Multi-Level Numerical Modelling and Analysis of Tile Vaults
Abstract
:1. Introduction
2. Experimental Tests and Generated Data
2.1. Material Properties
2.2. Load Tests of Vaults
3. Modelling of the Structural Performance of the Vault
3.1. Limit Analysis
3.2. Macro-Modelling Approach
3.3. Simplified Micro-Modelling Approach
3.4. Comparison of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Truñó, Á. Construcción de Bóvedas Tabicadas; The Library of the Col·legi d’Arquitectes de Catalunya: Barcelona, Spain, 1951. [Google Scholar]
- Bergós, J. Tabicados Huecos: Bases Para Las Dimensiones de Las Bóvedas y Cubiertas Del Templo Expiatorio de La Sagrada Familia; Col·legi d’Arquitectes de Catalunya i Balears: Barcelona, Spain, 1965. [Google Scholar]
- Choisy, A. Histoire de l’architecture, Tome Premier; Éditions Vincent, Fréal & Cie (Ed. 1955): Paris, France, 1899. [Google Scholar]
- Collins, G.R. The Transfer of Thin Masonry Vaulting from Spain to America. J. Soc. Archit. Hist. 1968, 27, 176–201. [Google Scholar] [CrossRef]
- Araguas, P. Voûte à La Roussillon. Butlletí R. Acadèmia Catalana Belles Arts St. Jordi 1999, 13, 173–185. [Google Scholar]
- Fortea, M. Origen de La Bóveda Tabicada. In Proceedings of the Sexto Congreso Nacional de Historia de la Construcción, Valencia, Spain, 21–24 October 2009; Instituto Juan de Herrera: Madrid, Spain, 2009; pp. 491–500. [Google Scholar]
- González Moreno-Navarro, J.L. La Bóveda Tabicada: Pasado y Futuro de Un Elemento de Gran Valor Patrimonial. In Truñó, A. Construcción de Bóvedas Tabicadas; Instituto Juan de Herrera: Madrid, Spain, 2004; pp. 11–60. [Google Scholar]
- Ochsendorf, J. Guastavino Vaulting: The Art of Structural Tile; Reprint edition; Princeton Architectural Press: New York, NY, USA, 2013; ISBN 978-1-61689-244-9. [Google Scholar]
- Douglas, I.; Napolitano, R.; Garlock, M.; Glisic, B. Reconsidering the Vaulted Forms of Cuba’s National School of Ballet. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 2150–2158. [Google Scholar]
- Douglas, I.; Napolitano, R.K.; Garlock, M.; Glisic, B. Cuba’s National School of Ballet: Redefining a Structural Icon. Eng. Struct. 2020, 204, 110040. [Google Scholar] [CrossRef]
- Al Asali, M.W.; Couret, D.G.; Ramage, M.H. Beyond the National Art Schools: Thin-Tile Vaulting in Cuba after the Revolution. J. Soc. Archit. Hist. 2021, 80, 321–345. [Google Scholar] [CrossRef]
- Del Curto, D.; Celli, S. The Treachery of Images: Redefining the Structural System of Havana’s National Art Schools. Sustainability 2021, 13, 3767. [Google Scholar] [CrossRef]
- Hughes, M.; Celli, S.; Heubner, C.; Garlock, M.; Ottoni, F.; Del Curto, D.; Wang, S.; Glisić, B. Nonlinear Finite-Element Analysis for Structural Investigation and Preservation of Reinforced Hybrid Thin Tile–Concrete Domes of the Historic School of Ballet Classrooms in Havana, Cuba. J. Perform. Constr. Facil. 2023, 37, 04022074. [Google Scholar] [CrossRef]
- Block, P.; Van Mele, T.; Rippmann, M.; Ranaudo, F.; Calvo Barentin, C.; Paulson, N. Redefining Structural Art: Strategies, Necessities and Opportunities. Struct. Eng. 2020, 98, 66–72. [Google Scholar] [CrossRef]
- De Wolf, C.; Ramage, M.; Ochsendorf, J. Low Carbon Vaulted Masonry Structures. J. Int. Assoc. Shell Spat. Struct. 2016, 57, 275–284. [Google Scholar] [CrossRef]
- Leo Samuel, D.G.; Dharmasastha, K.; Shiva Nagendra, S.M.; Maiya, M.P. Thermal Comfort in Traditional Buildings Composed of Local and Modern Construction Materials. Int. J. Sustain. Built Environ. 2017, 6, 463–475. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Truong, N.S.H.; Rockwood, D.; Tran Le, A.D. Studies on Sustainable Features of Vernacular Architecture in Different Regions across the World: A Comprehensive Synthesis and Evaluation. Front. Archit. Res. 2019, 8, 535–548. [Google Scholar] [CrossRef]
- Mumtaz, K.K.; Ahmed, H. The Shrine of Baba Hassan Din, Lahore. J. Tradit. Build. Archit. Urban. 2022, 3, 30–45. [Google Scholar] [CrossRef]
- Rashid, M.; Ara, D.R. Modernity in Tradition: Reflections on Building Design and Technology in the Asian Vernacular. Front. Archit. Res. 2015, 4, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Özdeniz, M.B.; Bekleyen, A.; Gönül, I.A.; Gönül, H.; Sarigül, H.; Ilter, T.; Dalkiliç, N.; Yildirim, M. Vernacular Domed Houses of Harran, Turkey. Habitat Int. 1998, 22, 477–485. [Google Scholar] [CrossRef]
- Keskin, K.; Erbay, M. A Study on the Sustainable Architectural Characteristics of Traditional Anatolian Houses and Current Building Design Precepts. Procedia Soc. Behav. Sci. 2016, 216, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Karabag, N.E.; Fellahi, N. Learning from Casbah of Algiers for More Sustainable Environment. Energy Procedia 2017, 133, 95–108. [Google Scholar] [CrossRef]
- Dayaratne, R. Toward Sustainable Development: Lessons from Vernacular Settlements of Sri Lanka. Front. Archit. Res. 2018, 7, 334–346. [Google Scholar] [CrossRef]
- Barbero-Barrera, M.M.; Gil-Crespo, I.J.; Maldonado-Ramos, L. Historical Development and Environment Adaptation of the Traditional Cave-Dwellings in Tajuña’s Valley, Madrid, Spain. Build. Environ. 2014, 82, 536–545. [Google Scholar] [CrossRef]
- Almssad, A.; Almusaed, A. Environmental Reply to Vernacular Habitat Conformation from a Vast Areas of Scandinavia. Renew. Sustain. Energy Rev. 2015, 48, 825–834. [Google Scholar] [CrossRef]
- López López, D. The Formwork as a Major Challenge in the Fabrication of Efficient, Economical and Sustainable Concrete Slabs. Blog of the Chair of Concrete Structures and Bridge Design, IBK, ETH Zurich; ETH Zürich: Zürich, Switzerland, 2022. [Google Scholar]
- López López, D.; Van Mele, T.; Block, P. Tile vaulting in the 21st century. Inf. Construcción 2016, 68, e162. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.; Rippmann, M.; Pawlofsky, T.; Block, P. Innovative funicular tile vaulting: A prototype vault in Switzerland. Struct. Eng. 2012, 90, 46–56. [Google Scholar]
- López López, D.; Domènech Rodríguez, M.; Palumbo Fernández, M. “Brick-Topia”, the Thin-Tile Vaulted Pavilion. Case Stud. Struct. Eng. 2014, 2, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ramage, M.; Hall, T.J.; Gatóo, A.; Al Asali, M.W. Rwanda Cricket Stadium: Seismically Stabilised Tile Vaults. Structures 2019, 18, 2–9. [Google Scholar] [CrossRef]
- Ramage, M.H.; Gatóo, A.; Al Asali, M.W. Complex Simplicity—Design of Innovative Sustainable Thin-Shell Masonry Structures. In From Corbel Arches to Double Curvature Vaults: Analysis, Conservation and Restoration of Architectural Heritage Masonry Structures; Milani, G., Sarhosis, V., Eds.; Research for Development; Springer International Publishing: Cham, Switzerland, 2022; pp. 257–281. ISBN 978-3-031-12873-8. [Google Scholar]
- López López, D.; Van Mele, T.; Block, P. The Combination of Tile Vaults with Reinforcement and Concrete. Int. J. Archit. Herit. 2019, 13, 782–798. [Google Scholar] [CrossRef]
- Dejong, M.; Ramage, M.; Travers, B.; Terry, S. Testing and Analysis of Geogrid-Reinforced Thin-Shell Masonry. In Proceedings of the 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures, London, UK, 20–23 September 2011. [Google Scholar]
- Ramage, M.; Dejong, M. Design and Construction of Geogrid-Reinforced Thin-Shell Masonry. In Proceedings of the 35th Annual Symposium of IABSE/52nd Annual Symposium of IASS/6th International Conference on Space Structures, London, UK, 20–23 September 2011. [Google Scholar]
- López López, D.; Bernat-Maso, E.; Gil, L.; Roca, P. Experimental Testing of a Composite Structural System Using Tile Vaults as Integrated Formwork for Reinforced Concrete. Constr. Build. Mater. 2021, 300, 123974. [Google Scholar] [CrossRef]
- López López, D.; Roca, P.; Liew, A.; Van Mele, T.; Block, P. Tile Vaults as Integrated Formwork for Reinforced Concrete: Construction, Experimental Testing and a Method for the Design and Analysis of Two-Dimensional Structures. Eng. Struct. 2019, 188, 233–248. [Google Scholar] [CrossRef]
- López López, D.; Bernat-Maso, E.; Saloustros, S.; Gil, L.; Roca, P. Experimental Testing and Structural Analysis of Composite Tile—Reinforced Concrete Domes. Eng. Struct. 2023, 292, 116512. [Google Scholar] [CrossRef]
- Ramage, M.H.; Hall, T.; Rich, P. Light Earth Designs: Natural Material, Natural Structure. In Earthen Architecture: Past, Present and Future; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-0-429-22678-6. [Google Scholar]
- Bertolesi, E.; Torres, B.; Adam, J.M.; Calderón, P.A.; Moragues, J.J. Effectiveness of Textile Reinforced Mortar (TRM) Materials for the Repair of Full-Scale Timbrel Masonry Cross Vaults. Eng. Struct. 2020, 220, 110978. [Google Scholar] [CrossRef]
- Bertolesi, E.; Milani, G.; Adam, J.M.; Calderón, P.A. 3D Advanced Numerical Modelling of a Catalan-Layered Masonry Vault Unreinforced and Reinforced with Glass-TRM Materials and Subjected to Vertical Support Movements. In Proceedings of the 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 28–30 June 2021; pp. 415–422. [Google Scholar]
- Castori, G.; Borri, A.; Corradi, M. Behavior of Thin Masonry Arches Repaired Using Composite Materials. Compos. Part B Eng. 2016, 87, 311–321. [Google Scholar] [CrossRef]
- Corradi, M.; Castori, G.; Borri, A. A New Method for Strengthening Tiled Vaults: “Reinforced Catalan Vaulting”. In Proceedings of the 9th International Masonry Conference, Guimarães, Portugal, 7–9 July 2014. [Google Scholar]
- Savino, V.; Franciosi, M.; Viviani, M. Engineering and Analyses of a Novel Catalan Vault. Eng. Fail. Anal. 2023, 143, 106841. [Google Scholar] [CrossRef]
- Heyman, J. The Stone Skeleton. Int. J. Solids Struct. 1966, 2, 249–279. [Google Scholar] [CrossRef]
- Andreu, A.; Gil, L.; Roca, P. Computational Analysis of Masonry Structures with a Funicular Model. J. Eng. Mech. 2007, 133, 473–480. [Google Scholar] [CrossRef]
- Block, P.; Lachauer, L. Three-Dimensional (3D) Equilibrium Analysis of Gothic Masonry Vaults. Int. J. Archit. Herit. 2014, 8, 312–335. [Google Scholar] [CrossRef]
- Block, P.; Ciblac, T.; Ochsendorf, J. Real-Time Limit Analysis of Vaulted Masonry Buildings. Comput. Struct. 2006, 84, 1841–1852. [Google Scholar] [CrossRef]
- Fraternali, F. A Thrust Network Approach to the Equilibrium Problem of Unreinforced Masonry Vaults via Polyhedral Stress Functions. Mech. Res. Commun. 2010, 37, 198–204. [Google Scholar] [CrossRef]
- Bertolesi, E.; Milani, G.; Carozzi, F.G.; Poggi, C. Ancient Masonry Arches and Vaults Strengthened with TRM, SRG and FRP Composites: Numerical Analyses. Compos. Struct. 2018, 187, 385–402. [Google Scholar] [CrossRef]
- Alexakis, H.; Makris, N. Hinging Mechanisms of Masonry Single-Nave Barrel Vaults Subjected to Lateral and Gravity Loads. J. Struct. Eng. 2017, 143, 04017026. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Grillanda, N.; Tralli, A. A Fast and General Upper-Bound Limit Analysis Approach for out-of-Plane Loaded Masonry Walls. Meccanica 2018, 53, 1875–1898. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Tralli, A. A Genetic Algorithm NURBS-Based New Approach for Fast Kinematic Limit Analysis of Masonry Vaults. Comput. Struct. 2017, 182, 187–204. [Google Scholar] [CrossRef]
- Chiozzi, A.; Milani, G.; Tralli, A. Fast Kinematic Limit Analysis of FRP-Reinforced Masonry Vaults. I: General Genetic Algorithm–NURBS–Based Formulation. J. Eng. Mech. 2017, 143, 04017071. [Google Scholar] [CrossRef]
- Milani, G. Upper Bound Sequential Linear Programming Mesh Adaptation Scheme for Collapse Analysis of Masonry Vaults. Adv. Eng. Softw. 2015, 79, 91–110. [Google Scholar] [CrossRef]
- Dinani, A.T.; Destro Bisol, G.; Ortega, J.; Lourenço, P.B. Structural Performance of the Esfahan Shah Mosque. J. Struct. Eng. 2021, 147, 05021006. [Google Scholar] [CrossRef]
- Saloustros, S.; Pelà, L.; Roca, P.; Portal, J. Numerical Analysis of Structural Damage in the Church of the Poblet Monastery. Eng. Fail. Anal. 2015, 48, 41–61. [Google Scholar] [CrossRef]
- Creazza, G.; Matteazzi, R.; Saetta, A.; Vitaliani, R. Analyses of Masonry Vaults: A Macro Approach Based on Three-Dimensional Damage Model. J. Struct. Eng. 2002, 128, 646–654. [Google Scholar] [CrossRef]
- Oñate, E.; Hanganu, A.; Barbat, A.; Oller, S.; Vitaliani, R.; Saetta, A.; Scotta, R. Structural Analysis and Durability Assesment of Historical Constructions Using a Finite Element Damage Model. In Structural Analysis of Historic Construction: Possibilities of Numerical and Experimental Techniques; CIMNE: Barcelona, Spain, 1995; pp. 189–224. [Google Scholar]
- Atamturktur, S.; Sevim, B. Seismic Performance Assessment of Masonry Tile Domes through Nonlinear Finite-Element Analysis. J. Perform. Constr. Facil. 2012, 26, 410–423. [Google Scholar] [CrossRef]
- Pantò, B.; Cannizzaro, F.; Caddemi, S.; Caliò, I.; Chácara, C.; Lourenço, P.B. Nonlinear Modelling of Curved Masonry Structures after Seismic Retrofit through FRP Reinforcing. Buildings 2017, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- D’Altri, A.M.; De Miranda, S.; Castellazzi, G.; Sarhosis, V.; Hudson, J.; Theodossopoulos, D. Historic Barrel Vaults Undergoing Differential Settlements. Int. J. Archit. Herit. 2020, 14, 1196–1209. [Google Scholar] [CrossRef] [Green Version]
- Bianchini, N.; Mendes, N.; Calderini, C.; Lourenço, P.B. Modelling of the Dynamic Response of a Reduced Scale Dry Joints Groin Vault. J. Build. Eng. 2023, 66, 105826. [Google Scholar] [CrossRef]
- Milani, G.; Rossi, M.; Calderini, C.; Lagomarsino, S. Tilting Plane Tests on a Small-Scale Masonry Cross Vault: Experimental Results and Numerical Simulations through a Heterogeneous Approach. Eng. Struct. 2016, 123, 300–312. [Google Scholar] [CrossRef]
- Roca, P.; Cervera, M.; Gariup, G.; Pela’, L. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef] [Green Version]
- López López, D.; Domènech Rodríguez, M. Tile Vaults: Structural Analysis and Experimentation. 2015 Guastavino Biennial; Ajuntament de Barcelona: Barcelona, Spain, 2017.
- Rots, J.G. Structural Masonry: An Experimental/Numerical Basis for Practical Design Rules (CUR Report 171); Balkerma: Rotterdam, The Netherlands, 1977. [Google Scholar]
- Lourenço, P.B. Computational Strategies for Masonry Structures. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1996. [Google Scholar]
- Placo Saint-Gobain. Available online: https://www.placo.es/ (accessed on 9 June 2023).
- UNE-EN 13.279-1:2006; Yesos de Construcción y Conglomerantes a Base de Yeso Para la Construcción. AENOR: Madrid, Spain, 2006.
- Comite Euro-International Du Beton. CEB-FIP Model Code 1990: Design Code; Thomas Telford Services Ltd.: Lausanne, Switzerland, 1993. [Google Scholar]
- Lourenço, P.B. Recent Advances in Masonry Modelling: Micromodelling and Homogenisation. In Multiscale Modeling in Solid Mechanics; Computational and Experimental Methods in Structures; Imperial College Press: London, UK, 2009; Volume 3, pp. 251–294. ISBN 978-1-84816-307-2. [Google Scholar]
- EN 1015-11; Methods of Test for Mortar for Masonry. European Committee for Standardization: Brussels, Belgium, 2000.
- Lourenço, P.B. Computations on Historic Masonry Structures. Prog. Struct. Eng. Mater. 2002, 4, 301–319. [Google Scholar] [CrossRef]
- Mendes, N. Masonry Macro-Block Analysis. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, I.S.-K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–10. ISBN 978-3-642-36197-5. [Google Scholar]
- López López, D.; Roca, P.; Liew, A.; Méndez Echenagucia, T.; Van Mele, T.; Block, P. A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures 2022, 35, 1062–1077. [Google Scholar] [CrossRef]
- DIANA FEA. User’s Manual—Release 10.2 2017; DIANA FEA: Delft, The Netherlands, 2017. [Google Scholar]
Young’s Modulus | Poisson’s Ratio | Density | Tension | Compression | ||
---|---|---|---|---|---|---|
E | ν | ρ | ft | Gft | fc | Gfc |
N/mm2 | - | kg/m3 | N/mm2 | N/mm | N/mm2 | N/mm |
3200 | 0.15 | 1219.4 | 0.24 | 0.14 | 5.90 | 9.44 |
E | G | |
---|---|---|
N/mm2 | N/mm2 | |
Bricks V | 7750 | 3370 |
Bricks H | 6000 | 2609 |
Mortar | 1800 | 783 |
Gypsum | 100 | 43 |
Bricks V-H | 2700 | 1174 |
Young’s Modulus | Poisson’s Ratio | Normal Stiffness | Shear Stiffness | |
---|---|---|---|---|
Element | E | ν | kn | ks |
N/mm2 | - | N/mm3 | N/mm3 | |
Bricks V (first layer) | 7750 | 0.15 | - | - |
Bricks H (second layer) | 6000 | 0.15 | - | - |
Interface 1 (V-V, gypsum) | - | - | 13 | 6 |
Interface 2 (H-H, mortar) | - | - | 321 | 140 |
Interface 3 (V-H, mortar) | - | - | 675 | 293 |
Tension | Shear | Compression | |||||||
---|---|---|---|---|---|---|---|---|---|
Element | ft | GfI | c | tanϕ | tanφ | GfII | fc | Gfc | kp |
N/mm2 | N/mm | N/mm2 | - | - | N/mm | N/mm2 | N/mm | N/mm2 | |
Interface 1 | 0.80 | 0.14 | 1.20 | 0.75 | 0 | 0.093 | 19.56 | 22.03 | 10 |
Interface 2 | 0.32 | 0.14 | 0.48 | 0.75 | 0 | 0.093 | 7.50 | 12.00 | 10 |
Interface 3 | 0.32 | 0.14 | 0.48 | 0.75 | 0 | 0.093 | 7.50 | 12.00 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López López, D.; Mendes, N.; Oliveira, D.V.; Calderón Valdiviezo, L.J.; Domènech-Rodríguez, M. Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings 2023, 13, 2052. https://doi.org/10.3390/buildings13082052
López López D, Mendes N, Oliveira DV, Calderón Valdiviezo LJ, Domènech-Rodríguez M. Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings. 2023; 13(8):2052. https://doi.org/10.3390/buildings13082052
Chicago/Turabian StyleLópez López, David, Nuno Mendes, Daniel V. Oliveira, Lucrecia J. Calderón Valdiviezo, and Marta Domènech-Rodríguez. 2023. "Multi-Level Numerical Modelling and Analysis of Tile Vaults" Buildings 13, no. 8: 2052. https://doi.org/10.3390/buildings13082052
APA StyleLópez López, D., Mendes, N., Oliveira, D. V., Calderón Valdiviezo, L. J., & Domènech-Rodríguez, M. (2023). Multi-Level Numerical Modelling and Analysis of Tile Vaults. Buildings, 13(8), 2052. https://doi.org/10.3390/buildings13082052