Trends and Interdisciplinarity Integration in the Development of the Research in the Fields of Sustainable, Healthy and Digital Buildings and Cities
Abstract
:1. Introduction
2. Theoretical Background, Literature Overview
Approaches to Sustainable Buildings and Cities
3. Methods
- -
- Healthy buildings and cities: word combination “healthy buildings and cities” was entered into WoS database search engine;
- -
- Digital buildings and cities: word combination “digital buildings and cities” was entered into WoS database search engine;
- -
- Sustainable buildings and cities: word combination “sustainable buildings and cities” was entered into WoS database search engine.
4. Results
4.1. Healthy Buildings and Cities
4.2. Digital Buildings and Cities
4.3. Sustainable Buildings and Cities
4.4. Sustainable Cities
5. Conclusions and Discussion
- Management, transportation, ecology;
- Remote sensing and environmental engineering, according to cited references.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://wedocs.unep.org/20.500.11822/9814 (accessed on 10 April 2023).
- World Commission on Environment and Development (Ed.) Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Council of Europe. The European Urban Charter; Council of Europe: Strasbourg, France, 1992; p. 60. [Google Scholar]
- Grazuleviciute-Vileniske, I.; Seduikyte, L.; Teixeira-Gomes, A.; Mendes, A.; Borodinecs, A.; Buzinskaite, D. Aging, living environment, and sustainability: What should be taken into account? Sustainability 2020, 12, 1853. [Google Scholar] [CrossRef] [Green Version]
- Commission of the European Communities. Towards a Thematic Strategy on the Urban Environment. COM 2004, 60, 57. [Google Scholar]
- Council of European Union. Renewed EU Sustainable Development Strategy (No. 10917/06; p. 29). 2006. Available online: https://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2010917%202006%20INIT (accessed on 10 April 2023).
- Bibri, S.E.; Krogstie, J.; Kärrholm, M. Compact city planning and development: Emerging practices and strategies for achieving the goals of sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- Duany, A.; Sorlien, S.; Wright, W. The SmartCode Version 9.2; The TownPaper Publisher: Orlando, FL, USA, 2003. [Google Scholar]
- Dantzig, G.B.; Saaty, T.L. Compact City: A Plan for a Liveable Urban Environment; W. H. Freeman: New York, NY, USA, 1973. [Google Scholar]
- Mouratidis, K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction. Urban Stud. 2018, 55, 2408–2430. [Google Scholar] [CrossRef]
- Kenworthy, J.R. The eco-city: Ten key transport and planning dimensions for sustainable city development. Environ. Urban. 2006, 18, 67–85. [Google Scholar] [CrossRef]
- Caprotti, F. Critical research on eco-cities? A walk through the Sino-Singapore Tianjin Eco-City, China. Cities 2014, 36, 10–17. [Google Scholar] [CrossRef]
- Caprotti, F.; Springer, C.; Harmer, N. ‘Eco’ For Whom? Envisioning Eco-urbanism in the Sino-Singapore Tianjin Eco-city, China: ‘ECO’ FOR WHOM? Int. J. Urban Reg. Res. 2015, 39, 495–517. [Google Scholar] [CrossRef]
- Cugurullo, F. How to Build a Sandcastle: An Analysis of the Genesis and Development of Masdar City. J. Urban Technol. 2013, 20, 23–37. [Google Scholar] [CrossRef]
- Shwayri, S.T. A Model Korean Ubiquitous Eco-City? The Politics of Making Songdo. J. Urban Technol. 2013, 20, 39–55. [Google Scholar] [CrossRef]
- Desouza, K.C.; Flanery, T.H. Designing, planning, and managing resilient cities: A conceptual framework. Cities 2013, 35, 89–99. [Google Scholar] [CrossRef]
- Andersson, E.; Langemeyer, J.; Borgström, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.; et al. Enabling Green and Blue Infrastructure to Improve Contributions to Human Well-Being and Equity in Urban Systems. Bioscience 2019, 69, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Ernstson, H.; Van Der Leeuw, S.E.; Redman, C.L.; Meffert, D.J.; Davis, G.E.; Alfsen, C.; Elmqvist, T. Urban Transitions: On Urban Resilience and Human-Dominated Ecosystems. AMBIO 2010, 39, 531–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutty, A.A.; Wakjira, T.G.; Kucukvar, M.; Abdella, G.M.; Onat, N.C. Urban resilience and livability performance of European smart cities: A novel machine learning approach. J. Clean. Prod. 2022, 378. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Ishida, T. Digital City, Smart City and Beyond. In Proceedings of the 2017 International World Wide Web Conference Committee (IW3C2), published under Creative Commons CC BY 4.0 License, Perth, Australia, 3–7 April 2017. [Google Scholar]
- Keenahan, J.; MacReamoinn, R.; Paduano, C. Sustainable Design using Computational Fluid Dynamics in the Built Environment—A Case Study. J. Sustain. Archit. Civ. Eng. 2017, 19, 92–103. [Google Scholar] [CrossRef]
- Štěpánek, P.; Ge, M.; Walletzký, L. IT-Enabled Digital Service Design Principles—Lessons Learned from Digital Cities. In Information Systems. EMCIS 2017. Lecture Notes in Business Information Processing; Themistocleous, M., Morabito, V., Eds.; Springer: Cham, Switzerland, 2017; Volume 299. [Google Scholar] [CrossRef]
- Pupeikis, D.; Morkūnaitė, L.; Daukšys, M.; Navickas, A.A.; Abromas, S. Possibilities of Using Building Information Model Data in Reinforcement Processing Plant. J. Sustain. Archit. Civ. Eng. 2021, 28, 80–93. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.-J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Goli, S.; Arokiasamy, P.; Chattopadhayay, A. Living and health conditions of selected cities in India: Setting priorities for the National Urban Health Mission. Cities 2011, 28, 461–469. [Google Scholar] [CrossRef]
- Werna, E.; Harpham, T.; Blue, I.; Goldstein, G. From healthy city projects to healthy cities. Environ. Urban. 1999, 11, 27–40. [Google Scholar] [CrossRef]
- Webster, P.; Sanderson, D. Healthy Cities Indicators—A Suitable Instrument to Measure Health? J. Urban Health 2013, 90, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.; Cheng, J.; Huang, W.; Zeng, F. An Exploration of Spatial and Social Inequalities of Urban Sports Facilities in Nanning City, China. Sustainability 2020, 12, 4353. [Google Scholar] [CrossRef]
- Price, D.J.D.S. Networks of scientific papers. Science 1965, 145, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. Mapping Scientific Frontiers; Springer-Verlag: London, UK, 2003. [Google Scholar]
- Su, X.; Li, X.; Kang, Y. A bibliometric analysis of research on intangible cultural heritage using CiteSpace. Sage Open 2019, 9, 2158244019840119. [Google Scholar] [CrossRef] [Green Version]
- Chen, C. How to Use CiteSpace; Leanpub: Victoria, BC, Canada, 2015. [Google Scholar]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: New York, NY, USA, 2016. [Google Scholar]
- Russell, R.; Guerry, A.D.; Balvanera, P.; Gould, R.K.; Basurto, X.; Chan, K.M.; Klain, S.; Levine, J.; Tam, J. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 2013, 38, 473–502. [Google Scholar] [CrossRef]
- Frumkin, H. Healthy places: Exploring the evidence. Am. J. Public Health 2003, 93, 1451–1456. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Khreis, H.; Triguero-Mas, M.; Gascon, M.; Dadvand, P. Fifty Shades of Green: Pathway to Healthy Urban Living. Epidemiology 2017, 28, 63–71. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Sotylizedsed facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Kennedy, C.; Cuddihy, J.; Engel-Yan, J. The changing metabolism of cities. J. Ind. Ecol. 2007, 11, 43–59. [Google Scholar] [CrossRef]
- Haaland, C.; van Den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Bulkeley, H.; Betsill, M. Rethinking Sustainable Cities: Multilevel Governance and the ‘Urban’ Politics of Climate Change. Environ. Politics 2005, 14, 42–63. [Google Scholar] [CrossRef]
- Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable and smart cities? Cities 2017, 60, 234–245. [Google Scholar] [CrossRef]
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable–smart–resilient–low carbon–eco–knowledge cities; making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. AMBIO 2014, 43, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Cocchia, A. Smart and Digital City: A Systematic Literature Review. In Smart City; Dameri, R.P., Rosenthal-Sabroux, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 13–43. [Google Scholar] [CrossRef]
- Nevens, F.; Frantzeskaki, N.; Gorissen, L.; Loorbach, D. Urban Transition Labs: Co-creating transformative action for sustainable cities. J. Clean. Prod. 2013, 50, 111–122. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Bibri, S.E. Advancing Sustainable Urbanism Processes: The Key Practical and Analytical Applications of Big Data for Urban Systems and Domains. In Big Data Science and Analytics for Smart Sustainable Urbanism; Bibri, S.E., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 221–252. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Höjer, M.; Wangel, J. Smart Sustainable Cities: Definition and Challenges. In ICT Innovations for Sustainability; Hilty, L.M., Aebischer, B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 310, pp. 333–349. [Google Scholar] [CrossRef]
- Ramaswami, A.; Weible, C.; Main, D.; Heikkila, T.; Siddiki, S.; Duvall, A.; Pattison, A.; Bernard, M. A Social-Ecological-Infrastructural Systems Framework for Interdisciplinary Study of Sustainable City Systems: An Integrative Curriculum Across Seven Major Disciplines. J. Ind. Ecol. 2012, 16, 801–813. [Google Scholar] [CrossRef] [Green Version]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Pickett, S.T.A.; Buckley, G.L.; Kaushal, S.S.; Williams, Y. Social-ecological science in the humane metropolis. Urban Ecosyst. 2011, 14, 319–339. [Google Scholar] [CrossRef]
- Brokking, P.; Mörtberg, U.; Balfors, B. Municipal Practices for Integrated Planning of Nature-Based Solutions in Urban Development in the Stockholm Region. Sustainability 2021, 13, 10389. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, S.; Haase, A.; Andersson, E.; Banzhaf, E.; Baró, F.; Brenck, M.; Fischer, L.K.; Frantzeskaki, N.; Kabisch, N.; et al. Greening cities—To be socially inclusive? About the alleged paradox of society and ecology in cities. Habitat Int. 2017, 64, 41–48. [Google Scholar] [CrossRef]
- Beck, D.; Ferasso, M. Bridging ‘Stakeholder Value Creation’ and ‘Urban Sustainability’: The need for better integrating the Environmental Dimension. Sustain. Cities Soc. 2023, 89, 104316. [Google Scholar] [CrossRef]
- Macke, J.; Rubim Sarate, J.A.; de Atayde Moschen, S. Smart sustainable cities evaluation and sense of community. J. Clean. Prod. 2019, 239, 118103. [Google Scholar] [CrossRef]
- Camboim, G.F.; Zawislak, P.A.; Pufal, N.A. Driving elements to make cities smarter: Evidences from European projects. Technol. Forecast. Soc. Change 2019, 142, 154–167. [Google Scholar] [CrossRef]
- Beck, D.; Storopoli, J. Cities through the lens of Stakeholder Theory: A literature review. Cities 2021, 118, 103377. [Google Scholar] [CrossRef]
- Stevenson, S.; Collins, A.; Jennings, N.; Köberle, A.C.; Laumann, F.; Laverty, A.A.; Vineis, P.; Woods, J.; Gambhir, A. A hybrid approach to identifying and assessing interactions between climate action (SDG13) policies and a range of SDGs in a UK context. Discover Sustainability 2021, 2, 43. [Google Scholar] [CrossRef]
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nature 2016, 534, 320–322. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions: A Systematic Study of SDG Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Klopp, J.M.; Petretta, D.L. The urban sustainable development goal: Indicators, complexity and the politics of measuring cities. Cities 2017, 63, 92–97. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ. 2020, 749, 142391. [Google Scholar] [CrossRef]
- Brelsford, C.; Lobo, J.; Hand, J.; Bettencourt, L.M.A. Heterogeneity and scale of sustainable development in cities. Proc. Natl. Acad. Sci. USA 2017, 114, 8963–8968. [Google Scholar] [CrossRef]
- Ugolini, F.; Massetti, L.; Calaza-Martínez, P.; Cariñanos, P.; Dobbs, C.; Ostoić, S.K.; Marin, A.M.; Pearlmutter, D.; Saaroni, H.; Šaulienė, I.; et al. Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. Urban For. Urban Green. 2020, 56, 126888. [Google Scholar] [CrossRef] [PubMed]
- Rama, M.; Andrade, E.; Moreira, M.T.; Feijoo, G.; González-García, S. Defining a procedure to identify key sustainability indicators in Spanish urban systems: Development and application. Sustainable Cities Soc. 2021, 70, 102919. [Google Scholar] [CrossRef]
- Feleki, E.; Vlachokostas, C.; Moussiopoulos, N. Characterization of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustain. Cities Soc. 2018, 43, 563–577. [Google Scholar] [CrossRef]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Mori, K.; Yamashita, T. Methodological framework of sustainability assessment in City Sustainability Index (CSI): A concept of constraint and maximization indicators. Habitat Int. 2015, 45, 10–14. [Google Scholar] [CrossRef]
- Haghshenas, H.; Vaziri, M. Urban sustainable transportation indicators for global comparison. Ecol. Indic. 2012, 15, 115–121. [Google Scholar] [CrossRef]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.-Y.; Jorge Ochoa, J.; Shah, M.N.; Zhang, X. The application of urban sustainability indicators—A comparison between various practices. Habitat Int. 2011, 35, 17–29. [Google Scholar] [CrossRef]
- Stahel, W.R.; Reday-Mulvey, G. Jobs for Tomorrow: The Potential for Substituting Manpower for Energy; Vantage Press: Burlington, VT, USA, 1981. [Google Scholar]
- Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Washington, WA, USA, 2005; Volume 2005, p. 724. [Google Scholar]
Approach | Goal | Conceptual Features | Measures | ||||
---|---|---|---|---|---|---|---|
Urban Form | Land Use | Social Realm | Governance | Technologies | |||
Compact city | to reduce sprawl, minimize car dependency and promote walkability and public transportation | Compact, high-density | Mixed use | Social equality, self-sufficience | Ingtegrating planinng | Intelligent transport | population density, mixed land use ratios, walkability indices, public transportation usage, etc. |
Eco-city | to achieve environmental sustainability, conserve resources and promote ecological balance. | Compact, sustainable | Mixed use, green infrstructure | Community-based | Sustainable policies | Environmental technologies | green space coverage, energy consumption per capita, waste management practices, sustainable building certifications, etc. |
Resilient city | to enhance adaptability and resilience to climate change, natural disasters and social challenges | Adaptive | Green infrastruture | Social cohesion | Collaborative-particiaptory | Resilient infrastruc-ture | climate adaptation plans, disaster preparedness indicators, social cohesion indices, infrastructure robustness, etc. |
Digital city | to improve connectivity, access to digital services and enhance efficiency in urban operations | Digitallyconnected | Varied | Online communities | E-governance | Digital platforms | digital service accessibility, e-governance adoption and digital literacy rates |
Smart City | to enhance quality of life, optimize resource management and foster innovation and economic development | Technologically advanced | Efficient | Data-driven | Smart governance | IoT, AI, sensors | IoT infrastructure deployment, data analytics usage, smart grid implementation and citizen engagement in smart initiatives |
Healthy City | to improve public health, promote well-being and create a supportive and inclusive environment. | Health-oriented | Green infrastructure | Social wellbeing | Collaborative-particiaptory | Health monitoring | public health indicators, access to healthcare services, air and water quality and community engagement in health initiatives |
Search “Healthy Buildings and Cities” | Search “Digital Buildings and Cities” | Search “Sustainable Buildings and Cities” |
---|---|---|
Article—628 | Article—1411 | Article—6185 |
Proceeding paper—392 | Proceeding paper—1289 | Proceeding paper—3408 |
Review article—34 | Review article—61 | Review article—465 |
Book chapter—30 | Book chapter—50 | Book chapter—236 |
Editorial material—18 | Early access—40 | Early access—114 |
Early access—12 | Editorial material—12 | Editorial material—52 |
Data paper—1 | Data paper—4 | Book review—7 |
Meeting abstract—1 | Book review—1 | Data paper—6 |
Reprint—1 | News item—1 | Correction—2 |
Meeting abstract—2 | ||
Book—1 | ||
Letter—1 | ||
Retracted publication—1 |
Publication Year | Search “Healthy Buildings and Cities” | Search “Digital Buildings and Cities” | Search “Sustainable Buildings and Cities” |
---|---|---|---|
1988 | 3 | - | - |
1989 | - | - | - |
1990 | - | - | - |
1991 | 1 | - | - |
1992 | 1 | 2 | 3 |
1993 | - | 1 | - |
1994 | - | - | 2 |
1995 | 1 | 1 | 6 |
1996 | - | 3 | 4 |
1997 | 1 | 5 | 10 |
1998 | 1 | 7 | 22 |
1999 | 2 | 6 | 10 |
2000 | 8 | 12 | 13 |
2001 | 1 | 14 | 15 |
2002 | 5 | 9 | 33 |
2003 | 6 | 18 | 29 |
2004 | 4 | 13 | 34 |
2005 | 13 | 29 | 222 |
2006 | 12 | 29 | 55 |
2007 | 13 | 28 | 84 |
2008 | 15 | 27 | 81 |
2009 | 17 | 45 | 144 |
2010 | 23 | 57 | 209 |
2011 | 19 | 56 | 287 |
2012 | 23 | 60 | 355 |
2013 | 26 | 97 | 416 |
2014 | 31 | 92 | 295 |
2015 | 39 | 117 | 440 |
2016 | 41 | 117 | 577 |
2017 | 51 | 175 | 791 |
2018 | 265 | 216 | 990 |
2019 | 89 | 394 | 1144 |
2020 | 86 | 317 | 1114 |
2021 | 130 | 391 | 1254 |
2022 | 125 | 366 | 1237 |
2023 | 13 | 30 | 130 |
No. | Citations | Author (Year) | Topics |
---|---|---|---|
1 | 1329 * | Chiesura (2004) [48] | role of urban parks in creating sustainable cities |
2 | 730 * | Kennedy et al. (2007) [46] | changing metabolism of cities |
3 | 647 * | Bulkeley and Betsill (2005) [49] | multilevel governance in sustainable cities |
4 | 563 * | Sachs et al. (2019) [44] | transformations to achieve the SDGs |
5 | 549 * | Ahvenniemi et al. (2017) [50] | differences between sustainable and smart cities. |
6 | 507 * | De Jong et al. (2015) [51] | various concepts promoting sustainable urbanization |
7 | 436 * | Hasse et al. (2014) [52] | ecosystem services in urban landscapes and their governance implications |
8 | 436 * | Cocchia (2014) [53] | systematic literature review on smart and digital cities |
9 | 375 * | Nevens et al. (2013) [54] | urban transition labs and their role in co-creating transformative actions for sustainable cities |
10 | 366 * | Venter (2020) [55] | increased use of urban green spaces during the COVID-19 outbreak in Oslo |
No. ID | Cluster Label (LSI/LLR) | Size | Average Year | The Most Cited Articles in the Cluster | The Main Issues Analysed in Articles |
---|---|---|---|---|---|
1 #0 | smart city/smart city | 176 | 2017 | Lim et al. (2018) [27] | smart cities, big data, value creation for different stakeholders |
Ahvenniemi et al. (2017) [50] | sustainable city vs. smart city, shift from sustainability assessment to smart city goals, concept of smart sustainable cities | ||||
Doan et al. (2017) [56] | green building rating systems, sustainability of construction | ||||
Yigitcanlar et al. (2019) [28] | smart vs sustainable, smart without sustainable, techno-centricity in smart development, systematic literature review (SLR) | ||||
2 #1 | smart sustainable cities/smart city | 58 | 2015 | Bibri (2019) [57] | smart sustainable cities, big data, limitations of compact and eco-cities |
Bibri and Krogstie (2017) [58] | smart sustainable cities, urban sustainability, sustainable city models, smart city approach, big data | ||||
Bibri (2018) [59] | smart sustainable cities, internet of things, big data analitics, environmental sustainability | ||||
Höjer and Wangel (2015) [60] | smart sustainable city concept, five influential developments, challenges | ||||
3 #2 | sino-singapore/eco-city china | 55 | 2012 | Caprotti et al. (2015) [13] | eco-city, urban environmental impacts, benefits for residents vs broader socio-environmental landscape |
Caprotti (2014) [12] | eco-city, future challenges, social resilience and emerging communities, new urban poor | ||||
Cugurullo (2013) [14] | eco-city, sustainability ideology, case study, UAE, Masdar City | ||||
Shwayri (2013) [15] | eco-city, global crisis, green infrastructure, South Korea, Songdo | ||||
4 #3 | major discipline/ecological-infrastructural systems framework | 36 | 2009 | Ramaswami et al. (2012) [61] | sustainable city systems, social–ecological–infrastructural systems, social actors, multidisciplinarity |
Grimm et al. (2008) [62] | global change, ecology of cities, land use and cover, environmental changes, urban socioecosystems | ||||
Pickett et al. (2011) [63] | socioecology, humane metropolis, urban system, human ecosystem, eco system services | ||||
Ernstson et al. (2010) [18] | urban resilience, human dominated ecosystems, case studies, urban governance, system of cities | ||||
5 #6 | nature-based solution/nature-based solution | 28 | 2017 | Brokking et al. (2021) [64] | green infrastructure, municipal practices, governance, urban development, case studies, Stockholm |
Raymond et al. (2017) [65] | shift from eco-based to nature-based solutions, 10 societal challenges, co-benefits and costs of sustainability | ||||
Haase et al. (2017) [66] | city greening, social inclusivity, well-being, social effects of greening | ||||
Andersson (2019) [17] | green and blue infrastructure, environmental justice, resilience | ||||
6 #8 | smart sustainable cities/bridging stakeholder value creation | 20 | 2019 | Beck and Ferasso (2023) [67] | urban stakeholders, stakeholder value creation (SVC), urban sustainability, significance of environmental dimension |
Macke et al. (2019) [68] | smart sustainable city, sense of community, Brazil, residents satisfaction, social capital, shared values | ||||
Camboim et al. (2019) [69] | smart city dimensions: governance; environ-urban; techno-economic; socio-institutional, urban innovation ecosystems | ||||
Beck and Storopoli (2021) [70] | stakeholder theory, urban governance, literature review, urban strategy (stakeholders expectations) and urban marketing (urban image attractiveness) | ||||
7 #10 | hybrid approach/uk context | 20 | 2018 | Stevenson et al. (2021) [71] | climate action (SDG 13) interaction with other SDGs—synergies and trade-offs, expert survey, UK |
Nilsson et al. (2016) [72] | interactions among SDGs, goals scoring | ||||
Pradhan et al. (2017) [73] | SDGs interaction, SDG indicator data, sinergies (SDG 1—no poverty) and trade-offs (SDG 12—responsible consumption and production) | ||||
Klopp and Petretta (2017) [74] | urban sustainable development goal (USDG), indicators, politics of measurement | ||||
8 #13 | livability performance/learning approach | 19 | 2018 | Kutty et al. (2022) [19] | city resilience, urban livability, machine learning, European smart cities |
Sharifi and Khavarian-Garmsir (2020) [75] | smart cities, pandemics, environmental factors, air quality, urban design | ||||
Brelsford et al. (2017) [76] | heterogeneity, scale of sustainable development, sustainable development indices, Brazil, South Africa | ||||
Ugolini et al. (2020) [77] | pandemics, urban green spaces, people perception, European countries | ||||
9 #19 | circular economy/circular economy | 14 | 2018 | Rama et al. (2021) [78] | key sustainability indicators, unemployment rates, waste collection, Spanish cities |
Feleki et al. (2018) [79] | systems of indicators, “traditional” dimensions of sustainability, European urban areas | ||||
Azunre et al.(2019) [80] | urban agriculture, indicators of sustainability, economic, social and environmental benefits of urban agriculture | ||||
Meerow et al. (2016) [20] | definition of urban resilience, climate change, review | ||||
10 #28 | city sustainability index/city sustainability index | 10 | 2012 | Mori and Yamashita (2015) [81] | city sustainability index, concept of constraint and maximization indicators, limitations and benefits |
Haghshenas and Vaziri (2012) [82] | 9 sustainable transportation indicators, millennium cities database for sustainable mobility | ||||
McCormic et al. (2013) [83] | urban initiatives on sustainability, 35 cases, Europe and some other locations, sustainable urban transformation, governance | ||||
Shen et al. (2011) [84] | sustainability indicators, comparison of different practices |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seduikyte, L.; Gražulevičiūtė-Vileniškė, I.; Povilaitienė, I.; Fokaides, P.A.; Lingė, D. Trends and Interdisciplinarity Integration in the Development of the Research in the Fields of Sustainable, Healthy and Digital Buildings and Cities. Buildings 2023, 13, 1764. https://doi.org/10.3390/buildings13071764
Seduikyte L, Gražulevičiūtė-Vileniškė I, Povilaitienė I, Fokaides PA, Lingė D. Trends and Interdisciplinarity Integration in the Development of the Research in the Fields of Sustainable, Healthy and Digital Buildings and Cities. Buildings. 2023; 13(7):1764. https://doi.org/10.3390/buildings13071764
Chicago/Turabian StyleSeduikyte, Lina, Indrė Gražulevičiūtė-Vileniškė, Ingrida Povilaitienė, Paris A. Fokaides, and Domantas Lingė. 2023. "Trends and Interdisciplinarity Integration in the Development of the Research in the Fields of Sustainable, Healthy and Digital Buildings and Cities" Buildings 13, no. 7: 1764. https://doi.org/10.3390/buildings13071764
APA StyleSeduikyte, L., Gražulevičiūtė-Vileniškė, I., Povilaitienė, I., Fokaides, P. A., & Lingė, D. (2023). Trends and Interdisciplinarity Integration in the Development of the Research in the Fields of Sustainable, Healthy and Digital Buildings and Cities. Buildings, 13(7), 1764. https://doi.org/10.3390/buildings13071764