Mechanical Properties of Cement Mortars Reinforced with Polypropylene Fibers Subjected to High Temperatures and Different Cooling Regimes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- The exposure of the specimens to fire generates a loss of mass in the mortars. When the specimens reach 500 °C the loss of mass under the air cooling regime is approximately 7%, compared to the specimens cooled under the water regime where the mass reduction is approximately 3%. This is due to the dehydration of Ca(OH)2, producing CaO in the mortars cooled under the air regime, while under the water cooling regime, CaO rehydration occurs and generates an increase in mass in the specimens.
- The addition of 2 kg/m3 PP fibers increases the mechanical properties of the mortars compared to the other dosages. At a heating temperature of 300 °C the M2 specimens have a residual flexural strength of approximately 75% of the original strength, which is 15% higher than that observed in the simple mortar. The same happens with the residual compressive strength which was approximately 85% of the original strength, being 17% higher than that observed in the simple mortar.
- With the probability analysis and Fisher’s distribution it can be concluded that there is no significant difference between the values of the residual flexural and compressive strengths when the specimens are exposed to high temperatures and cooled under the air or water regimes. Statistically, the type of cooling does not directly influence their strength.
- There is a correlation between the residual flexural and compressive strengths regardless of the cooling regime, with a coefficient of determination as R2 = 0.82, which considers the relationship between the variables acceptable.
- It is recommended that research on the affectation of the flexural and compressive energy absorption capacities of PP fiber-reinforced mortars exposed to high temperatures and cooled under different regimes be carried out.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, H.A.; Mahdi, M.B.; Abbas, B.J. Mechanical properties of lightweight aggregate moderate strength concrete reinforcement with hybrid fibers. Mater. Sci. Eng. 2021, 584, 012048. [Google Scholar] [CrossRef]
- Liu, L.; Yang, G.; He, J.; Liu, H.; Gong, J.; Yang, H.; Yang, W.; Joyklad, P. Impact of fibre factor and temperature on the mechanical properties of blended fibre-reinforced cementitious composite. Case Stud. Constr. Mater. 2022, 16, e00773. [Google Scholar] [CrossRef]
- Wang, Z.; Han, S.; Sun, P.; Liu, W.; Wang, Q. Mechanical properties of polyvinyl alcohol-basalt hybrid fiber engineered cementitious composites with impact of elevated temperatures. J. Cent. South Univ. 2021, 28, 1459–1475. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Boonbamrung, T.; Poolsong, A.; Kroehong, W. Effect of elevated temperature on polypropylene fiber reinforced alkali-activated high calcium fly ash paste. Case Stud. Constr. Mater. 2021, 15, e00554. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z. Impact of elevated temperature and anchored grooves on the shear behavior of reinforced concrete beams strengthened with CFRP composites. Case Stud. Constr. Mater. 2021, 14, e00487. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, X.; Yang, X.; Liang, N.; Yan, R.; Chen, P.; Miao, Q.; Xu, Y. A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads. Struct. Concr. 2021, 22, 396–409. [Google Scholar] [CrossRef]
- Song, C.; Zhang, G.; Lu, Z.; Li, X.; Zhao, X. Fire resistance tests on polypropylene-fiber-reinforced prestressed concrete box bridge girders. Eng. Struct. 2023, 282, 115800. [Google Scholar] [CrossRef]
- Nuaklong, P.; Boonchoo, N.; Jongvivatsakul, P.; Charinpanitkul, T.; Sukontasukkul, P. Hybrid effect of carbon nanotubes and polypropylene fibers on mechanical properties and fire resistance of cement mortar. Constr. Build. Mater. 2021, 275, 122189. [Google Scholar] [CrossRef]
- Chen, G.; Gao, D.; Zhu, H.; Yuan, J.S.; Xiao, X.; Wang, W. Effects of novel multiple hooked-end steel fibres on flexural tensile behaviour of notched concrete beams with various strength grades. Structures 2021, 33, 3644–3654. [Google Scholar] [CrossRef]
- Gao, D.; Gu, Z.; Wei, C.; Wu, C.; Pang, Y. Effects of fiber clustering on fatigue behavior of steel fiber reinforced concrete beams. Constr. Build. Mater. 2021, 301, 124070. [Google Scholar] [CrossRef]
- Ogrodnik, P.; Szulej, J. The impact of aeration of concrete based on ceramic aggregate, exposed to high temperatures, on its strength parameters. Constr. Build. Mater. 2017, 157, 909–916. [Google Scholar] [CrossRef]
- Müller, P.; Novák, J.; Holan, J. Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature. J. Build. Eng. 2019, 26, 100906. [Google Scholar] [CrossRef]
- Çavdar, A. A study on the effects of high temperature on mechanical properties of fiber reinforced cementitious composites. Compos. B Eng. 2012, 43, 2452–2463. [Google Scholar] [CrossRef]
- Chiadighikaobi, P.C. Effects of basalt fiber in lightweight expanded clay concrete on compressive strength and flexural strength of lightweight basalt fiber reinforced concrete. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012055. [Google Scholar] [CrossRef]
- Haddad, R.H.; Shannis, L.G. Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel. Constr. Build. Mater. 2004, 18, 425–435. [Google Scholar] [CrossRef]
- Balgourinejad, N.; Haghighifar, M.; Madandoust, R.; Charkhtab, S. Experimental study on mechanical properties, microstructural of lightweight concrete incorporating polypropylene fibers and metakaolin at high temperatures. J. Mater. Res. Technol. 2022, 18, 5238–5256. [Google Scholar] [CrossRef]
- Adesina, A. Performance of cementitious composites reinforced with chopped basalt fibres—An overview. Constr. Build. Mater. 2021, 266, 120970. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete—Microstructure, Properties, and Materials, 4th ed.; McGraw Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Kuder, K.G.; Shah, S.P. Processing of high-performance fiber-reinforced cement-based composites. Constr. Build. Mater. 2010, 24, 181–186. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Wang, Y. Corrosion-effected bond behavior between PVA-fiber-reinforced concrete and steel rebar under chloride environment. Materials 2023, 16, 2666. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Q.; Wang, Y. Experimental study on bond behavior between steel rebar and PVA fiber-reinforced concrete. Coatings 2023, 13, 740. [Google Scholar] [CrossRef]
- Zhang, X.; He, F.; Chen, J.; Yang, C.; Xu, F. Orientation of steel fibers in concrete attracted by magnetized rebar and its effects on bond behavior. Cem. Concr. Compos. 2023, 138, 104977. [Google Scholar] [CrossRef]
- Durgun, M.Y.; Özen, S.; Karakuzu, K.; Kobya, V.; Bayqra, S.H.; Mardani-Aghabaglou, A. Effect of high temperature on polypropylene fiber-reinforced mortars containing colemanite wastes. Constr. Build. Mater. 2022, 316, 125827. [Google Scholar] [CrossRef]
- Liu, J.; Tan, K.H.; Yao, Y. A new perspective on nature of fire-induced spalling in concrete. Constr. Build. Mater. 2018, 184, 581–590. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Qiu, G.H.; Kodur, V.; Yuan, Z.S. Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure. Cem. Concr. Compos. 2020, 106, 103483. [Google Scholar] [CrossRef]
- Holan, J.; Novák, J.; Müller, P.; Štefan, R. Experimental investigation of the compressive strength of normal-strength air-entrained concrete at high temperatures. Constr. Build. Mater. 2020, 248, 118662. [Google Scholar] [CrossRef]
- Han, C.; Hwang, Y.; Yang, S.; Gowripalan, N. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cem. Concr. Res. 2005, 35, 1747–1753. [Google Scholar] [CrossRef]
- Poon, C.S.; Shui, Z.H.; Lam, L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem. Concr. Res. 2004, 34, 2215–2222. [Google Scholar] [CrossRef]
- Li, D.; Niu, D.; Fu, Q.; Luo, D. Fractal characteristics of pore structure of hybrid Basalt–Polypropylene fibre-reinforced concrete. Cem. Concr. Comp. 2020, 109, 103555. [Google Scholar] [CrossRef]
- Bošnjak, J.; Ožbolt, J.; Hahn, R. Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cem. Concr. Res. 2013, 53, 104–111. [Google Scholar] [CrossRef]
- Poon, C.; Azhar, S.; Anson, M.; Wong, Y. Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures. Cem. Concr. Res. 2001, 31, 1291–1300. [Google Scholar] [CrossRef]
- He, F.; Biolzi, L.; Carvelli, V. Effects of elevated temperature and water re-curing on the compression behavior of hybrid fiber reinforced concrete. J. Build. Eng. 2023, 67, 106034. [Google Scholar] [CrossRef]
- Aydın, S.; Yazıcı, H.; Baradan, B. High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Constr. Build. Mater. 2008, 22, 504–512. [Google Scholar] [CrossRef]
- Peng, G.; Yang, W.; Zhao, J.; Liu, Y.; Bian, S.; Zhao, L. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures. Cem. Concr. Res. 2006, 36, 723–727. [Google Scholar] [CrossRef]
- Xiao, J.; König, G. Study on concrete at high temperature in China—An overview. Fire Saf. J. 2004, 39, 89–103. [Google Scholar] [CrossRef]
- Khaliq, W.; Kodur, V. Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cem. Concr. Res. 2011, 41, 1112–1122. [Google Scholar] [CrossRef]
- Jang, H.; So, H.; So, S. The properties of reactive powder concrete using PP fiber and pozzolanic materials at elevated temperature. J. Build. Eng. 2016, 8, 225–230. [Google Scholar] [CrossRef]
- Lura, P.; Terrasi, G.P. Reduction of fire spalling in high-performance concrete by means of superabsorbent polymers and polypropylene fibers: Small scale fire tests of carbon fiber reinforced plastic-prestressed self-compacting concrete. Cem. Concr. Comp. 2014, 49, 36–42. [Google Scholar] [CrossRef]
- Kioumarsi, M.; Dabiri, H.; Kandiri, A.; Farhangi, V. Compressive strength of concrete containing furnace blast slag; optimized machine learning-based models. Clean. Eng. Technol. 2023, 13, 100604. [Google Scholar] [CrossRef]
- Abaeian, R.; Behbahani, H.P.; Moslem, S.J. Effects of high temperatures on mechanical behavior of high strength concrete reinforced with high performance synthetic macro polypropylene (HPP) fibres. Constr. Build. Mater. 2018, 165, 631–638. [Google Scholar] [CrossRef]
- Rodrigues, J.P.C.; Laím, L.; Correia, A.M. Behaviour of fiber reinforced concrete columns in fire. Compos. Struct. 2010, 92, 1263–1268. [Google Scholar] [CrossRef]
- Sideris, K.K.; Manita, P.; Chaniotakis, E. Performance of thermally damaged fibre reinforced concretes. Constr. Build. Mater. 2009, 23, 1232–1239. [Google Scholar] [CrossRef]
- Yermak, N.; Pliya, P.; Beaucour, A.; Simon, A.; Noumowé, A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Constr. Build. Mater. 2017, 132, 240–250. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. AENOR: Madrid, Spain, 2011.
- Ministerio de la Presidencia. Real Decreto 256/2016. Instrucción Para La Recepción de Cementos (RC-16); Agencia Estatal Boletín Oficial del Estado: Madrid, Spain, 2016. [Google Scholar]
- EN 933-1:2012; Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. AENOR: Madrid, Spain, 2012.
- EN 14889-2:2008; Fibres for Concrete—Part 2: Polymer Fibres—Definitions, Specifications and Conformity. AENOR: Madrid, Spain, 2008.
- EN 196-1:2018; Methods of Testing Cement—Part 1: Determination of Strength. AENOR: Madrid, Spain, 2018.
- Karakouzian, M.; Farhangi, V.; Farani, M.R.; Joshaghani, A.; Zadehmohamad, M.; Ahmadzadeh, M. Mechanical characteristics of cement paste in the presence of carbon nanotubes and silica oxide nanoparticles: An experimental study. Materials 2021, 14, 1347. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Falkner, H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf. J. 2006, 41, 115–121. [Google Scholar] [CrossRef]
- Zheng, W.; Luo, B.; Wang, Y. Microstructure and mechanical properties of RPC containing PP fibres at elevated temperatures. Mag. Concr. Res. 2014, 66, 397–408. [Google Scholar] [CrossRef]
- Karahan, O.; Durak, U.; İlkentapar, S.; Atabey, İ.İ.; Atiş, C.D. Resistance of polypropylene fibered mortar to elevated temperature under different cooling regimes. Rev. Constr. 2019, 18, 386–397. [Google Scholar] [CrossRef]
- Behnood, A.; Ghandehari, M. Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperatures. Fire Saf. J. 2009, 44, 1015–1022. [Google Scholar] [CrossRef]
- Amancio, F.A.; de Carvalho Rafael, M.F.; de Oliveira Dias, A.R.; Bezerra Cabral, A.E. Behavior of concrete reinforced with polypropylene fiber exposed to high temperatures. Procedia Struct. Integr. 2018, 11, 91–98. [Google Scholar] [CrossRef]
- Ezziane, M.; Kadri, T.; Molez, L.; Jauberthie, R.; Belhacen, A. High temperature behaviour of polypropylene fibres reinforced mortars. Fire Saf. J. 2015, 71, 324–331. [Google Scholar] [CrossRef]
- Pothisiri, T.; Soklin, C. Effects of mixing sequence of polypropylene fibers on spalling resistance of normal strength concrete. Eng. J. 2014, 18, 55–64. [Google Scholar] [CrossRef]
- He, F.; Biolzi, L.; Carvelli, V. Effects of elevated temperature and water re-curing on fracture process of hybrid fiber reinforced concretes. Eng. Fract. Mech. 2022, 276, 108885. [Google Scholar] [CrossRef]
- Awal, A.S.M.A.; Shehu, I.A.; Ismail, M. Effect of cooling regime on the residual performance of high-volume palm oil fuel ash concrete exposed to high temperatures. Constr. Build. Mater. 2015, 98, 875–883. [Google Scholar] [CrossRef]
- Saridemir, M.; Severcan, M.H.; Ciflikli, M.; Celikten, S.; Ozcan, F.; Atis, C.D. The influence of elevated temperature on strength and microstructure of high strength concrete containing ground pumice and metakaolin. Constr. Build. Mater. 2016, 124, 244–257. [Google Scholar] [CrossRef]
- Shui, Z.; Xuan, D.; Wan, H.; Cao, B. Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment. Constr. Build. Mater. 2008, 22, 1723–1729. [Google Scholar] [CrossRef]
- Poon, C.; Azhar, S.; Anson, M.; Wong, Y. Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem. Concr. Res. 2001, 31, 1307–1318. [Google Scholar] [CrossRef]
Characteristics | ||
---|---|---|
Clinker | 65–79 | % |
Limestone | 21–35 | % |
Minority components | 0–5 | % |
Physical and mechanical characteristics | ||
Compressive strength | ≥32.5 ≤ 52.5 | MPa |
Onset of setting time | ≥75 | min. |
Stability (expansion) | ≤10 | mm |
Chemical properties | ||
Loss on calcination | No limitation | |
Insoluble residue | No limitation | |
Sulfate (SO3) | ≤3.5 | % |
Chlorides (Cl-) | ≤0.1 | % |
Sieve Opening Size (mm) | 4 | 2 | 1 | 0.5 | 0.25 | 0.125 | 0.063 |
Cumulative percentages passing (% in mass) | 100 | 89 | 65 | 39 | 14 | 4 | 1 |
Density (kg/L) | Quantity (Units/kg) | Length (mm) | Diameter (µm) | Tenacity (N/mm2) | Melting Point (°C) |
---|---|---|---|---|---|
0.91 | 102 million | 12 | 31 | 280–310 | 163–170 |
Mix | Fiber (kg) | Cement (kg) | Sand (kg) | Water (kg) | Density (kg/m3) |
---|---|---|---|---|---|
M | 0 | 450 | 1350 | 270 | 2140 |
M2 | 1.8 | 450 | 1350 | 270 | 2120 |
M3 | 2.7 | 450 | 1350 | 270 | 2080 |
M4 | 3.6 | 450 | 1350 | 270 | 2060 |
Temperature (°C) | Polypropylene Fiber (Kg/m3) | Cooling Regime |
---|---|---|
20, 50, 100, 200, 300, 400, 500 | 0, 2, 3, 4 | air, water |
Mix | Cooling Regime | 20 °C | 50 °C | 100 °C | 200 °C | 300 °C | 400 °C | 500 °C |
---|---|---|---|---|---|---|---|---|
M (MPa) | Air | 7.00 ± 0.02 | 6.80 ± 0.02 | 5.94 ± 0.04 | 5.48 ± 0.06 | 5.02 ± 0.09 | 1.29 ± 0.03 | 0.11 ± 0.02 |
M2 (MPa) | Air | 7.60 ± 0.03 | 7.51 ± 0.09 | 6.12 ± 0.15 | 5.70 ± 0.12 | 5.60 ± 0.16 | 1.39 ± 0.35 | 0.17 ± 0.09 |
M3 (MPa) | Air | 7.65 ± 0.10 | 7.58 ± 0.25 | 5.56 ± 0.11 | 5.47 ± 0.06 | 5.20 ± 0.03 | 0.12 ± 0.01 | 0.05 ± 0.03 |
M4 (MPa) | Air | 7.71 ± 0.05 | 7.55 ± 0.14 | 5.58 ± 0.19 | 5.24 ± 0.14 | 3.87 ± 0.37 | 0.08 ± 0.01 | 0.03 ± 0.01 |
M (MPa) | Water | 6.95 ± 0.05 | 6.75 ± 0.05 | 5.90 ± 0.05 | 5.40 ± 0.04 | 5.12 ± 0.03 | 0.75 ± 0.03 | 0.05 ± 0.01 |
M2 (MPa) | Water | 7.63 ± 0.22 | 7.45 ± 0.19 | 6.40 ± 0.33 | 5.73 ± 0.12 | 5.90 ± 0.39 | 0.88 ± 0.28 | 0.03 ± 0.02 |
M3 (MPa) | Water | 7.66 ± 0.05 | 7.55 ± 0.19 | 5.60 ± 0.19 | 4.80 ± 0.22 | 4.50 ± 0.16 | 0.16 ± 0.07 | 0.02 ± 0.00 |
M4 (MPa) | Water | 7.69 ± 0.10 | 7.52 ± 0.11 | 5.69 ± 0.39 | 3.86 ± 0.02 | 2.79 ± 0.15 | 0.12 ± 0.02 | 0.01 ± 0.00 |
Origin of Variations | F | Probability | Critical Value for F |
---|---|---|---|
Cooling regime | 1.150655616 | 0.289536889 | 4.072653759 |
Temperature | 229.6811767 | 1.85297 × 10−30 | 2.323993797 |
Interaction | 0.303979326 | 0.93135965 | 2.323993797 |
Mix | Cooling Regime | 20 °C | 50 °C | 100 °C | 200 °C | 300 °C | 400 °C | 500 °C |
---|---|---|---|---|---|---|---|---|
M (MPa) | Air | 31.76 ± 0.70 | 31.57 ± 0.81 | 30.90 ± 0.68 | 29.27 ± 0.22 | 28.43 ± 0.25 | 21.75 ± 0.39 | 18.62 ± 0.65 |
M2 (MPa) | Air | 37.08 ± 0.27 | 36.22 ± 0.46 | 35.50 ± 0.50 | 34.54 ± 0.37 | 31.48 ± 0.48 | 24.67 ± 0.63 | 19.65 ± 0.58 |
M3 (MPa) | Air | 37.46 ± 0.66 | 35.83 ± 0.36 | 28.49 ± 0.46 | 28.22 ± 0.45 | 27.84 ± 0.52 | 18.68 ± 0.47 | 16.90 ± 0.58 |
M4 (MPa) | Air | 37.53 ± 0.43 | 35.49 ± 0.10 | 26.88 ± 0.72 | 24.68 ± 0.51 | 21.89 ± 0.99 | 17.12 ± 0.18 | 12.18 ± 0.11 |
M (MPa) | Water | 32.09 ± 0.54 | 31.57 ± 0.58 | 29.07 ± 0.50 | 26.48 ± 0.32 | 25.64 ± 0.32 | 16.83 ± 0.32 | 13.31 ± 0.85 |
M2 (MPa) | Water | 35.27 ± 0.21 | 34.06 ± 0.42 | 33.06 ± 0.47 | 32.78 ± 0.76 | 30.39 ± 0.96 | 16.47 ± 0.35 | 13.78 ± 0.60 |
M3 (MPa) | Water | 36.47 ± 0.17 | 31.98 ± 0.82 | 26.66 ± 0.61 | 21.80 ± 0.84 | 21.08 ± 1.11 | 14.44 ± 0.17 | 12.18 ± 0.40 |
M4 (MPa) | Water | 36.79 ± 0.39 | 31.41 ± 0.14 | 22.03 ± 0.76 | 20.84 ± 0.50 | 17.69 ± 0.53 | 13.65 ± 0.21 | 11.53 ± 0.14 |
Origin of Variations | F | Probability | Critical Value for F |
---|---|---|---|
Cooling regime | 10.37114056 | 0.002472053 | 4.072653759 |
Temperature | 26.55528701 | 8.2486 × 10−13 | 2.323993797 |
Interaction | 0.228943632 | 0.964946175 | 2.323993797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, Y.; Prieto, M.I.; Cobo, A. Mechanical Properties of Cement Mortars Reinforced with Polypropylene Fibers Subjected to High Temperatures and Different Cooling Regimes. Buildings 2023, 13, 1445. https://doi.org/10.3390/buildings13061445
Alvarez Y, Prieto MI, Cobo A. Mechanical Properties of Cement Mortars Reinforced with Polypropylene Fibers Subjected to High Temperatures and Different Cooling Regimes. Buildings. 2023; 13(6):1445. https://doi.org/10.3390/buildings13061445
Chicago/Turabian StyleAlvarez, Yorly, María Isabel Prieto, and Alfonso Cobo. 2023. "Mechanical Properties of Cement Mortars Reinforced with Polypropylene Fibers Subjected to High Temperatures and Different Cooling Regimes" Buildings 13, no. 6: 1445. https://doi.org/10.3390/buildings13061445
APA StyleAlvarez, Y., Prieto, M. I., & Cobo, A. (2023). Mechanical Properties of Cement Mortars Reinforced with Polypropylene Fibers Subjected to High Temperatures and Different Cooling Regimes. Buildings, 13(6), 1445. https://doi.org/10.3390/buildings13061445