Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China
Abstract
:1. Introduction
2. Literature Review
2.1. Existing Research
2.2. Vertical Farming on Facades
2.3. Photovoltaic Shading
2.4. Building Micro-Environment and Environmental Comfort
3. Materials and Methods
3.1. Workflow
3.2. Selection of a Typical Community in Guangzhou
3.3. Evaluation Indicators and Optimization
- UDI = average effective natural daylight illuminance (UDI 200–3000 lx).
- PMV = predicted mean indoor polling value.
- PMV0 = PMV value of 0 when the indoor thermal environment is moderate (note: for calculation feasibility, all PMV values were based on the original + 1).
- P = output power of the adaptive façade dynamic PV shading system.
3.4. Design Prototype of the Façade Unit Integrating PVSD and VF
3.5. Simulation Setup
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- 1.
- Defining an ideal point, ∈Zk, is an ideal point of criteria functions, if for each i = 1, 2, 3…, k, = .
- 2.
- Each function will be transformed into non-dimensional functions through the following formula:
- 3.
- Concerning the weights of the different objective functions, the relative values of the weights respond to differences in the importance of the different objectives and the preferences in the decision [88]. Selecting a particular solution strategy from the optimal set is allowed, and this approach incorporates a posteriori expression of preferences [87]. The three functions selected here are for the indoor thermal environment, indoor light environment, and PV power production, and the three indicators are considered to have equal weights in terms of the ultimate goal of the design strategy.
- 4.
- The setting of the VF is located in the lowermost area of the module and has no obscuring effect on the indoor lighting. Its corresponding indicator is considered to have no verified correlation with the indoor environmental state in the first step and is not included in the design of the optimization function in the first step.
- 5.
- From the derivation of the previous two Equations (A1) and (A2), the combined optimal solution resulting from the three indicators (P, UDI, PMV) in the first optimization step is calculated as follows:
- UDI = average effective natural daylight illuminance (UDI 200–3000 lx).
- PMV = predicted mean indoor polling value.
- PMV0 = PMV value of 0 when the indoor thermal environment is moderate (note: for calculation feasibility, all PMV values were based on the original + 1).
- P = output power of the adaptive façade dynamic PV shading system.
References
- IEA. World Energy Outlook 2013; International Energy Agency: Paris, France, 2013. [CrossRef]
- Zhang, X.; Wang, Y. How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy 2017, 102, 116–124. [Google Scholar] [CrossRef]
- Global Buildings Performance Network. China: The World’s Largest Single Market in New Construction. Available online: https://www.gbpn.org/activities/china/ (accessed on 8 May 2023).
- Huo, T.; Cai, W.; Ren, H.; Feng, W.; Zhu, M.; Lang, N.; Gao, J. China’s building stock estimation and energy intensity analysis. J. Clean. Prod. 2019, 207, 801–813. [Google Scholar] [CrossRef]
- THUBERC Annual Report on China Building Energy Efficiency; China Architecture & Building Press: Beijing, China, 2018.
- Zhou, W.; Moncaster, A.; O’Neill, E.; Reiner, D.M.; Wang, X.; Guthrie, P. Modelling future trends of annual embodied energy of urban residential building stock in China. Energy Policy 2022, 165, 112932. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook. 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 8 May 2023).
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. New green facades as passive systems for energy savings on buildings. Energy Procedia 2014, 57, 1851–1859. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, D.; Song, Y. Advanced Materials in Smart Building Skins for Sustainability: From Nano to Macroscale; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Tablada, A.; Kosorić, V.; Huang, H.; Chaplin, I.K.; Lau, S.-K.; Yuan, C.; Lau, S.S.-Y. Design optimization of productive façades: Integrating photovoltaic and farming systems at the tropical technologies laboratory. Sustainability 2018, 10, 3762. [Google Scholar] [CrossRef] [Green Version]
- Tablada, A.; Chaplin, I.; Huang, H.; Kosoric, V.; Lau, S.K.; Yuan, C.; Lau, S. Assessment of solar and farming systems integration on tropical building facades. In Proceedings of the SWC 2017, ISES Solar World Conference 2017 and the IEA SHC Solar Heating and Cooling Conference for Buildings and Industry, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; International Solar Energy Society: Abu Dhabi, United Arab Emirates, 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective. Landsc. Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Long, Z.; Li, H.; Bu, X.; Ma, W.; Zhao, L. Solar radiation on vertical surfaces for building application in different climate zones across China. J. Renew. Sustain. Energy 2013, 5, 021418. [Google Scholar] [CrossRef]
- Liu, A.; Chen, W.; Qin, P. Analysis and evaluation of solar energy resources in Guangzhou. Guangdong Meteorol. 2014, 36, 59–61. [Google Scholar] [CrossRef]
- Pan, D.; Bai, Y.; Chang, M.; Wang, X.; Wang, W. The technical and economic potential of urban rooftop photovoltaic systems for power generation in Guangzhou, China. Energy Build. 2022, 277, 112591. [Google Scholar] [CrossRef]
- Liu, C.; Xu, W.; Li, A.; Sun, D.; Huo, H. Analysis and optimization of load matching in photovoltaic systems for zero energy buildings in different climate zones of China. J. Clean. Prod. 2019, 238, 117914. [Google Scholar] [CrossRef]
- Wu, J. The Study of Urban Residential Thermal Environment Multi-Objective Optimization Design Base on Parametric Method. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2017. [Google Scholar]
- Zhang, J.; Cui, P.; Song, H. Impact of urban morphology on outdoor air temperature and microclimate optimization strategy base on pareto optimality in northeast China. Build. Environ. 2020, 180, 107035. [Google Scholar] [CrossRef]
- Ying, X.; Qin, X.; Shen, L.; Yu, C.; Zhang, J. An intelligent planning method to optimize high-density residential layouts considering the influence of wind environments. Heliyon 2023, 9, e13051. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wei, H.; He, X.; He, M.; Yang, D. Integrating phase change material in building envelopes combined with the Earth-to-air heat exchanger for indoor thermal environment regulation. Build. Environ. 2022, 221, 109318. [Google Scholar] [CrossRef]
- Shaviv, E.; Yezioro, A.; Capeluto, I.G. Thermal mass and night ventilation as passive cooling design strategy. Renew. Energy 2001, 24, 445–452. [Google Scholar] [CrossRef]
- Chinnaiyan, V.K.; Patil, C.K.; Patil, M.M.; Baviskar, P.R.; Karthick, A.; Selvakumar, P.; Rajkumar, S. Review on application of phase change material for BIPV system. Mater. Today Proc. 2022, 59, 1243–1248. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Hu, M.; Chen, S.; Xia, B. A practical approach of urban green infrastructure planning to mitigate urban overheating: A case study of Guangzhou. J. Clean. Prod. 2021, 287, 124995. [Google Scholar] [CrossRef]
- Dardir, M.; Berardi, U. Development of microclimate modeling for enhancing neighborhood thermal performance through urban greenery cover. Energy Build. 2021, 252, 111428. [Google Scholar] [CrossRef]
- He, Y.; Lin, E.S.; Zhang, W.; Tan, C.L.; Tan, P.Y.; Wong, N.H. Local microclimate above shrub and grass in tropical city: A case study in Singapore. Urban Clim. 2022, 43, 101142. [Google Scholar] [CrossRef]
- Italos, C.; Patsias, M.; Yiangou, A.; Stavrinou, S.; Vassiliades, C. Use of double skin façade with building integrated solar systems for an energy renovation of an existing building in Limassol, Cyprus: Energy performance analysis. Energy Rep. 2022, 8, 15144–15161. [Google Scholar] [CrossRef]
- Shah, I.; Soh, B.; Lim, C.; Lau, S.-K.; Ghahramani, A. Thermal transfer and temperature reductions from shading systems on opaque facades: Quantifying the impacts of influential factors. Energy Build. 2023, 278, 112604. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Ocampo, C.; Oldham, C. Exploring the evapotranspirative cooling effect of a green façade. Sustain. Cities Soc. 2022, 81, 103822. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Zhang, L.; Zhao, C.; Yan, J.; Liu, M.; Zhao, L. Seasonal variation in leaf area index and its impact on the shading effects of vertical green facades in subtropical areas. Build. Environ. 2022, 225, 109629. [Google Scholar] [CrossRef]
- Hoelscher, M.T.; Nehls, T.; Jänicke, B.; Wessolek, G. Quantifying cooling effects of facade greening: Shading, transpiration and insulation. Energy Build. 2016, 114, 283–290. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Taveres-Cachat, E.; Grynning, S.; Thomsen, J.; Selkowitz, S. Responsive building envelope concepts in zero emission neighborhoods and Smart Cities—A Roadmap to Implementation. Build. Environ. 2019, 149, 446–457. [Google Scholar] [CrossRef]
- Taşer, A.; Koyunbaba, B.K.; Kazanasmaz, T. Thermal, daylight, and energy potential of building-integrated photovoltaic (BIPV) systems: A comprehensive review of effects and developments. Sol. Energy 2023, 251, 171–196. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Z.; Wang, J.; Mendis, T.; Huang, J. Evaluation of photovoltaic potential by urban block typology: A case study of wuhan, China. Renew. Energy Focus 2019, 29, 141–147. [Google Scholar] [CrossRef]
- Luther, J.; Reindl, T.; Wang, D.K.S.; Aberle, A.; Walsh, W.; Nobre, A.; Yao, G.G. Solar Photovoltaic (PV) Roadmap for Singapore (A Summary); Solar Energy Research Institute of Singapore (SERIS): Singapore, 2013. [Google Scholar]
- Ding, Y.; Wang, Y.; Su, H.; Wang, J.J. Analysis on the influence of building vertical greening to the outdoor thermal environment. Guangzhou Univ. (Nat. Sci. Ed.) 2015, 14, 53–57. [Google Scholar]
- Chen, Z. Research of Vegetation System’s Effects on Outdoor Thermal Environment of Residential Communities in Hot-Humid Climate. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2010. [Google Scholar]
- Wang, Y.; Ni, Z.; Peng, Y.; Xia, B. Local variation of outdoor thermal comfort in different urban green spaces in Guangzhou, a subtropical city in South China. Urban For. Urban Green. 2018, 32, 99–112. [Google Scholar] [CrossRef]
- Afrin, S. Green Skyscraper: Integration of Plants into Skyscrapers. Master’s Thesis, Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden, 2009. Available online: https://www.diva-portal.org/smash/get/diva2:353678/fulltext01 (accessed on 15 January 2009).
- Despommier, D. Farming up the city: The rise of urban vertical farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Tablada, A.; Kosorić, V. Vertical Farming on Facades: Transforming Building Skins for Urban Food Security. In Rethinking Building Skins; Elsevier: Amsterdam, The Netherlands, 2022; pp. 285–311. ISBN 978-0-12-822477-9. [Google Scholar]
- Draper, C.; Freedman, D. Review and analysis of the benefits, purposes, and motivations associated with community gardening in the United States. J. Community Pract. 2010, 18, 458–492. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.L.A.; Haas, E.M.; Raiteri, R. Vertical Greening Systems and the Effect on Air Flow and Temperature on the Building Envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Yuan, C.; Shan, R.; Adelia, A.S.; Tablada, A.; Lau, S.K.; Lau, S.S.-Y. Effects of vertical farming on natural ventilation of residential buildings. Energy Build. 2019, 185, 316–325. [Google Scholar] [CrossRef]
- Zhang, X.; Lau, S.; Lau, S.S.Y.; Zhao, Y. Photovoltaic integrated shading devices (PVSDs): A review. Sol. Energy 2018, 170, 947–968. [Google Scholar] [CrossRef]
- Aristizabal, A.; Paez, C.; Ospina, D. Building-Integrated Photovoltaic Systems (BIPVS). Performance and Modeling under Outdoor Conditions; Springer: Berlin, Germany, 2018. [Google Scholar]
- Assoa, Y.B.; Mongibello, L.; Carr, A.; Kubicek, B.; Machado, M.; Merten, J.; Misara, S.; Roca, F.; Sprenger, W.; Wagner, M.; et al. Thermal analysis of a BIPV system by various modelling approaches. Sol. Energy 2017, 155, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Bodart, M.; De Herde, A. Global energy savings in offices buildings by the use of daylighting. Energy Build. 2002, 34, 421–429. [Google Scholar] [CrossRef]
- Lam, J.C.; Li, D.H.W. An analysis of daylighting and solar heat for cooling-dominated office buildings. Sol. Energy 1999, 65, 251–262. [Google Scholar] [CrossRef]
- Paul, D.; Mandal, S.N.; Mukherjee, D.; Bhadra Chaudhuri, S.R. Optimization of significant insolation distribution parameters—A new approach towards BIPV system design. Renew. Energy 2010, 35, 2182–2191. [Google Scholar] [CrossRef]
- Bahr, W. A comprehensive assessment methodology of the building integrated photovoltaic blind system. Energy Build. 2014, 82, 703–708. [Google Scholar] [CrossRef]
- Weller, B.; Hemmerle, C.; Jakubetz, S.; Unnewehr, S. Detail Practice: Photovoltaics; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, L.; Peng, J. Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong. Energy 2017, 137, 1152–1158. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, I.; Choi, A.; Sung, M. Evaluation of optimized PV power generation and electrical lighting energy savings from the PV blind-integrated daylight responsive dimming system using LED lighting. Sol. Energy 2014, 107, 746–757. [Google Scholar] [CrossRef]
- Akbari Paydar, M.A. Optimum design of building integrated PV module as a movable shading device. Sustain. Cities Soc. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Shi, S.; Sun, J.; Liu, M.; Chen, X.; Gao, W.; Song, Y. Energy-saving potential comparison of different photovoltaic integrated shading devices (PVSDs) for single-story and multi-story buildings. Energies 2022, 15, 9196. [Google Scholar] [CrossRef]
- Radziemska, E. The Effect of Temperature on the Power Drop in Crystalline Silicon Solar Cells. Renew. Energy 2003, 28, 1–12. [Google Scholar] [CrossRef]
- El Gindi, S.E.; Abdin, A.R.; Hassan, A. Building integrated Photovoltaic Retrofitting in office buildings. Energy Procedia 2017, 115, 239–252. [Google Scholar] [CrossRef]
- Elibol, E.; Özmen, Ö.T.; Tutkun, N.; Köysal, O. Outdoor performance analysis of different PV panel types. Renew. Sustain. Energy Rev. 2017, 67, 651–661. [Google Scholar] [CrossRef]
- Umehara, M.; Takeda, Y.; Motohiro, T.; Sakai, T.; Awano, H.; Maekawa, R. Cu2Sn1−xGexS3 (x = 0.17) Thin-Film Solar Cells with High Conversion Efficiency of 6.0%. Appl. Phys. Express 2013, 6, 045501. [Google Scholar] [CrossRef]
- Zaitsev, R.V.; Kirichenko, M.; Khrypunov, G.; Radoguz, S.; Khrypunov, M.; Prokopenko, D.; Zaitseva, L. Operating Temperature Effect on the Thin Film Solar Cell Efficiency. J. Nano Electron. Phys. 2019, 11, 04029. [Google Scholar] [CrossRef]
- Defaix, P.R.; van Sark, W.G.J.H.M.; Worrell, E.; de Visser, E. Technical potential for photovoltaics on buildings in the EU-27. Sol. Energy 2012, 86, 2644–2653. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Chaudhary, R.; Karthick, A. Review on the progress of building-applied/integrated photovoltaic system. Environ. Sci. Pollut. Res. Int. 2021, 28, 47689–47724. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Jeong, K.; Koo, C.; Kim, J.; Lee, M. A preliminary study for determining photovoltaic panel for a smart photovoltaic blind considering usability and constructability issues. Energy Procedia 2016, 88, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.; Hong, T.; Koo, C.; Oh, J.; Lee, M.; Kim, J. A prototype design and development of the smart photovoltaic system blind considering the photovoltaic panel, tracking system, and monitoring system. Appl. Sci. 2017, 7, 1077. [Google Scholar] [CrossRef] [Green Version]
- Cerón, I.; Caamaño-Martín, E.; Neila, F.J. ‘State-of-the-art’ of building integrated photovoltaic products. Renew. Energy 2013, 58, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Beinert, A.J.; Romer, P.; Heinrich, M.; Mittag, M.; Aktaa, J.; Neuhaus, D.H. The effect of cell and module dimensions on thermomechanical stress in PV modules. IEEE J. Photovolt. 2019, 10, 70–77. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Fanger, P.O. Moderate Thermal Environments Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort; ISO 7730; International Organization for Standardization: Geneva, Switzerland, 1984. [Google Scholar]
- Wang, M.; Li, Q.; Wang, F.; Yuan, Z.; Wang, L.; Zhou, X. Residential indoor thermal environment investigation and analysis on energy saving of air conditioning in hot summer and warm winter zone in China. Urban Clim. 2023, 47, 101369. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar] [CrossRef]
- Roudsari, M.S.; Pak, M.; Smith, A. Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. In Proceedings of the 13th International IBPSA Conference, Lyon, France, 25–28 August 2013; pp. 3128–3135. [Google Scholar]
- Reinhart, C.F.; Walkenhorst, O. Dynamic RADIANCE-based daylight simulations for a full-scale test office with outer Venetian blinds. Energy Build. 2001, 33, 683697. [Google Scholar] [CrossRef]
- Romero, R.; Simon, J.; Ryan, T.; Peterson, Z.; Torcellini, P.; Kandt, A.; Young, M.; Rothgeb, S.; Colgan, C. US Department of Energy Solar Decathlon Competition Guide: 2021 Design Challenge and 2023 Build Challenge; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021. [Google Scholar]
- Ward, G.J. The RADIANCE lighting simulation and rendering system. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 24–29 July 1994; pp. 459–472. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, Y.I.; Kershaw, T.; Shepherd, P. A methodology for Modelling Microclimate. In Proceedings of the 35th Plea Conference Sustainable Architecture and Urban Design, A Coruña, Spain, 1–3 September 2020. [Google Scholar]
- Chen, G.; He, H.; Chen, Y.; Zhao, L.; Cai, Y.; Ma, Y. Applying a diagnostic equation for maximum urban heat island intensity based on local climate zones for Guangzhou, China. Build. Environ. 2023, 228, 109817. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Freitas, S.; Brito, M.C. Maximizing the Solar Photovoltaic Yield in Different Building Facade Layouts. In Proceedings of the European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 14–18. [Google Scholar]
- Bay, J.H.P.; Owen, L.C.W.; Singh, S. Food production and density: The design of a high-rise housing development in Singapore. In Growing Compact: Urban Form, Density and Sustainability; Bay, J.H.P., Lehmann, S., Eds.; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Dorais, M. The use of supplemental lighting for vegetable crop production: Light intensity, crop response, nutrition, crop management, cultural practices. In Proceedings of the Canadian Greenhouse Conference, Toronto, ON, Canada, 12 November 2003; pp. 1–8. [Google Scholar]
- Schiller, L. Is My Plant Getting Enough Light? Available online: http://www.ceresgs.com/is-my-plant-getting-enough-light/ (accessed on 7 September 2017).
- Fang Xiaodan, Residents’ Income Continues to Grow Steadily and Consumer Spending Continues to Recover—NBS. Available online: http://www.stats.gov.cn/sj/sjjd/202302/t20230202_1896589.html (accessed on 9 June 2023).
- Hosseini, S.M.; Carli, R.; Jantzen, J.; Dotoli, M. Multi-block ADMM Approach for Decentralized Demand Response of Energy Communities with Flexible Loads and Shared Energy Storage System. In Proceedings of the 2022 30th Mediterranean Conference on Control and Automation (MED), Vouliagmeni, Greece, 28 June–1 July 2022; pp. 67–72. [Google Scholar]
- Marler, R.T.; Arora, J.S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 2004, 26, 369–395. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of Thermal and Daylight Performance of School Buildings Based on a Multi-Objective Genetic Algorithm in the Cold Climate of China. Energy Build. 2017, 139, 371–384. [Google Scholar] [CrossRef]
Photovoltaic Type | Distance to Wall | Panel Size | Tilt Angle | Number of Rows | Axis Orientation |
---|---|---|---|---|---|
Crystalline silicon | 0.5 m | 0.4 m × 0.4 m | 30° | 6 | Horizontal |
Thin film | 0.5 m | 0.8 m × 0.8 m | 15° | 3 | Vertical (west/east) |
Name of Software | Version |
---|---|
Ladybug | 0.0.67 |
Honeybee | 0.064 |
Daysim | 4 |
Radiance | 5.2.2 |
Openstudio | 2.9 |
THERM | 7.6 |
Rhinoceros | 7 |
ENVI-met | 5.1.1 |
Material | Thickness (m) | U-Value (W/m2 K) | Solar Heat Gain Coefficient | Visible Transmittance |
Single 6 mm glass | 0.006 | 5.5 | 0.65 | 0.88 |
Material | Thickness (m) | Conductivity | Density | Specific Heat |
150 mm wall | 0.15 | 0.23 | 840 | 1200 |
Material | R Transmittance | G Transmittance | B Transmittance | Roughness | Specularity |
Glass | 0.7 | 0.7 | 0.7 | 0.05 | 0 |
Material | R Reflectance | G Reflectance | B Reflectance | Roughness | Specularity |
Wall material | 0.7 | 0.7 | 0.7 | 0.05 | 0 |
Ceiling material | 0.8 | 0.8 | 0.8 | 0.05 | 0 |
Floor material | 0.4 | 0.4 | 0.4 | 0.05 | 0 |
Mono solar cell | 0.3 | 0.3 | 0.3 | – | – |
Thin film solar cell | 0 | 0.039 | 0.195 | 0.05 | 0.61 |
Surround building | 0.2 | 0.2 | 0.2 | 0.05 | 0 |
Type | Zone | Panel Size | Tilt Angle | Axis Direction | PV Type | VF Rows | Plant Yield | Electricity Production (Annual) |
---|---|---|---|---|---|---|---|---|
High | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 3368.81 kWh | |
High | 0.8 M | 30° | Horizontal | Monocrystalline | 2 | 9.73 kg | 2472.59 kWh | |
Middle | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 2575.72 kWh | |
Middle | 0.8 M | 15° | Vertical (eastward) | Monocrystalline | 3 | 8.73 kg | 1335.89 kWh | |
Low | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 2054.13 kWh | |
Low | 0.8 M | 30° | Horizontal | Film | 2 | 9.81 kg | 1114.70 kWh |
Type | Zone | Panel Size | Tilt Angle | Axis Direction | PV Type | VF Rows | Plant Yield | Electricity Production (Annual) |
---|---|---|---|---|---|---|---|---|
High | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 2442.76 kWh | |
High | 0.8 M | 30° | Horizontal | Monocrystalline | 2 | 9.90 kg | 1793.41 kWh | |
Middle | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 1886.66 kWh | |
Middle | 0.8 M | 30° | Horizontal | Monocrystalline | 3 | 7.85 kg | 969.25 kWh | |
Low | 0.8 M | 30° | Horizontal | Monocrystalline | 0 | none | 1608.47 kWh | |
Low | 0.8 M | 30° | Horizontal | Monocrystalline | 2 | 9.18 kg | 878.937 kWh |
DLI (mol m−2 d−1) | Spring | Summer | Autumn | Winter | Annual Total Lettuce Production (kg) | Percentage |
---|---|---|---|---|---|---|
High (Living room) | 11.29 | 60.9 | 12.25 | 16.14 | 9.7253 | 9.43% |
Middle (Living room) | 15.36 | 16 | 16.58 | 6.03 | 8.734044 | 8.47% |
Low (Living room) | 11.98 | 62.34 | 12.91 | 25.65 | 9.8146 | 9.52% |
High (Bedroom) | 9.98 | 52.21 | 10.92 | 18.48 | 9.902064 | 9.60% |
Middle (Bedroom) | 12.46 | 57.24 | 13.52 | 12.4 | 7.8468 | 7.61% |
Low (Bedroom) | 8.63 | 39.41 | 9.31 | 22.5 | 9.1816 | 8.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, X.; Zhang, Y.; Zhang, H.; Xiong, B.; Shi, X. Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China. Buildings 2023, 13, 1540. https://doi.org/10.3390/buildings13061540
Wang Y, Zhang X, Zhang Y, Zhang H, Xiong B, Shi X. Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China. Buildings. 2023; 13(6):1540. https://doi.org/10.3390/buildings13061540
Chicago/Turabian StyleWang, Yuyan, Xi Zhang, Yifan Zhang, Hao Zhang, Bo Xiong, and Xuepeng Shi. 2023. "Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China" Buildings 13, no. 6: 1540. https://doi.org/10.3390/buildings13061540
APA StyleWang, Y., Zhang, X., Zhang, Y., Zhang, H., Xiong, B., & Shi, X. (2023). Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China. Buildings, 13(6), 1540. https://doi.org/10.3390/buildings13061540