Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Test Device
2.2. Test Method
3. Results
3.1. Frictional Behavior of the Contact Interface
3.2. Creep Behavior of the Interface of Compacted Loess and Geogrid
4. Discussion
4.1. A Three-Parameter Empirical Model for the Interface Creep Behavior
4.2. Merchant Model for the Interface Creep Behavior
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koo, H.; Kim, Y. Lifetime Prediction of Geogrids for Reinforcement of Embankments and Slopes. Polym. Test. 2005, 24, 181–188. [Google Scholar] [CrossRef]
- Pan, G.; Liu, X.; Yuan, S.; Wang, Y.; Sun, D.; Feng, Y.; Jiang, G. A Field Study on the Arching Behavior of a Geogrid-Reinforced Floating Pile-Supported Embankment. Transp. Geotech. 2022, 37, 100795. [Google Scholar] [CrossRef]
- Jyothi, B.D.; Krishna, V.R. Optimal Arrangement of Geogrids in Road Embankment Using Different Fill Materials. Mater. Today Proc. 2021, 46, 8507–8512. [Google Scholar] [CrossRef]
- Kim, U.J.; Kim, D.S. Load Sharing Characteristics of Rigid Facing Walls with Geogrid Reinforced Railway Subgrade During and After Construction. Geotext. Geomembr. 2020, 48, 940–949. [Google Scholar] [CrossRef]
- Esmaeili, M.; Zakeri, J.A.; Babaei, M. Laboratory and Field Investigation of the Effect of Geogrid-Reinforced Ballast on Railway Track Lateral Resistance. Geotext. Geomembr. 2017, 45, 23–33. [Google Scholar] [CrossRef]
- Uchimura, T.; Tateyama, M.; Tanaka, I.; Tatsuoka, F. Performance of a Preloaded-Prestressed Geogrid-Reinforced Soil Pier for a Railway Bridge. Soils Found. 2003, 43, 155–171. [Google Scholar] [CrossRef]
- Ke, H.; Ma, P.; Lan, J.; Chen, Y.; He, H. Field Behaviors of a Geogrid Reinforced Msw Slope in a High-Food-Waste-Content Msw Landfill: A Case Study. Geotext. Geomembr. 2021, 49, 430–441. [Google Scholar] [CrossRef]
- Alamshahi, S.; Hataf, N. Bearing Capacity of Strip Footings on Sand Slopes Reinforced with Geogrid and Grid-Anchor. Geotext. Geomembr. 2009, 27, 217–226. [Google Scholar] [CrossRef]
- Batali, L.; Klompmaker, J.; Tronac, B. Geosynthetic Reinforced Soil Structure—Problems Faced and Lessons Learned. Case Studies from Romania. In Proceedings of the EuroGeo 6, 6th European Geosynthetics Congress, Ljubljana, Slovenia, 25–28 September 2016. [Google Scholar]
- Mirmoradi, S.H.; Ehrlich, M. Experimental Evaluation of the Effects of Surcharge Width and Location on Geosynthetic-Reinforced Soil Walls. Int. J. Phys. Model. Geotech. 2019, 19, 27–36. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y.; Zhang, D.; Liu, Z. The Long-Term Mechanical Performance of Geogrid-Reinforced Soil Retaining Walls Under Cyclic Footing Loading. Case Stud. Constr. Mater. 2022, 17, e1642. [Google Scholar] [CrossRef]
- Wang, H.; Yang, G.; Wang, Z.; Liu, W. Static Structural Behavior of Geogrid Reinforced Soil Retaining Walls with a Deformation Buffer Zone. Geotext. Geomembr. 2020, 48, 374–379. [Google Scholar] [CrossRef]
- Useche-Infante, D.; Martinez, G.A.; Arrúa, P.; Eberhardt, M. Experimental Study of Behaviour of Circular Footing on Geogrid-Reinforced Sand. Geomech. Geoengin. Int. J. 2022, 17, 45–63. [Google Scholar] [CrossRef]
- Suksiripattanapong, C.; Horpibulsuk, S.; Udomchai, A.; Arulrajah, A.; Tangsutthinon, T. Pullout Resistance Mechanism of Bearing Reinforcement Embedded in Coarse-Grained Soils: Laboratory and Field Investigations. Transp. Geotech. 2020, 22, 100297. [Google Scholar] [CrossRef]
- Ferreira, F.B.; Vieira, C.S.; Lopes, M.D.L. Pullout Behavior of Different Geosynthetics—Influence of Soil Density and Moisture Content. Front. Built Environ. 2020, 6, 12. [Google Scholar] [CrossRef]
- Brown, S.F.; Kwan, J.; Thom, N.H. Identifying the Key Parameters that Influence Geogrid Reinforcement of Railway Ballast. Geotext. Geomembr. 2007, 25, 326–335. [Google Scholar] [CrossRef]
- Moraci, N.; Recalcati, P. Factors Affecting the Pullout Behaviour of Extruded Geogrids Embedded in a Compacted Granular Soil. Geotext. Geomembr. 2006, 24, 220–242. [Google Scholar] [CrossRef]
- Baadiga, R.; Saride, S.; Balunaini, U.; Madhira, M.R. Influence of Tensile Strength of Geogrid and Subgrade Modulus on Layer Coefficients of Granular Bases. Transp. Geotech. 2021, 29, 100557. [Google Scholar] [CrossRef]
- Yuan, Y.L.; Hu, C.M.; Mei, Y.; Wang, X.Y.; Wang, J. Slope Reliability Analysis Based on Curvilinear Local Averaging of a 2-D Random Field. Comput. Geotech. 2021, 137, 104247. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, X.; Nong, X.; Fu, L. Experimental Study of the Comprehensive Technology of Grouting and Suspension Under an Operating Railway in the Cobble Stratum. Transp. Geotech. 2021, 30, 100612. [Google Scholar] [CrossRef]
- Hatami, K.; Mahmood, T.; Ghabchi, R.; Zaman, M. Influence of in-Isolation Properties of Geogrids On their Pullout Performance in a Dense Graded Aggregate. Indian Geotech. J. 2013, 43, 303–320. [Google Scholar] [CrossRef]
- Esmaeili, M.; Pourrashnoo, A. Experimental Investigation of Shear Strength Parameters of Ballast Encased with Geogrid. Constr. Build. Mater. 2022, 335, 127491. [Google Scholar] [CrossRef]
- Mirzaeifar, H.; Hatami, K.; Abdi, M.R. Pullout Testing and Particle Image Velocimetry (Piv) Analysis of Geogrid Reinforcement Embedded in Granular Drainage Layers. Geotext. Geomembr. 2022, 50, 1083–1109. [Google Scholar] [CrossRef]
- Moraci, N.; Cardile, G.; Gioffrè, D.; Mandaglio, M.C.; Calvarano, L.S.; Carbone, L. Soil Geosynthetic Interaction: Design Parameters from Experimental and Theoretical Analysis. Transp. Infrastruct. Geotechnol. 2014, 1, 165–227. [Google Scholar] [CrossRef]
- Pant, A.; Ramana, G.V. Prediction of Pullout Interaction Coefficient of Geogrids by Extreme Gradient Boosting Model. Geotext. Geomembr. 2022, 50, 1188–1198. [Google Scholar] [CrossRef]
- He, Z.; Mo, H.; Siga, A.; Zou, J. Research on the Parameters of Nonlinear Hyperbolic Model for Clay-Geogrid Interfaces Based On Large Scale Direct Shear Tests. Transp. Geotech. 2019, 18, 39–45. [Google Scholar] [CrossRef]
- Sven, S.; Ulrich, T.; Danny, O.; Andrey, P.; Daniil, T. Comparison of Pullout Test Results Carried Out on Steel Grid and Geosynthetic Materials. In Proceedings of the 11th International Conference on Geosynthetics 2018, ICG 2018, Seoul, Republic of Korea, 16–21 September 2018. [Google Scholar]
- Baoqin, L.; Xingang, W.; Zhan, H.; Jiading, W.; Jianbing, P.; Tianfeng, G.; Rongsen, Z. Creep Mechanical and Microstructural Insights Into the Failure Mechanism of Loess Landslides Induced by Dry-Wet Cycles in the Heifangtai Platform, China. Eng. Geol. 2022, 300, 106589. [Google Scholar]
- Zhu, C.; Zhou, X.; Wang, S.; Sara, A.; Amoroso, S. Foundation Treatment Assessment and Postconstruction Settlement Prediction of a Loess High Fill Embankment: A Case Study. Shock Vib. 2020, 2020, 8864690. [Google Scholar] [CrossRef]
- Zhu, C.; Li, N. Ranking of Influence Factors and Control Technologies for the Post-Construction Settlement of Loess High-Filling Embankments. Comput. Geotech. 2020, 118, 103320. [Google Scholar] [CrossRef]
- Cong, S.; Nie, Z.; Li, X.; Tang, L.; Ling, X.; Hu, Q.; Li, G. Prediction of Compressive Creep Behaviors of Expansive Soil Exposed to Freeze-Thaw Cycle Using a Disturbed State Concept-Based Model. Cold Reg. Sci. Technol. 2022, 204, 103664. [Google Scholar] [CrossRef]
- Wang, Z.; Jacobs, F.; Ziegler, M. Experimental and Dem Investigation of Geogrid–Soil Interaction Under Pullout Loads. Geotext. Geomembr. 2016, 44, 230–246. [Google Scholar] [CrossRef]
- Yeo, S.S.; Hsuan, Y.G. Evaluation of Creep Behavior of High Density Polyethylene and Polyethylene-Terephthalate Geogrids. Geotext. Geomembr. 2010, 28, 409–421. [Google Scholar] [CrossRef]
- Zou, C.; Wang, Y.; Lin, J.; Chen, Y. Creep Behaviors and Constitutive Model for High Density Polyethylene Geogrid and Its Application to Reinforced Soil Retaining Wall On Soft Soil Foundation. Constr. Build. Mater. 2016, 114, 763–771. [Google Scholar] [CrossRef]
- Yanchou, L.; Mortlock, A.J.; Price, D.M.; Readhead, M.L. Thermoluminescence Dating of Coarse-Grain Quartz From the Malan Loess at Zhaitang Section, China. Quat. Res. 1987, 28, 356–363. [Google Scholar] [CrossRef]
- GB/T 50123-2019; Ministry of Water Resources of the People’s Republic of China, Standard for Soil Test Methods. Ministry of Water Resources of the People’s Republic of China: Beijing, China, 24 May 2019.
- Xu, J.; Zhou, L.; Li, Y.; Ding, J.; Wang, S.; Cheng, W.C. Experimental Study on Uniaxial Compression Behavior of Fissured Loess before and after Vibration. Int. J. Geomech. 2022, 22, 04021277. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, L.; Hu, K.; Li, Y.; Zhou, X.; Wang, S. Influence of Wet-Dry Cycles on Uniaxial Compression Behavior of Fissured Loess Disturbed by Vibratory Loads. Ksce J. Civ. Eng. 2022, 26, 2139–2152. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Fang, H.; Du, M.; Su, Z.; Wang, F. Effects of Water Content on Shear Properties of Bentonite–Polymer Composite Structure. Eng. Geol. 2021, 287, 106098. [Google Scholar] [CrossRef]
- Abdi, M.R.; Mirzaeifar, H. Experimental and Piv Evaluation of Grain Size and Distribution on Soil–Geogrid Interactions in Pullout Test. Soils Found. 2017, 57, 1045–1058. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, H.; Zhang, B.; Dong, Z.; Wu, P. Short-Term Creep Behaviors of Seawater Sea-Sand Coral Aggregate Concrete: An Experimental Study with Rheological Model and Neural Network. Constr. Build. Mater. 2023, 363, 129786. [Google Scholar] [CrossRef]
Specific Gravity | Liquid Limit/% | Plastic Limit/% | Plasticity Index/% | Cohesion c/kPa | Internal Friction Angle φ/(°) | Particle Composition/% | ||
---|---|---|---|---|---|---|---|---|
>0.075 mm | 0.075–0.005 mm | <0.005 mm | ||||||
2.70 | 29.7 | 18.4 | 11.3 | 38.20 | 27.14 | 1.05 | 78.43 | 20.52 |
Geogrid | Ultimate Tensile Strength/(kN/m) | Percentage Elongation/% | Tensile Strength at 2% Strain/(kN/m) | Tensile Strength at 5% Strain/(kN/m) |
---|---|---|---|---|
HDPE90 | 98.38 | 11.5 | 33.25 | 60.54 |
Group | Sample No | Normal Pressure/kPa | Dry Density/(g/cm3) | Water Content/% | Ultimate Pullout Stress/kPa |
---|---|---|---|---|---|
1 | S1 | 50 | 1.5 | 10 | 93.71 |
S2 | 100 | 173.33 | |||
S3 | 150 | 212.28 | |||
S4 | 200 | 234.25 | |||
2 | G1 | 100 | 1.4 | 10 | 138.63 |
G2 | 1.5 | 173.33 | |||
G3 | 1.6 | 219.65 | |||
G4 | 1.7 | 267.71 | |||
3 | H1 | 100 | 1.5 | 10 | 173.33 |
H2 | 15 | 143.45 | |||
H3 | 20 | 109.92 |
Horizontal Tension/kPa | Time/min | Test Value/mm | Empirical Model Value/mm | Relative Error/% | Merchant Model Value/mm | Relative Error/% |
---|---|---|---|---|---|---|
93.67 | 5 | 4.67 | 4.3558 | 6.728 | 4.9014 | 4.955 |
60 | 4.89 | 4.7743 | 2.366 | 4.9218 | 0.650 | |
120 | 4.95 | 4.7874 | 3.285 | 4.9229 | 0.547 | |
300 | 5.01 | 4.9157 | 1.882 | 4.9239 | 1.719 | |
960 | 5.01 | 5.0893 | 1.583 | 4.9241 | 1.715 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.-L.; Hu, C.-M.; Xu, J.; Mei, Y.; Wang, F.-F.; Wang, G. Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid. Buildings 2023, 13, 1353. https://doi.org/10.3390/buildings13051353
Yuan Y-L, Hu C-M, Xu J, Mei Y, Wang F-F, Wang G. Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid. Buildings. 2023; 13(5):1353. https://doi.org/10.3390/buildings13051353
Chicago/Turabian StyleYuan, Yi-Li, Chang-Ming Hu, Jian Xu, Yuan Mei, Fang-Fang Wang, and Ge Wang. 2023. "Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid" Buildings 13, no. 5: 1353. https://doi.org/10.3390/buildings13051353
APA StyleYuan, Y. -L., Hu, C. -M., Xu, J., Mei, Y., Wang, F. -F., & Wang, G. (2023). Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid. Buildings, 13(5), 1353. https://doi.org/10.3390/buildings13051353