Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tool Adaptation to the Building Refurbishment Process
2.2. Case Study Description
2.3. Tool Application to the Case Study
2.3.1. Life Cycle Sustainability Assessment Applied to the Case Study
2.3.2. Definition of Building Information Included in the Assessment
2.3.3. Definition of Building Elements Included in the Assessment
2.3.4. Definition of Impact Categories and Indicators
3. Results and Discussion
3.1. Case Study LCSA Results
3.2. Advantages of the Tool Developed
3.3. Limitations and Future Developments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Solution 1 | Solution 2 | Solution 3 |
---|---|---|
ETICS | Ventilated façade | Interior insulation |
New materials | New materials | New materials |
1. Lime paint on cement or lime mortar for finishing 1000 < d < 1250: 0.60 cm 2. EPS expanded polystyrene or mineral wool (0.029 W/m.k): 6.00 cm | 1. Lime paint on cement or lime mortar for finishing 1000 < d < 1250: 0.60 cm 2. Cellulose cement board: 0.80 cm 3. Air chamber: 6.00 cm 4. Gypsum plasterboard, water-resistant (PYL) 750 < d < 900: 1.00 cm 5. EPS expanded [olystyrene or mineral wool (0.029 W/m.k): 6.00 cm | 7. EPS expanded polystyrene or mineral wool (0.029 W/m.k): 6.00 cm 8. Gypsum plasterboard 750 < d < 900: 1.30 cm 9. Lime paint on gypsum mortar to hide the joints between panels: 0.50 cm |
Existing materials | Existing materials | Existing materials |
3. Cement or lime mortar for masonry and rendering/plastering 1000 < d < 1250: 1.50 cm 4. ½ foot perforated brick metric or Catalan 40 mm < G < 60 mm: 11.50 cm 5. Cement or lime mortar for masonry and plastering 1000 < d < 1250: 1.50 cm 6. PUR hydroflurocarbide HFC projection (0.028 W/m.k): 2.00 com 7. Double hollow brick board (60 mm < E < 90 mm): 7.00 cm 8. Lime paint on gypsum mortar: 1.50 cm | 6. Cement or lime mortar for masonry and rendering/plastering 1000 < d < 1250: 1.50 cm 7. ½ foot perforated brick metric or Catalan 40 mm < G < 60 mm: 11.50 cm 8. Cement or lime mortar for masonry and plastering 1000 < d < 1250: 1.50 cm 9. PUR hydroflurocarbide HFC projection (0.028 W/m.k): 2.00 com 10. Double hollow brick board (60 mm < E < 90 mm): 7.00 cm 11. Lime paint on gypsum mortar: 1.50 cm | 1. Cement or lime mortar for masonry and plastering/rendering 1000 < d < 1250: 1.50 cm 2. ½ foot perforated brick metric or Catalan 40 mm < G < 60 mm: 11.50 cm 3. Cement or lime mortar for masonry and plastering 1000 < d < 1250: 1.50 cm 4. PUR hydroflurocarbide HFC projection (0.028 W/m.k): 2.00 com 5. Double hollow brick board (60 mm < E < 90 mm): 7.00 cm 6. Lime paint on gypsum mortar: 1.50 cm |
Solution 1 | |
---|---|
Non-Trafficable Roof | Trafficable Roof |
Existing materials | Existing materials |
|
|
References
- IEA (International Energy Agency) Global Status Report for Buildings and Construction: Towards a Zero-Emissions, Efficient and Resilient Buildings and Construction Sector. 2021. Available online: https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction (accessed on 22 April 2023).
- Climate Change 2021: The Physical Science Basis|Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 22 April 2023).
- European Commission. European Parliament The European Green Deal. European Commission. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 22 April 2023).
- European Commission. Renovation Wave. 2020. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/renovation-wave_en (accessed on 22 April 2023).
- IEA EBC ANNEX 57. Available online: http://www.annex57.org/ (accessed on 22 April 2023).
- BOE Ley 7/2021 de Cambio Climático y Transición Energética. 2021. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2021-8447 (accessed on 22 April 2023).
- Finansdepartementet Klimatdeklaration För Byggnader. 2020. Available online: https://www.regeringen.se/contentassets/8012373f173e44b19b96d9c7c314ffd9/klimatdeklaration-for-byggnader-prop.-202021144.pdf (accessed on 22 April 2023).
- MPG-Grenswaarde Een Feit! Duurz. Gebouw. 2 February 2017; pp. 66–67. (In Dutch). Available online: https://www.rvo.nl/onderwerpen/wetten-en-regels-gebouwen/milieuprestatie-gebouwen-mpg (accessed on 22 April 2023).
- Euorpean Parliament Amendments 14/03/2023 for Energy Performance of Buildings Directive (Recast). 2023. Available online: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0068_EN.html (accessed on 22 April 2023).
- ISO 14067:2013; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification and Communication. ISO: Geneva, Switzerland, 2013.
- Kloepffer, W. Life Cycle Sustainability Assessment of Products (with Comments by Helias A. Udo de Haes, p. 95). Proc. Int. J. Life Cycle Assess. 2008, 13, 89–95. [Google Scholar] [CrossRef]
- Valdivia, S.; Ugaya, C.; Sonnemann, G.; Hildenbrand, J. Towards a Life Cycle Sustainability Assessment. Making Informed Choices on Products; UNEP: Paris, France, 2011; ISBN 978-92-807-3175-0. [Google Scholar]
- Kohler, N.; Moffatt, S. Life-Cycle Analysis of the Built Environment. UNEP Ind. Environ. 2003, 26, 17–19. [Google Scholar]
- Soust-Verdaguer, B.; Bernardino Galeana, I.; Llatas, C.; Montes, M.V.; Hoxha, E.; Passer, A. How to Conduct Consistent Environmental, Economic, and Social Assessment during the Building Design Process. A BIM-Based Life Cycle Sustainability Assessment Method. J. Build. Eng. 2021, 45, 103516. [Google Scholar] [CrossRef]
- ISO 21931-1:2022; Sustainability in Building Construction—Framework for Methods of Assessment of the Environmental, Economic and Social Performance of Construction Works—Part 1: Buildings. ISO: Geneva, Switzerland, 2022.
- Potrč Obrecht, T.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical Review of BIM-Based LCA Method to Buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Llatas, C.; Soust-Verdaguer, B.; Passer, A. Implementing Life Cycle Sustainability Assessment during Design Stages in Building Information Modelling: From Systematic Literature Review to a Methodological Approach. Buiding Environ. 2020, 182, 107164. [Google Scholar] [CrossRef]
- Mora, T.D.; Bolzonello, E.; Cavalliere, C.; Peron, F. Key Parameters Featuring BIM-LCA Integration in Buildings: A Practical Review of the Current Trends. Sustainability 2020, 12, 7182. [Google Scholar] [CrossRef]
- Santos, R.; Aguiar Costa, A.; Silvestre, J.D.; Pyl, L. Development of a BIM-Based Environmental and Economic Life Cycle Assessment Tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Vandenbergh, T.; Pyl, L. BIM-Based Life Cycle Assessment and Life Cycle Costing of an Office Building in Western Europe. Build. Environ. 2020, 169, 106568. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Informetric Analysis and Review of Literature on the Role of BIM in Sustainable Construction. Autom. Constr. 2019, 103, 221–234. [Google Scholar] [CrossRef]
- IEA EBC ANNEX 72. Available online: http://www.iea-ebc.org/projects/ongoing-projects/ebc-annex-72/ (accessed on 1 May 2023).
- Hollberg, A.; Genova, G.; Habert, G. Evaluation of BIM-Based LCA Results for Building Design. Autom. Constr. 2020, 109, 102972. [Google Scholar] [CrossRef]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montañes, B. Life Cycle Assessment (LCA) of Building Refurbishment: A Literature Review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Mileto, C.; Vegas, F.; Llatas, C.; Soust-Verdaguer, B. A Sustainable Approach for the Refurbishment Process of Vernacular Heritage: The Sesga House Case Study (Valencia, Spain). Sustainability 2021, 13, 9800. [Google Scholar] [CrossRef]
- Dauletbek, A.; Zhou, P. BIM-Based LCA as a Comprehensive Method for the Refurbishment of Existing Dwellings Considering Environmental Compatibility, Energy Efficiency, and Profitability: A Case Study in China. J. Build. Eng. 2022, 46, 103852. [Google Scholar] [CrossRef]
- Kim, K.P. BIM-Enabled Sustainable Housing Refurbishment—LCA Case Study. In Sustainable Construction Technologies: Life-Cycle Assessment; Butterworth-Heinemann: Oxford, UK, 2019; pp. 349–394. [Google Scholar] [CrossRef]
- Tushar, Q.; Zhang, G.; Bhuiyan, M.A.; Navaratnam, S.; Giustozzi, F.; Hou, L. Retrofit of Building Façade Using Precast Sandwich Panel: An Integrated Thermal and Environmental Assessment on BIM-Based LCA. Buildings 2022, 12, 2098. [Google Scholar] [CrossRef]
- KT Innovations. Autodesk Tally-Autodesk. Available online: http://choosetally.com/ (accessed on 1 May 2023).
- Soust-Verdaguer, B.; Gutiérrez Moreno, J.A.; Llatas, C. Utilization of an Automatic Tool for Building Material Selection by Integrating Life Cycle Sustainability Assessment in the Early Design Stages in BIM. Sustainability 2023, 15, 2274. [Google Scholar] [CrossRef]
- Figueiredo, K.; Pierott, R.; Hammad, A.W.A.; Haddad, A. Sustainable Material Choice for Construction Projects: A Life Cycle Sustainability Assessment Framework Based on BIM and Fuzzy-AHP. Build. Environ. 2021, 196, 107805. [Google Scholar] [CrossRef]
- LLatas, C.; Soust-Verdaguer, B.; Hollberg, A.; Palumbo, E.; Quiñones, R. BIM-Based LCSA Application in the Early Design Stages Using IFC. Autom. Constr. 2022, 138, 104259. [Google Scholar] [CrossRef]
- Building SMART. Available online: https://www.buildingsmart.org/ (accessed on 30 April 2023).
- Autodesk Revit. Architecture. 2021. Available online: https://www.autodesk.com/products/revit/architecture (accessed on 30 April 2023).
- BIM Forum Level Of Development (LOD) Specification Part I & Commentary. 2021. Available online: https://bimforum.org/resource/level-of-development-specification/ (accessed on 30 April 2023).
- Ministerio para la Transición Ecológica y el Reto Demográfico, Condiciones Técnicas de los Procedimientos para la Evaluación de la Eficiencia Energética. 2020. Available online: https://energia.gob.es/es-es/Participacion/Documents/propuesta-doc-reconocido-condiciones-tecnicas/Condiciones-tecnicas-evaluacion-eficiencia-energetica.pdf (accessed on 30 April 2023).
- CTE Spanish Building Technical Code. Real Decreto 314/2006 17 marzo 2006, BOE 74, 11816–11831. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2006-5515 (accessed on 6 May 2023).
- Junta de Andalucía Agencia de Vivienda y Rehabilitación de Andalucía. Available online: https://www.juntadeandalucia.es/avra/ (accessed on 6 May 2023).
- EN 17412-1; Building Information Modelling—Level of Information Need—Part 1: Concepts and Principles. European Committee for Standardization: Brussels, Belgium, 2021.
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Gabarrell, X. Environmental Assessment of Façade-Building Systems and Thermal Insulation Materials for Different Climatic Conditions. J. Clean. Prod. 2016, 113, 102–113. [Google Scholar] [CrossRef] [Green Version]
- IDAE Guías Técnicas Para La Rehabilitación de La Envolvente Térmica de Los Edificios. Available online: https://www.idae.es/tecnologias/eficiencia-energetica/edificacion/aislamiento-en-edificacion/guias-tecnicas-para-la (accessed on 24 May 2023).
- Andalusian Government BCCA. Base de Costes de La Construcción de Andalucía. Clasificación Sistemática de Precios Básicos, Auxiliares y Unitarios. 2017. Available online: https://www.juntadeandalucia.es/organismos/fomentoarticulaciondelterritorioyvivienda/areas/vivienda-rehabilitacion/planes-instrumentos/paginas/vivienda-bcca.html (accessed on 30 April 2023).
- Soust-Verdaguer, B.; Potrč Obrecht, T.; Alaux, N.; Hoxha, E.; Saade, R.M.M.; Röck, M.; Garcia-Martinez, A.; Llatas, C.; Gómez de Cózar, J.; Passer, A. Using Systematic Building Decomposition for Implementing LCA: The Results of a Comparative Analysis as Part of IEA EBC Annex 72. J. Clean. Prod. 2023, 284, 135422. [Google Scholar] [CrossRef]
- Ecoinvent Database v 3.7.1. Available online: https://www.ecoinvent.org/ (accessed on 30 April 2023).
- Hollberg, A.; Lützkendorf, T.; Habert, G. Top-down or Bottom-up?—How Environmental Benchmarks Can Support the Design Process. Build. Environ. 2019, 153, 148–157. [Google Scholar] [CrossRef]
- Michalak, J.; Czernik, S.; Marcinek, M.; Michalowski, B. Environmental Burdens of External Thermal Insulation Systems. Expanded Polystyrene vs. Mineral Wool: Case Study from Poland. Sustainability 2020, 12, 4532. [Google Scholar] [CrossRef]
- Füchsl, S.; Rheude, F.; Röder, H. Life Cycle Assessment (LCA) of Thermal Insulation Materials: A Critical Review. Clean. Mater. 2022, 5, 100119. [Google Scholar] [CrossRef]
- Tingle, D.D.; Hathway, A.; Davison, B. An Environmental Impact Comparison of External Wall Insulation Types. Build. Environ. 2015, 85, 182–189. [Google Scholar] [CrossRef]
- Mertens, M.; Slaughter, R. R2pi Project Report. 2019. Available online: http://www.r2piproject.eu/ (accessed on 30 April 2023).
- Ren, J. Multi-Criteria Decision Making for the Prioritization of Energy Systems under Uncertainties after Life Cycle Sustainability Assessment. Sustain. Prod. Consum. 2018, 16, 45–57. [Google Scholar] [CrossRef]
- Hossaini, N.; Reza, B.; Akhtar, S.; Sadiq, R.; Hewage, K. AHP Based Life Cycle Sustainability Assessment (LCSA) Framework: A Case Study of Six Storey Wood Frame and Concrete Frame Buildings in Vancouver. J. Environ. Plan. Manag. 2015, 58, 1217–1241. [Google Scholar] [CrossRef]
Solution 1 | Solution 2 | Solution 3 | |
---|---|---|---|
Type of solution | ETICS | Ventilated façade | Interior insulation |
U-value | 0.30 W/(m2K) | 0.30 W/(m2K) | 0.30 W/(m2K) |
Materials for insulation | EPS | EPS | EPS |
Mineral wool | Mineral wool | Mineral wool |
Solution and Material 1 | Solution and Material 2 | Solution and Material 3 |
---|---|---|
Double glazing | Double glazing | Double glazing |
Wood | PCV | Coated Aluminium |
Solution and Material 1 | Solution and Material 2 | Solution and Material 3 |
---|---|---|
Steel | Aluminium | Steel and Aluminium |
Solution and Material 1 |
---|
Non-trafficable roof finished in gravel with XPS (thermal insulation) and trafficable roof finished with ceramic tiles and XPS (thermal insulation) for the terrace. |
IFC Building Element | BIM Forum Specifications |
---|---|
IfcDoor | LOD 200: Doors are either modelled as a single component or represented with a single frame and panel. Approximate unit size, location, and type are provided. |
IfcRoof | LOD 200: These are defined as generic objects separated by material type with an approximate total thickness represented by a single layer. Designs and locations are still flexible. |
IfcWall | LOD 200: These include the size, shape, location, and orientation of the element. They are defined as generic objects separated by material type with an approximate total thickness represented by a single layer. Designs and locations are still flexible. |
IfcWindow | LOD 200: Windows approximated in terms of location, size, count, and type. Units are either modelled as a single monolithic component or depicted with a single frame and glazing. |
Main Material Solution | Environmental kg. CO2 eq. | Economic € | Social h Working Hours | ||||
---|---|---|---|---|---|---|---|
1 | Façade: ETICS-EPS, Windows: wood | 5790.01 | 45,274.93 | 4263.44 | |||
2 | Façade: ETICS-EPS, Windows: coated aluminium | 6094.88 | 59,353.22 | 4258.11 | |||
3 | Façade: ETICS-EPS, Windows: PVC | 6743.41 | 57,349.72 | 4256.71 | |||
Best value | Intermediate value | Worst value |
Combination of Material Solution | Environmental | Economic | Social | Total | ||
---|---|---|---|---|---|---|
1 | Façade: ETICS-EPS, Windows: wood, Main exterior door: steel, Exterior doors: aluminium | 0 | 0 | 0 | 0 | |
2 | Façade: ETICS-EPS, Windows: wood, Main exterior door: steel, Exterior doors: Steel | 0.88282628 | −0.88280478 | 0.8825072 | 0.882529 | |
3 | Façade: ETICS-EPS, Windows: wood, Main exterior door: aluminium, Exterior doors: aluminium | −1.11276295 | 1.11278286 | −1.11305839 | −1.113038 | |
Best value | Intermediate value | Worst value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soust-Verdaguer, B.; Gutiérrez, J.A.; Llatas, C. Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment. Buildings 2023, 13, 1472. https://doi.org/10.3390/buildings13061472
Soust-Verdaguer B, Gutiérrez JA, Llatas C. Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment. Buildings. 2023; 13(6):1472. https://doi.org/10.3390/buildings13061472
Chicago/Turabian StyleSoust-Verdaguer, Bernardette, José Antonio Gutiérrez, and Carmen Llatas. 2023. "Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment" Buildings 13, no. 6: 1472. https://doi.org/10.3390/buildings13061472
APA StyleSoust-Verdaguer, B., Gutiérrez, J. A., & Llatas, C. (2023). Development of a Plug-In to Support Sustainability Assessment in the Decision-Making of a Building Envelope Refurbishment. Buildings, 13(6), 1472. https://doi.org/10.3390/buildings13061472