotics |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.-K.; Zheng, Z.; Zhou, Y.-C.; Lin, J.-R.; Deng, Y.-C.; Lu, X.-Z. Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries. Buildings 2023, 13, 1329. https://doi.org/10.3390/buildings13051329
Yan J-K, Zheng Z, Zhou Y-C, Lin J-R, Deng Y-C, Lu X-Z. Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries. Buildings. 2023; 13(5):1329. https://doi.org/10.3390/buildings13051329
Chicago/Turabian StyleYan, Jing-Ke, Zhe Zheng, Yu-Cheng Zhou, Jia-Rui Lin, Yi-Chuan Deng, and Xin-Zheng Lu. 2023. "Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries" Buildings 13, no. 5: 1329. https://doi.org/10.3390/buildings13051329
APA StyleYan, J. -K., Zheng, Z., Zhou, Y. -C., Lin, J. -R., Deng, Y. -C., & Lu, X. -Z. (2023). Recent Research Progress in Intelligent Construction: A Comparison between China and Developed Countries. Buildings, 13(5), 1329. https://doi.org/10.3390/buildings13051329