Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors
Abstract
:1. Introduction
2. Materials and Test Scheme
2.1. Basic Properties of Materials
2.1.1. Asphalt
2.1.2. Oil Sludge Pyrolysis Residue and Lime
2.1.3. Aggregate
2.2. Test Materials and Methods
2.2.1. Determine Gradation
2.2.2. Test Method
3. Results and discussion
3.1. Dynamic Modulus Test Results and Analysis
3.2. Dynamic Modulus Master Curve
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Shen, W.; Li, X.; Wang, Y.; Qin, Q.; Lu, X.; Xue, T. Abutment pressure distribution law and support analysis of super large mining height face. Int. J. Environ. Res. Public Health 2022, 20, 227. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Shen, W.; Zeng, Q.; Chen, P.; Qin, Q.; Li, Z. Research on the mechanism and control technology of coal wall sloughing in the ultra-large mining height working face. Int. J. Environ. Res. Public Health 2023, 20, 868. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Qin, Q.; Wang, Y.; Gao, X. Study on overlying strata movement patterns and mechanisms in super-large mining height stopes. Bull. Eng. Geol. Environ. 2023, 82, 142. [Google Scholar] [CrossRef]
- Johnson, O.A.; Affam, A.C. Petroleum sludge treatment and disposal: A review. Environ. Eng. Res. 2019, 24, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, L.J.; Alves, F.C.; de França, F.P. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag. Res. 2012, 30, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, X.; Zhou, L.; Han, X.; Cui, Z. Pyrolysis treatment of oil sludge and model-free kinetics analysis. J. Hazard. Mater. 2009, 161, 1208–1215. [Google Scholar] [CrossRef]
- Hu, G.; Li, J.; Zhang, X.; Li, Y. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J. Environ. Manag. 2017, 192, 234–242. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, Z.; Chen, W.; Yin, Q.; Wu, J.; Wang, W. Recognition of rock materials after high-temperature deterioration based on SEM images via deep learning. J. Mater. Res. Technol. 2023, 25, 273–284. [Google Scholar] [CrossRef]
- Liu, S.; Li, X. Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics. Environ. Sci. Pollut. Res. 2023, 30, 36080–36097. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Zhang, D.; Yang, K.; Wang, D.; Li, X.; Long, K.; Li, Y. Nuclear magnetic resonance study on the influence of liquid nitrogen cold soaking on the pore structure of different coals. Phys. Fluids 2023, 35, 012009. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Zhang, D.; Yang, K.; Li, X.; Wang, D.; Li, Y. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics. Energy 2023, 275, 127470. [Google Scholar] [CrossRef]
- Seredych, M.; Bandosz, T.J. Sewage sludge as a single precursor for development of composite adsorbents/catalysts. Chem. Eng. J. 2007, 128, 59–67. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, Y.; Zhu, W.; Zhang, J. Process optimization of preparation adsorbent material and pyrolysis for oily sludge. Chin. J. Environ. Eng. 2012, 6, 627–632. [Google Scholar]
- Wang, C.-Q.; Jin, J.-Z.; Lin, X.-Y.; Xiong, D.-M.; Mei, X.-D. A study on the oil-based drilling cutting pyrolysis residue resource utilization by the exploration and development of shale gas. Environ. Sci. Pollut. Res. 2017, 24, 17816–17828. [Google Scholar] [CrossRef] [PubMed]
- Asim, N.; Badiei, M.; Torkashvand, M.; Mohammad, M.; Alghoul, M.A.; Gasaymeh, S.S.; Sopian, K. Wastes from the petroleum industries as sustainable resource materials in construction sectors: Opportunities, limitations, and directions. J. Clean. Prod. 2021, 284, 125459. [Google Scholar] [CrossRef]
- Vaisman, Y.I.; Pugin, K.G.; Vlasov, A.S. Using the resource potential of drill cuttings in road construction. IOP Conf. Ser. Earth Environ. Sci. 2020, 459, 022078. [Google Scholar] [CrossRef]
- Mo, W.; Wu, Z.; He, X.; Qiang, W.; Wei, B.; Wei, X.; Wu, Y.; Fan, X.; Ma, F. Functional group characteristics and pyrolysis/combustion performance of fly ashes from Karamay oily sludge based on FT-IR and TG-DTG analyses. Fuel 2021, 296, 120669. [Google Scholar] [CrossRef]
- Albayati AH, K.; Mohammed, A.M. Effect of Lime Addition Methods on Performance Related Properties of Asphalt Concrete Mixture. J. Eng. 2016, 22, 120669. [Google Scholar] [CrossRef]
- Zhu, H. Rheological Property of Compound Modification Modified Oil Sludge Asphalt Mortar. Master’s Thesis, of Xinjiang University, Ürümqi, China, 2021. [Google Scholar]
- Cong, L.; Zheng, X.; Lv, W. Effect of Clay Content in Fine Aggregate on Water Stability of Asphalt Mixture. J. Tongji Univ. (Nat. Sci.) 2006, 34, 619–623. [Google Scholar]
- Birgisson, B.; Soranakom, C.; Napier, J.A.; Roque, R. Microstructure and fracture in asphalt mixtures using a boundary element approach. J. Mater. Civ. Eng. 2004, 16, 116–121. [Google Scholar] [CrossRef]
- Wu, J.; Liang, J.; Adhikari, S. Dynamic response of concrete pavement structure with asphalt isolating layer under moving loads. J. Traffic Transp. Eng. (Engl. Ed.) 2014, 1, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, G.; Wang, H. Effect of loading modes on dynamic moduli of asphalt mixtures. J. Build. Mater. 2014, 17, 816–822. [Google Scholar]
- Zhuo, Y.C.; Zhang, J.X.; Zhang, Y.G. Study on Dynamic Modulus of Different Asphalt Mixtures and its Relation with Pavement Performance. J. China Foreign Highw. 2021, 41, 260–266. [Google Scholar]
- Liu, H.; Kong, Y.; Cao, D. Influence of adding polyester fiber on dynamic modulus of asphalt mixture. J. Highw. Transp. Res. Dev. 2011, 28, 25–29. [Google Scholar]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communication Press: Beijing, China, 2011.
- Wang, F.F.; Yang, P.H.; Yu, T. Study on Catalytic pyrolysis process of oily sludge and analysis of pyrolysis products. Environ. Eng. 2019, 37, 171–176 + 204. [Google Scholar]
- JTG E42-2005; Test Methods of Aggregate for Highway Engineering. China Communication Press: Beijing, China, 2005.
- Ran, W.P.; Zhang, S.S.; Zhu, H.L.; Li, L.; Yu, Z. Stability of Asphalt Mortar from Pyrolysis Residue of Oil Sludge Modified with Hydrated Lime Based on Rheological Properties. China J. Highw. Transp. 2023, 36, 107–119. [Google Scholar]
- Gong, B.; Jiang, Y.; Chen, L. Feasibility investigation of the mechanical behavior of methane hydrate-bearing specimens using the multiple failure method. J. Nat. Gas Sci. Eng. 2019, 69, 102915. [Google Scholar] [CrossRef]
- Cui, W.; Wu, K.; Cai, X.; Tang, H.; Huang, W. Optimizing gradation design for ultra-thin wearing course asphalt. Materials 2020, 13, 189. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Jiang, Y.; Yan, P.; Zhang, S. Discrete element numerical simulation of mechanical properties of methane hydrate-bearing specimen considering deposit angles. J. Nat. Gas Sci. Eng. 2020, 76, 103182. [Google Scholar] [CrossRef]
- Mohammadi, S.; Mirghaffari, N. A preliminary study of the preparation of porous carbon from oil sludge for water treatment by simple pyrolysis or KOH activation. New Carbon Mater. 2015, 30, 310–318. [Google Scholar] [CrossRef]
- Lesueur, D.; Petit, J.; Ritter, H.J. The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review. Road Mater. Pavement Des. 2013, 14, 1–16. [Google Scholar] [CrossRef]
- Xiong, R.; Qiao, N.; Chu, C. Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars. J. Jilin Univ. (Eng. Technol. Ed.) 2020, 50, 183–190. [Google Scholar]
- Huang, S.C.; Robertson, R.E.; Branthaver, J.F.; Claine Petersen, J. Impact of lime modification of asphalt and freeze–thaw cycling on the asphalt–aggregate interaction and moisture resistance to moisture damage. J. Mater. Civ. Eng. 2005, 17, 711–718. [Google Scholar] [CrossRef]
- Hu, L.Y.; Zheng, Q.H.; Yu, F.; Chen, J.L.; Luo, R. Master Curve Drawing of Axial Transverse Dynamic Modulus Based on the Same Time-temperature Equivalent Factor. J. Wuhan Univ. Technol. (Transp. Sci. Eng.) 2019, 43, 146–152. [Google Scholar]
- National Cooperative Highway Research Program (NCHRP). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures; National Cooperative Highway Research Program 1-37 A; NCHRP: Washington, DC, USA, 2004. [Google Scholar]
Technology Specifications | Test Value | Quality Indicator | Testing Method | |
---|---|---|---|---|
Needle penetration (25 °C, 100 g, 0.1 mm) | 84 | 80~100 | T0604-2011 | |
Needle penetration index PI | −1.02 | −1.5~+1.0 | T0604-2011 | |
Softening point (universal method)/°C | 46.0 | ≥45 | T0606-2011 | |
Power Viscosity (60 °C) Pa·s | 178 | ≥160 | T0620-2000 | |
Latency (15 °C, 5 cm/min, cm) | >100 | ≥100 | T0605-2011 | |
Latency (10 °C, 5 cm/min, cm) | >100 | ≥100 | T0605-2011 | |
Wax content (distillation method)% | 1.9 | ≤2.2 | T0615-2011 | |
Flash point (open) °C | >300 | ≥245 | T0611-2011 | |
Solubility (trichloroethylene)/°C | 99.84 | ≥99.5 | T0607-2011 | |
Density (15 °C), g/cm3 | 0.982 | Real value | T0603-2011 | |
TFOR (or RTFOT) residues | Quality changes | −0.112 | −0.8~+0.8 | T0609-2011 |
Residual needle penetration ratio, % | 62.4 | ≥61 | T0609-2011 T0604-2011 | |
Residual ductility ratio (10 °C)/cm | 11.9 | ≥6 | T0609-2011/T0605-2011 |
Technology Specifications | Limestone Powder | Oil Sludge Pyrolysis Residue | Testing Method |
---|---|---|---|
Density (g/cm3) | 2.71 | 2.57 | T0352-2000 |
Hydrophilic coefficient | 0.82 | 0.79 | T0353-2000 |
Specific surface area (m2/g) | 0.587 | 0.813 | T8074-2008 |
Performance Index | Measured Value | Quality Index | Testing Method |
---|---|---|---|
Ca and Mg content(%) | 78.1 | ≥60 | EDTA |
Percentage of moisture(%) | 1.9 | ≤4 | T0103 |
Density (g/cm3) | 2.543 | Measured value | T0352-2000 |
Particle Size (mm) | Apparent Density (g/cm3) | Table Dry Density (g/cm3) | Bulk Volume Density (g/cm3) | Water Absorption (%) |
---|---|---|---|---|
26.5 | 2.663 | 2.645 | 2.634 | 0.41 |
19 | 2.666 | 2.648 | 2.637 | 0.41 |
16 | 2.692 | 2.676 | 2.666 | 0.37 |
13.2 | 2.661 | 2.644 | 2.635 | 0.37 |
9.5 | 2.693 | 2.674 | 2.663 | 0.41 |
4.75 | 2.695 | 2.670 | 2.654 | 0.57 |
2.36 | 2.682 | 2.625 | 2.592 | 1.29 |
1.18 | 2.786 | 2.655 | 2.582 | 2.82 |
0.6 | 2.744 | 2.684 | 2.650 | 1.28 |
0.3 | 2.666 | 2.591 | 2.546 | 1.76 |
0.15 | 2.637 | 2.597 | 2.573 | 0.94 |
0.075 | 2.735 | - | - | - |
Grading Type | Regression Parameter | WLF Equation Parameters | R2 | ||||
---|---|---|---|---|---|---|---|
C1 | C2 | ||||||
Sup13 | 1.733 | 2.669 | −0.265 | −0.710 | 4.357 | 59.828 | 0.992 |
Sup19 | 1.557 | 2.893 | −0.601 | −0.688 | 7.861 | 109.861 | 0.994 |
Sup25 | 1.657 | 2.792 | −0.539 | −0.736 | 5.211 | 72.43 | 0.982 |
Grading Type | Temperature (°C) | ||||
---|---|---|---|---|---|
−10 | 4.4 | 21.1 | 37.8 | 54.4 | |
Sup13 | 4.716 | 1.687 | 0 | −0.951 | −1.558 |
Sup19 | 3.104 | 1.409 | 0 | −1.037 | −1.828 |
Sup25 | 3.921 | 1.561 | 0 | −0.976 | −1.641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, W.; Qiu, H.; Ai, X.; Zhang, S.; Wang, Y. Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors. Buildings 2023, 13, 1969. https://doi.org/10.3390/buildings13081969
Ran W, Qiu H, Ai X, Zhang S, Wang Y. Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors. Buildings. 2023; 13(8):1969. https://doi.org/10.3390/buildings13081969
Chicago/Turabian StyleRan, Wuping, Hengzheng Qiu, Xianchen Ai, Shanshan Zhang, and Yaqiang Wang. 2023. "Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors" Buildings 13, no. 8: 1969. https://doi.org/10.3390/buildings13081969
APA StyleRan, W., Qiu, H., Ai, X., Zhang, S., & Wang, Y. (2023). Experimental Study on the Dynamic Modulus of an Asphalt Roadbed Grouting Mixture under the Influence of Complex and Multiple Factors. Buildings, 13(8), 1969. https://doi.org/10.3390/buildings13081969