Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
- -
- Improving the thermal insulation of opaque enclosures, evaluating the optimal thickness of the thermal insulation (Modification 1);
- -
- Improving window characteristics by reducing the thermal transmittance of the glazing (Ug) (Modification 2a), which reduces the thermal transmittance of the windows (Uw). The solar control factor of glass (g) (Modification 2b) and total solar transmittance of the glazing with an activated movable shading device (g_gl;sh;wi) (Modification 2c) were also improved;
- -
- Increasing the proportion of glazed area on the walls (Window Wall Ratio WWR) (Modification 3), analysing the impact of window size and proportion over the total of the façade;
- -
- Use of natural ventilation and the advantages of using ceiling fans to improve cross ventilation and redistribute the air and its temperature (Modification 4). The effect of natural ventilation on the operation of the building was analysed, and we performed computational fluid dynamics (CFD) analysis to determine the circulation speed of indoor air and its influence on the interior conditioning of the spaces.
- -
- Maximum air speed equal to the wind speed at the input factor;
- -
- Static gauge pressure equal to 0 at the air outlet.
3. Results
3.1. Energy Efficiency
3.1.1. Indoor Temperatures
3.1.2. Thermal Comfort
4. Discussion
4.1. Energy Efficiency
4.2. Indoor Temperatures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Foggia, G. Energy efficiency measures in buildings for achieving sustainable development goals. Heliyon 2018, 4, e00953. [Google Scholar] [CrossRef]
- Balaras, C.A.; Droutsa, K.; Argiriou, A.A.; Asimakopoulos, D.N. Potential for energy conservation in apartment buildings. Energy Build. 2000, 31, 143–154. [Google Scholar] [CrossRef]
- Tsemekidi Tzeiranaki, S.; Bertoldi, P.; Diluiso, F.; Castellazzi, L.; Economidou, M.; Labanca, N.; Ribeiro Serrenho, T.; Zangheri, P. Analysis of the EU Residential Energy Consumption: Trends and Determinants. Energies 2019, 12, 1065. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy efficiency and sustainable development goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Scrucca, F.; Ingrao, C.; Barberio, G.; Matarazzo, A.; Lagioia, G. On the role of sustainable buildings in achieving the 2030 UN sustainable development goals. Environ. Impact Assess. Rev. 2023, 100, 107069. [Google Scholar] [CrossRef]
- Hafez, F.S.; Sa’di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.H.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strategy Rev. 2023, 45, 101013. [Google Scholar] [CrossRef]
- European Union. Directiva 2010/31/UE del Parlamento Europeo y del Consejo de 19 de mayo de 2010 Relativa a la Eficiencia Energética de los Edificios (Refundición); European Union: Maastricht, The Netherlands, 2010. [Google Scholar]
- European Union. Directiva (UE) 2018/844 del Parlamento Europeo y del Consejo, de 30 de mayo de 2018, por la que se Modifica la Directiva 2010/31/UE Relativa a la Eficiencia Energética de los Edificios y la Directiva 2012/27/UE Relativa a la Eficiencia Energética; European Union: Maastricht, The Netherlands, 2018. [Google Scholar]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 732/2019, de 20 de diciembre, por el Que se Modifica el Código Técnico de la Edificación, Aprobado por el Real Decreto 314/2006, de 17 de marzo; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2019. [Google Scholar]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 390/2021, de 1 de junio, por el que se Aprueba el Procedimiento Básico para la Certificación de la Eficiencia Energética de los Edificios; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2021. [Google Scholar]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Towards nearly zero-energy buildings in Mediterranean countries: Fifteen years of implementing the Energy Performance of Buildings Directive in Spain (2006–2020). J. Build. Eng. 2021, 44, 102962. [Google Scholar] [CrossRef]
- López-Ochoa, L.M.; Las-Heras-Casas, J.; Olasolo-Alonso, P.; López-González, L.M. Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain. Energy 2018, 161, 618–634. [Google Scholar] [CrossRef]
- Olcina, J.; Serrano-Notivolit, R.; Miró, J.; Meseguer-Ruiz, O. Tropical nights in the Spanish Mediterranean coast: Recent evolution (1950–2014). Clim. Res. 2019, 78, 225–236. [Google Scholar] [CrossRef]
- Miró, J.; Olcina, J. Cambio climático y confort térmico. Efectos en el turismo de la Comunidad Valenciana. Rev. Investig. Turísticas 2020, 20, 1–30. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolfm, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Agencia Estatal Boletín Oficial del Estado. Orden FOM/588/2017, de 15 de Junio, por la que se Modifican el Documento Básico DB-HE “Ahorro de Energía” y el Documento Básico DB-HS “Salubridad”, del Código Técnico de la Edificación, Aprobado por Real Decreto 314/2006, de 17 de Marzo; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2017. [Google Scholar]
- Lucon, O.; Ürge-Vorsatz, D.; Ahmed, A.Z.; Akbari, H.; Bertoldi, P.; Cabeza, L.F.; Eyre, N.; Gadgil, A.; Harvey, L.D.; Jiang, Y.; et al. Climate Change 2014: Mitigation of Climate Change. In IPCC Working Group III Contribution to AR5: Chapter 9—Buildings; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Georgiou, G.; Eftekhari, M.; Lupton, T. Investigating the effect of tightening residential envelopes in the Mediterranean region. In Proceedings of the 14th International Conference on Sustainable Energy Technologies, Nottingham, UK, 25–27 August 2015. [Google Scholar]
- Asdrubali, F.; Baldinelli, G.; Bianchi, F. A quantitative methodology to evaluate thermal bridges in Buildings. Appl. Energy 2012, 97, 365–373. [Google Scholar] [CrossRef]
- Evola, G.; Margani, G.; Marletta, G. Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy Build. 2011, 43, 2385–2393. [Google Scholar] [CrossRef]
- Arias, N.; Bobadilla, A. Evaluación experimental y análisis de la mejora con aislamiento para el caso del puente térmico en el frente de forjado. Inf. Constr. 2017, 69, e188. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; González-Avilés, Á.B.; Galiano-Garrigós, A.; Lozoya-Peral, A. Optimization of Architectural Thermal Envelope Parameters in Modern Single-Family House Typologies in Southeastern Spain to Improve Energy Efficiency in a Dry Mediterranean Climate. Sustainability 2022, 14, 3910. [Google Scholar] [CrossRef]
- Figueiredo, A.; Kämpfb, J.; Vicente, R. Passive house optimization for Portugal: Overheating evaluation and energy performance. Energy Build. 2016, 118, 181–196. [Google Scholar] [CrossRef]
- Pastor, R. Un edificio patrimonial de la huerta valenciana, la barraca, Construcción con Tierra, Investigación y Documentación. In Proceedings of the XI CIATTI 2014 Congresos de Arquitectura de Tierra en Cuenca de Campos, Valladolid, Spain, 26–28 September 2014. [Google Scholar]
- Givoni, B. Comfort, climate analysis and building design guidelines. Energy Build. 1992, 18, 11–23. [Google Scholar] [CrossRef]
- Givoni, B. Man, Climate, and Architecture; Elsevier: Amsterdam, The Netherlands, 1969. [Google Scholar]
- Olgyay, V.; Olgyay, A.; Lyndon, D.; Olgyay, V.W.; Reynolds, J.; Yeang, K. Design with Climate, Design with Climate; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar]
- Bluyssen, P.M. Towards new methods and ways to create healthy and comfortable buildings. Build. Environ. 2010, 45, 808–818. [Google Scholar] [CrossRef]
- Brager, G.S.; De Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Cuce, E.; Sher, F.; Sadiq, H.; Cuce, P.M.; Guclu, T.; Besir, A.B. Sustainable ventilation strategies in buildings: CFD research. Sustain. Energy Technol. Assess. 2019, 36, 100540. [Google Scholar] [CrossRef]
- Fabbri, K. Indoor thermal comfort perception: A questionnaire approach focusing on children. In Indoor Thermal Comfort Perception: A Questionnaire Approach Focusing on Children; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–302. [Google Scholar]
- Galiano-Garrigós, A.; Marcos, C.L.; Kouider, T.; Gutiérrez, P.J.J. Juan Gutiérrez. Reassessing thermal comfort in modern architecture: E.1027 as a case study. Build. Res. Inf. 2022, 50, 230–254. [Google Scholar] [CrossRef]
- Meir, I.A.; Roaf, S.C. The future of the vernacular towards new methodologies. In Vernacular Architecture in the Twenty-First Century: Theory, Education and Practice; Taylor & Francis: Abingdon, UK, 2014; pp. 215–230. [Google Scholar]
- Nicol, F.; Roaf, S. Post-occupancy evaluation and field studies of thermal comfort. Build. Res. Inf. 2005, 33, 338–346. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Tzempelikos, A.; Athienitis, A.K. The impact of shading design and control on building cooling and lighting demand. Sol. Energy 2007, 81, 369–382. [Google Scholar] [CrossRef]
- Santamouris, M.; Sfakianaki, A.; Pavlou, K. On the efficiency of night ventilation techniques applied to residential buildings. Energy Build. 2010, 42, 1309–1313. [Google Scholar] [CrossRef]
- Michael, A.; Demosthenous, D.; Philokyprou, M. Natural ventilation for cooling in mediterranean climate: A case study in vernacular architecture of Cyprus. Energy Build. 2017, 144, 333–345. [Google Scholar] [CrossRef]
- Jalaei, F.; Jrade, A. Integrating Building Information Modeling (BIM) and energy analysis tools with green building certification system to conceptually design sustainable buildings. J. Inf. Technol. Constr. 2014, 19, 494–519. [Google Scholar]
- Golneshan, A.A.; Yaghoubi, M.A. Simulation of ventilation strategies of a residential building in hot arid regions of Iran. Energy Build. 1990, 14, 201–205. [Google Scholar] [CrossRef]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto 178/2021, de 23 de Marzo, por el que se Modifica el Real Decreto 1027/2007, de 20 de Julio, por el que se Aprueba el Reglamento de Instalaciones Térmicas en los Edificios; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2021. [Google Scholar]
- Líder-Calener Unified Tool Software; v2.0.2253.1167; Dirección General de Arquitectura, Vivienda y Suelo del Ministerio de Transportes, Movilidad y Agenda Urbana y por el Instituto para la Diversificación y Ahorro de la Energía (IDEA): Madrid, Spain, 2021.
- Grupo de Termotecnia de la Asociación de Investigación y Cooperación Industrial de Andalucía (AICIA) en la Escuela Técnica Superior de Ingenieros de la Universidad de Sevilla. HU CTE-HE 2019 y CEE (Version 2.0.2203.1160 de 26 de Abril de 2021) [Computer software]; Dirección General de Arquitectura, Vivienda y Suelo del Ministerio de Transportes, Movilidad y Agenda Urbana e Instituto para la Diversificación y Ahorro de la Energía (IDEA): Madrid, Spain, 2020. [Google Scholar]
- Aldersoni, A.A.; Chow, D.H.C. Adapting Traditional Passive Strategies within Contemporary House to Decrease High energy consumption Impact in Nejd Region, Saudi Arabia. Earth Environ. Sci. 2019, 329, 12007–12015. [Google Scholar]
- Schulze, T.; Eicker, U. Controlled natural ventilation for energy efficient buildings. Energy Build. 2013, 56, 221–232. [Google Scholar] [CrossRef]
- Alhamad, I.M.; AlSaleem, M.; Taleb, H. Passive heating and cooling potential strategies: A comparison between moderate summers and warm winters climate zones. J. Phys. Conf. Ser. 2019, 1276, 12059–12067. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; Maciá-Mateu, A.; Sirvent-García, G.; Lledó-Llorca, I. Study of Natural Ventilation and Solar Control Strategies to Improve Energy Efficiency and Environmental Quality in Glazed Heated Swimming Pools in a Dry Mediterranean Climate. Sustainability 2022, 14, 8243. [Google Scholar] [CrossRef]
- Albatayneh, A. Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Rep. 2021, 7, 2081–2093. [Google Scholar] [CrossRef]
- Albatayneh, A.; Alterman, D.; Page, A.; Moghtaderi, B. The significance of building design for the climate. Environ. Clim. Technol. 2018, 22, 165–178. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Passive cooling & climate responsive facade design exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates. Energy Build. 2018, 175, 30–47. [Google Scholar]
- Ferrara, M.; Virgone, J.; Fabrizio, E.; Kuznik, F.; Filippi, M. Modelling Zero Energy Buildings: Parametric study for the technical optimization. Energy Procedia. 2014, 62, 200–209. [Google Scholar] [CrossRef]
- Simon, F.; Ordoñez, J.; Girard, A.; Parrado, C. Modelling energy use in residential buildings: How design decisions influence final energy performance in various Chilean climates. Indoor Built Environ. 2019, 28, 533–551. [Google Scholar] [CrossRef]
- Harkouss, F.; Fardoun, F.; Biwole, P.H. Passive design optimization of low energy buildings in different climates. Energy 2018, 165, 591–613. [Google Scholar] [CrossRef]
- Causone, F.; Pietrobon, M.; Pagliano, L.; Erba, S. A high performance home in the Mediterranean climate: From the design principle to actual measurements. Energy Procedia. 2017, 140, 67–79. [Google Scholar] [CrossRef]
- Ozarisoy, B.; Altan, H. Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy Build. 2021, 250, 111281. [Google Scholar] [CrossRef]
- Pesic, N.; Roset, J.; Muros, A. Natural ventilation potential of the Mediterranean coastal region of Catalonia. Energy Build. 2018, 169, 236–244. [Google Scholar] [CrossRef]
- Ozarisoy, B.; Altan, H. A novel methodological framework for the optimisation of post-war social housing developments in the South-eastern Mediterranean climate: Policy design and lifecycle cost impact analysis of retrofitting strategies. Sol. Energy. 2021, 225, 517–560. [Google Scholar] [CrossRef]
- O’Donovan, A.; O’Sullivan, P.D.; Murphy, M.D. Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches. Appl. Energy. 2019, 250, 991–1010. [Google Scholar] [CrossRef]
- Dervishi, S.; Pashako, F.; Dushaj, X.; Dervishi, I.O. Energy performance optimization of traditional housing in Mediterranean climate. J. Build. Eng. 2022, 45, 103423. [Google Scholar] [CrossRef]
- Stazi, F.; Bonfigli, C.; Tomassoni, E.; Di Perna, C.; Munafò, P. The effect of high thermal insulation on high thermal mass:Is the dynamic behaviour of traditional envelopes inMediterranean climates still possible? Energy Build. 2015, 88, 367–383. [Google Scholar] [CrossRef]
- Panchenko, V.A. Solar Roof Panels for Electric and Thermal Generation. Appl. Sol. Energy 2018, 54, 350–353. [Google Scholar] [CrossRef]
- Heiselberg, P.K.; O’Donnavan, A.; Belleri, A.; Flourentzou, F.; Zhang, G.Q.; da Graca, G.C.; Breesch, H.; Justo-Alonso, M.; Kolokotroni, M.; Pomianowski, M.Z.; et al. Ventilative Cooling Design Guide: Energy in Buildings and Communities Programme; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2018; p. 122. [Google Scholar]
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- Alahmer, A.; Mayyas, A.; Mayyas, A.A.; Omar, M.A.; Shan, D. Vehicular thermal comfort models; a comprehensive review. Appl. Therm. Eng. 2011, 31, 995–1002. [Google Scholar] [CrossRef]
- Alahmer, A.; Abdelhamid, M.; Omar, M. Design for thermal sensation and comfort states in vehicles cabins. Appl. Therm. Eng. 2012, 36, 126–140. [Google Scholar] [CrossRef]
- Pfafferott, J.; Herkel, S.; Jäschke, M. Design of passive cooling by night ventilation: Evaluation of a parametric model and building simulation with measurements. Energy Build. 2003, 35, 1129–1143. [Google Scholar] [CrossRef]
- Rosaleny, M. La barraca valenciana. Història i recuperació d’una arquitectura resilient Anu. D’arquitectura I Soc. 2021, 1, 124–144. [Google Scholar]
- Design Builder; v.7.0.1.006; DesignBuilder Software Ltd.: Stroud, Reino Unido, 2021.
- Hajdukiewicz, M.; Geron, M.; Keane, M.M. Formal calibration methodology for CFD models of naturally ventilated indoor environments. Build. Environ. 2013, 59, 290–302. [Google Scholar] [CrossRef]
- Zhai, Z. Application of Computational Fluid Dynamics in Building Design: Aspects and Trends. Indoor Built Environ. 2006, 15, 305–313. [Google Scholar] [CrossRef]
- Ayad, S.S. Computational study of natural ventilation. J. Wind. Eng. Ind. Aerodyn. 1999, 82, 49–68. [Google Scholar] [CrossRef]
- Ministerio de Fomento. Documento Descriptivo Climas de Referencia; Ministerio de Fomento: Madrid, Spain, 2017. [Google Scholar]
- Chazarra, A.; Flórez, E.; Peraza, B.; Tohá, T.; Lorenzo, B.; Criado, E.; Moreno, J.V.; Romero, R.; Botey, R. Mapas Climáticos de España (1981–2010) y ETo (1996–2016); Ministerio para la Transición Ecológica, Agencia Estatal de Meteorología: Madrid, Spain, 2018. [Google Scholar]
- Melikov, A.K.; Kaczmarczyk, J. Air movement and perceived air quality. Build Environ. 2012, 47, 400–409. [Google Scholar] [CrossRef]
- Birru, D.; Wen, Y.-J.; Rubinstein, F.M.; Clear, R.D. Ceiling fans as extenders of the summer comfort envelope. ASHRAE Trans United States 1983, 89. Available online: https://www.osti.gov/biblio/5241401 (accessed on 1 March 2023).
- Zhai, Y.; Zhang, Y.; Zhang, H.; Pasut, W.; Arens, E.; Meng, Q. Human comfort and perceived air quality in warm and humid environments with ceiling fans. Build Environ. 2015, 90, 178–185. [Google Scholar] [CrossRef]
- Arens, E.; Xu, T.; Miura, K.; Hui, Z.; Fountain, M.; Bauman, F. A study of occupant cooling by personally controlled air movement. Energy Build. 1998, 27, 45–59. [Google Scholar] [CrossRef]
- Rohles, F.H.; Konz, S.A.; Jones, B.W. Enhancing Thermal Comfort with Ceiling Fans. In Proceedings of the Human Factors Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 1982; pp. 118–122. [Google Scholar] [CrossRef]
- Agencia Estatal Boletín Oficial del Estado. Real Decreto Ley 14/2022, de 1 de Agosto, de medidas de sostenibilidad económica en el ámbito del transporte, en materia de becas y ayudas al estudio, así como de medidas de ahorro, eficiencia energética y reducción de la dependencia energética del gas natural; Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2022. [Google Scholar]
- European Parlament and Council of the European Comunity. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings; European Parlament and Council of the European Comunity: Brussels, Belgium, 2010. [Google Scholar]
- EU Commission. Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 Supplementing Directive 2010/31/EU of the European Parliament and of the Council on the Energy Performance of Buildings by Establishing a Comparative Methodology Framework for Calculating; EU Commission: Brussels, Belgium, 2012. [Google Scholar]
- Galiano-Garrigós, A.; González-Avilés, Á.; Rizo-Maestre, C.; Andújar-Montoya, M. Energy Efficiency and Economic Viability as Decision Factors in the Rehabilitation of Historic Buildings. Sustainability 2019, 11, 4946. [Google Scholar] [CrossRef]
- CEN. European Committee for Standardization—UNE EN 15459-1:2018 Energy Performance of Buildings—Economic Evaluation Procedure for Energy Systems in Buildings—Part 1: Calculation Procedures, Module M1-14; European Committee for Standardization: Brussels, Belgium, 2018. [Google Scholar]
Original House Construction | Thickness (cm) | Thermal Conductivity (W/m·K) | Thermal Resistance (m2·K/W) | U (W/m2·K) | g |
---|---|---|---|---|---|
Roof: | 0.67 | ||||
Ceramic tile | 1 | 1.00 | |||
Air chamber | 4 | 0.16 | |||
Wattle | 2 | 0.063 | |||
Wooden beam | 15 | 0.18 | |||
Walls: | 1.75 | ||||
Lime mortar | 1 | 0.55 | |||
Adobe and straw wall | 40 | 1.10 | |||
Lime mortar | 1 | 0.55 | |||
Lower slab: | 2.56 | ||||
Soil | 10 | 0.40 | |||
Window: | Uw = 5.25 | ||||
Glass (87% of the window) | Ug = 5.70 | g = 0.85 | |||
Frame (13% of the window) | Uf = 2.22 |
Thermal Insulation Thickness (cm) | Ug (W/m2·K) | g | ggl;sh;wi | Percentage of Windows (% with Respect WWR) | Natural Ventilation | |
---|---|---|---|---|---|---|
Original house | 0 | 1.75 | 0.85 | 0.65 | 2 | No |
Modification 1 | 11 | 1.75 | 0.85 | 0.65 | 2 | No |
Modification 2a | 0 | 5.60–0.60 | 0.85 | 0.65 | 2 | No |
Modification 2b | 0 | 1.75 | 0.75–0.25 | 0.65 | 2 | No |
Modification 2c | 0 | 1.75 | 0.85 | 0.53–0.14 | 2 | No |
Modification 3 | 0 | 1.75 | 0.85 | 0.65 | 10 | No |
Modification 4 | 0 | 1.75 | 0.85 | 0.65 | 10 | Yes |
Final solution | 11 | 1.60 | 0.65 | 0.14 | 10 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozoya-Peral, A.; Pérez-Carramiñana, C.; Galiano-Garrigós, A.; González-Avilés, Á.B.; Emmitt, S. Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate. Buildings 2023, 13, 1381. https://doi.org/10.3390/buildings13061381
Lozoya-Peral A, Pérez-Carramiñana C, Galiano-Garrigós A, González-Avilés ÁB, Emmitt S. Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate. Buildings. 2023; 13(6):1381. https://doi.org/10.3390/buildings13061381
Chicago/Turabian StyleLozoya-Peral, Andrea, Carlos Pérez-Carramiñana, Antonio Galiano-Garrigós, Ángel Benigno González-Avilés, and Stephen Emmitt. 2023. "Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate" Buildings 13, no. 6: 1381. https://doi.org/10.3390/buildings13061381
APA StyleLozoya-Peral, A., Pérez-Carramiñana, C., Galiano-Garrigós, A., González-Avilés, Á. B., & Emmitt, S. (2023). Exploring Energy Retrofitting Strategies and Their Effect on Comfort in a Vernacular Building in a Dry Mediterranean Climate. Buildings, 13(6), 1381. https://doi.org/10.3390/buildings13061381