Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization
Abstract
:1. Introduction
2. Materials & Methods
2.1. Materials
2.2. RSM Mix Design and Specimen Preparation
2.3. Experimental Tests
2.3.1. Compressive Strength Test
2.3.2. Direct Tensile Strength
2.3.3. Flexural Tensile Strength
2.4. Field-Emission Scanning Electron Microscopy (FESEM)
3. Results and Discussion
3.1. Mechanical Properties of RGC
3.1.1. Compressive Strength of RGC
3.1.2. Flexural Strength of RGC
3.1.3. Direct Tensile Strength of RGC
3.2. Microstructural Analysis
4. Response Surface Methodology (RSM) Analysis
4.1. Response Surface Models
4.2. Analysis of Variance (ANOVA) of The Response Models
4.3. Model Diagnostics Plot
4.4. Model Graphs
4.5. Optimization
4.6. Experimental Validation
5. Conclusions
- The experimental findings indicate a decrease in the mechanical strengths of the composite with an increase in CR replacement. Conversely, an improvement in strengths is observed with an increase in NaOH concentration. Notably, raising the NaOH concentration from 10 M to 14 M resulted in a substantial 49% enhancement in compressive strength.
- Increasing the percentages of CR led to a decrease in the mechanical strength. It is worth mentioning that the tensile strength at the fracture point exhibited a strong correlation with the flexural strength at the same point, attributed to increased internal stress perpendicular to the applied load, resulting from weak areas in the geopolymer concrete mix caused by inadequate bonding between crumb rubber and the geopolymer matrix.
- Empirical models were successfully developed to accurately predict the responses. The compressive and flexural strengths were effectively modelled as linear functions, while the direct tensile strength was best described by a quadratic function. The ANOVA validation of these models demonstrated high R2 values, ranging from 72 to 99%, indicating their reliability.
- The outcomes of the multi-objective optimization analysis determined that the optimal levels of variables for creating RGC with acceptable mechanical properties for structural applications were 14 M NaOH and 10% CR.
- This study focused on investigating the fundamental mechanical strengths (compressive, flexural, and tensile) within the specified range of 10–14 M sodium hydroxide and 10–30% CR replacement. However, in order to ensure a comprehensive understanding of the long-term reliability and behaviour of RGP, further research is recommended to explore the effects of factors that extend beyond these ranges. The optimization of the durability and long-term properties of the RGC within the variables range and beyond also need to investigated.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbhuiya, S.; Pang, E. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials 2022, 15, 3732. [Google Scholar] [CrossRef]
- Kankia, M.U.; Baloo, L.; Danlami, N.; Mohammed, B.S.; Haruna, S.; Abubakar, S.; Jagaba, A.H.; Sayed, K.; Abdulkadir, I.; Salihi, U.I. Performance of Fly Ash-Based Inorganic Polymer with Petroleum Sludge Ash. Polymers 2021, 13, 4143. [Google Scholar] [CrossRef] [PubMed]
- Golewski, G.L. Green Concrete Based on Quaternary Binders with Significant Reduced of CO2 Emissions. Energies 2021, 14, 4558. [Google Scholar] [CrossRef]
- Gartner, E. Industrially interesting approaches to ‘low-CO2’ cements. Cem. Concr. Res. 2003, 34, 1489–1498. [Google Scholar] [CrossRef]
- Haruna, S.; Mohammed, B.S.; Wahab, M.M.A.; Al-Fakih, A. Effect of aggregate-binder proportion and curing technique on the strength and water absorption of fly ash-based one-part geopolymer mortars. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1101, 012022. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Haruna, S.; Wahab, M.M.A.; Liew, M.S. Optimization and characterization of cast in-situ alkali-activated pastes by response surface methodology. Constr. Build. Mater. 2019, 225, 776–787. [Google Scholar] [CrossRef]
- Kankia, M.U.; Baloo, B.; Mohammed, B.S.; Hassan, S.B.; Haruna, S.; Danlami, N.; Ishak, E.A.; Samahani, W.N. Effects of petroleum sludge ash in fly ash-based geopolymer. Constr. Build. Mater. 2021, 272, 121939. [Google Scholar] [CrossRef]
- Razak, S.N.; Shafiq, N.; Nikbakht, E.H.; Mohammed, B.S.; Guillaumat, L.; Farhan, S.A. Fire performance of fly-ash-based geopolymer concrete: Effect of burning temperature on mechanical and microstructural properties. Mater. Today Proc. 2022, 66, 2665–2669. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Hossain, K.M.A.; Swee, J.T.E.; Wong, G.; Abdullahi, M. Properties of crumb rubber hollow concrete block. J. Clean. Prod. 2012, 23, 57–67. [Google Scholar] [CrossRef]
- Al-Fakih, A.; Mohammed, B.S.; Liew, M.S.; Nikbakht, E. Incorporation of waste materials in the manufacture of masonry bricks: An update review. J. Build. Eng. 2019, 21, 37–54. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Adamu, M. Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 159, 234–251. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Khed, V.C.; Nuruddin, M.F. Rubbercrete mixture optimization using response surface methodology. J. Clean. Prod. 2018, 171, 1605–1621. [Google Scholar] [CrossRef]
- Mohammed, B.S. Structural behavior and m–k value of composite slab utilizing concrete containing crumb rubber. Constr. Build. Mater. 2010, 24, 1214–1221. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Azmi, N.J. Strength reduction factors for structural rubbercrete. Front. Struct. Civ. Eng. 2014, 8, 270–281. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Adamu, M.; Liew, M.S. Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques. Case Stud. Constr. Mater. 2018, 8, 380–391. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Siddique, R.; Naik, T.R. Properties of concrete containing scrap-tire rubber—An overview. Waste Manag. 2004, 24, 563–569. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C. Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J. Clean. Prod. 2017, 148, 681–689. [Google Scholar] [CrossRef]
- Wongsa, A.; Sata, V.; Nematollahi, V.; Sanjayan, S.; Chindaprasirt, P. Mechanical and thermal properties of lightweight geopolymer incorporating crumb rubber. J. Clean. Prod. 2018, 195, 1069–1080. [Google Scholar] [CrossRef]
- Azmi, A.A.; Abdullah, M.M.A.B.; Ghazali, C.M.R.; Sandu, A.V.; Hussin, K. Effect of Crumb Rubber on Compressive Strength of Fly Ash Based Geopolymer Concrete. MATEC Web Conf. 2016, 78, 1063. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. Rubberized Geopolymer Composites: Value-Added Applications. J. Compos. Sci. 2021, 5, 312. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Liew, M.S.; Alaloul, W.S.; Al-Fakih, A.; Ibrahim, W.; Adamu, M. Development of rubberized geopolymer interlocking bricks. Case Stud. Constr. Mater. 2018, 8, 401–408. [Google Scholar] [CrossRef]
- Metwally, A.A.A.; Mariam, M.F.; Omar, H.K. Mechanical and thermal properties of fibrous rubberized geopolymer. Constr. Build. Mater. 2020, 3547, 129192. [Google Scholar] [CrossRef]
- Abdulaziz, A.; Albidah, A.; Abadel, A.; Abbas, H.; Al-Salloum, Y. Development of metakaolin-based geopolymer rubberized concrete: Fresh and hardened properties. Arch. Civ. Mech. Eng. 2022, 22, 144. [Google Scholar] [CrossRef]
- Xiao, R.; Shen, Z.; Si, R.; Polaczyk, P.; Li, Y.; Zhou, H.; Huang, B. Alkali-activated slag (AAS) and OPC-based composites containing crumb rubber aggregate: Physico-mechanical properties, durability and oxidation of rubber upon NaOH treatment. J. Clean. Prod. 2022, 367, 132896. [Google Scholar] [CrossRef]
- Pham, T.M.; Liu, J.; Tran, P.; Pang, V.-L.; Shi, F.; Chen, W.; Hao, H.; Tran, T.M. Dynamic compressive properties of lightweight rubberized geopolymer concrete. Constr. Build. Mater. 2020, 265, 120753. [Google Scholar] [CrossRef]
- Aslani, F.; Deghani, A.; Asif, Z. Development of lightweight rubberized geopolymer concrete by using polystyrene and recycled crumb-rubber aggregates. J. Mater. Civ. Eng. 2020, 32, 04019345. [Google Scholar] [CrossRef]
- BS EN 12390-3:2019; Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens. British Standards Institution (BSI): London, UK, 2019.
- Chowdhury, S.; Mohapatra, S.; Gaur, A.; Dwivedi, G.; Soni, A. Study of various properties of geopolymer concrete—A review. Mater. Today Proc. 2021, 46, 5687–5695. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Mohammed, B.S.; Liew, M.S.; Wahab, M.M.A. Modelling and Optimization of the Impact Resistance of Graphene Oxide Modified Crumb Rubber-ECC Using Response Surface Methodology. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1197, 012043. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Mohammed, B.S.; Liew, M.S.; Wahab, M.M.A. Effect of Graphene Oxide and Crumb Rubber on the Drying Shrinkage Behavior of Engineered Cementitious Composite (ECC): Experimental Study, RSM—Based Modelling and Optimization. In Sustainable Practices and Innovations in Civil Engineering; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- JRK 20800; Standard Specifications for Building Works. Jabatan Kerja Raya Malaysia: Kuala Lumpur, Malaysia, 2005.
- Aly, A.M.; El-Feky, M.S.; Kohail, M.; Nasr, E.-S.A.R. Performance of geopolymer concrete containing recycled rubber. Constr. Build. Mater. 2019, 207, 136–144. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Abdulkadir, I.; Mohammed, B.S.; Ali, M.O.A.; Liew, M.S. Effects of Graphene Oxide and Crumb Rubber on the Fresh Properties of Self-Compacting Engineered Cementitious Composite Using Response Surface Methodology. Materials 2022, 15, 2519. [Google Scholar] [CrossRef] [PubMed]
Oxides | CaO | SiO2 | Fe2O3 | Al2O3 | K2O | MgO | SO3 | P2O5 | TiO2 | MnO | Na2O | Loss on Ignition% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Percentage (%) | 6.57 | 62.4 | 9.17 | 15.3 | 1.49 | 0.77 | 0.65 | 1.23 | 1.32 | 0.77 | 0.39 | 1.25 |
Physical Properties | Fine Aggregates | Crumb Rubber |
---|---|---|
Specific Gravity | 2.65 | 0.54 |
Water Absorption (%) | 2.1 | - |
Moisture Content (%) | 1.3 | - |
Fineness Modulus | 2.2 | 2.36 |
Run | Factor A: NaOH (M) | Factor B: CR (%) | Fly Ash (kg/m3) | CR (kg/m3) | Fine Aggregate (kg/m3) | NaOH (kg/m3) | Sodium Silicate (kg/m3) |
---|---|---|---|---|---|---|---|
1 | 10 | 10 | 500 | 33 | 805 | 45 | 113 |
2 | 12 | 20 | 500 | 67 | 715 | 45 | 113 |
3 | 12 | 30 | 500 | 100 | 656 | 45 | 113 |
4 | 14 | 10 | 500 | 33 | 805 | 45 | 113 |
5 | 12 | 20 | 500 | 67 | 715 | 45 | 113 |
6 | 12 | 20 | 500 | 67 | 715 | 45 | 113 |
7 | 12 | 10 | 500 | 33 | 805 | 45 | 113 |
8 | 12 | 20 | 500 | 67 | 715 | 45 | 113 |
9 | 14 | 30 | 500 | 100 | 656 | 45 | 113 |
10 | 12 | 20 | 500 | 67 | 715 | 45 | 113 |
11 | 10 | 20 | 500 | 67 | 715 | 45 | 113 |
12 | 10 | 30 | 500 | 100 | 656 | 45 | 113 |
13 | 14 | 20 | 500 | 67 | 715 | 45 | 113 |
Run | Variables | Responses | |||
---|---|---|---|---|---|
NaOH, (M) | CR, % | Compressive Strength (MPa) | Flexural Strength (MPa) | Tensile Strength (MPa) | |
28-Days | |||||
1 | 10 | 10 | 12.713 | 2.38 | 0.29 |
2 | 12 | 20 | 17.13 | 2.3 | 0.27 |
3 | 12 | 30 | 13.127 | 2.27 | 0.24 |
4 | 14 | 10 | 25.073 | 3.1 | 0.48 |
5 | 12 | 20 | 17.967 | 2.3 | 0.27 |
6 | 12 | 20 | 17.967 | 2.3 | 0.27 |
7 | 12 | 10 | 17.967 | 2.73 | 0.45 |
8 | 12 | 20 | 17.967 | 2.3 | 0.27 |
9 | 14 | 30 | 19.317 | 2.45 | 0.28 |
10 | 12 | 20 | 17.967 | 2.3 | 0.27 |
11 | 10 | 20 | 12.187 | 1.85 | 0.22 |
12 | 10 | 30 | 11.54 | 1.74 | 0.198 |
13 | 14 | 20 | 21.637 | 2.77 | 0.37 |
Response | Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|---|
CS (MPa) | Model | 164.01 | 2 | 82.00 | 54.07 | <0.0001 | Yes |
A-NaOH | 140.29 | 1 | 140.29 | 92.51 | <0.0001 | Yes | |
B-CR | 23.71 | 1 | 23.71 | 15.64 | 0.0027 | Yes | |
Residual | 15.17 | 10 | 1.52 | ||||
Lack of Fit | 15.17 | 6 | 2.53 | ||||
Pure Error | 0.0000 | 4 | 0.0000 | ||||
Cor Total | 179.17 | 12 | |||||
FS (MPa) | Model | 0.9828 | 2 | 0.4914 | 13.03 | 0.0016 | Yes |
A-NaOH | 0.5121 | 1 | 0.5121 | 13.57 | 0.0042 | Yes | |
B-CR | 0.4707 | 1 | 0.4707 | 12.48 | 0.0054 | Yes | |
Residual | 0.3772 | 10 | 0.0377 | ||||
Lack of Fit | 0.3772 | 6 | 0.0629 | ||||
Pure Error | 0.0000 | 4 | 0.0000 | ||||
Cor Total | 1.36 | 12 | |||||
TS (MPa) | Model | 0.0846 | 5 | 0.0169 | 204.48 | <0.0001 | Yes |
A-NaOH | 0.0293 | 1 | 0.0293 | 354.13 | <0.0001 | Yes | |
B-CR | 0.0434 | 1 | 0.0434 | 524.13 | <0.0001 | Yes | |
AB | 0.0029 | 1 | 0.0029 | 35.25 | 0.0006 | Yes | |
A2 | 0.0008 | 1 | 0.0008 | 9.27 | 0.0187 | Yes | |
B2 | 0.0088 | 1 | 0.0088 | 105.97 | <0.0001 | Yes | |
Residual | 0.0006 | 7 | 0.0001 | ||||
Lack of Fit | 0.0006 | 3 | 0.0002 | ||||
Pure Error | 0.0000 | 4 | 0.0000 | ||||
Cor Total | 0.0852 | 12 |
Model Validation Parameter | CS (Mpa) | FS (Mpa) | TS (Mpa) |
---|---|---|---|
Std.Dev. | 1.23 | 0.194 | 0.0091 |
Mean | 16.86 | 2.33 | 0.2983 |
CV % | 7.30 | 8.34 | 3.05 |
R2 | 0.9154 | 0.7226 | 0.9932 |
Adj.R2 | 0.8984 | 0.6671 | 0.9883 |
Pred.R2 | 0.815 | 0.3912 | 0.9516 |
Adeq. Precision | 20.021 | 10.622 | 43.972 |
Factors | Input Factors | Responses (Output Factors) | ||||
---|---|---|---|---|---|---|
NaOH (M) | CR (%) | CS (MPa) | FS (MPa) | TS (MPa) | ||
Value | Minimum | 10 | 10 | 12.71 | 2.38 | 0.29 |
Maximum | 14 | 30 | 19.32 | 2.45 | 0.28 | |
Goal | In range | In range | Maximize | Maximize | Maximize | |
Optimization Result | 14 | 10 | 22.77 | 2.83 | 0.477 | |
Desirability | 0.83 (83%) |
Predicted | Experimental | Error (%) | |
---|---|---|---|
CS (MPa) | 22.77 | 25.07 | 10.10 |
FS (MPa) | 2.83 | 3.10 | 9.54 |
TS (MPa) | 0.47 | 0.48 | 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, Y.G.A/L.P.; Mohammed, B.S.; Liew, M.S.; Zawawi, N.A.W.A.; Abdulkadir, I.; Singh, P.; Ravindran, G. Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization. Buildings 2023, 13, 2021. https://doi.org/10.3390/buildings13082021
Giri YGA/LP, Mohammed BS, Liew MS, Zawawi NAWA, Abdulkadir I, Singh P, Ravindran G. Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization. Buildings. 2023; 13(8):2021. https://doi.org/10.3390/buildings13082021
Chicago/Turabian StyleGiri, Yajish Giri A/L Parama, Bashar S. Mohammed, M. S. Liew, Noor Amila Wan Abdullah Zawawi, Isyaka Abdulkadir, Priyanka Singh, and Gobinath Ravindran. 2023. "Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization" Buildings 13, no. 8: 2021. https://doi.org/10.3390/buildings13082021
APA StyleGiri, Y. G. A/L. P., Mohammed, B. S., Liew, M. S., Zawawi, N. A. W. A., Abdulkadir, I., Singh, P., & Ravindran, G. (2023). Mechanical and Microstructural Properties of Rubberized Geopolymer Concrete: Modeling and Optimization. Buildings, 13(8), 2021. https://doi.org/10.3390/buildings13082021