Comparative Study on Behavior of Circular Axially Loaded CFDST Short Columns under Different Loading Arrangements
Abstract
:1. Introduction
2. Review of Experimental Program
2.1. Test Specimens
2.2. Column Testing Process
3. Comparisons of Experimental Results
3.1. Failure Modes
3.2. Axial Load versus Axial Strain Curves
3.3. Ultimate Capacities
4. Establishment and Verification of FEA Model
4.1. Establishment of FEA Model
4.1.1. Stress versus Strain Constitutive Relation of Carbon Steel
4.1.2. Stress versus Strain Constitutive Relation of Concrete
4.1.3. Loading and Boundary Conditions, Element Mesh
4.1.4. Contact Modeling
4.2. Establishment of FEA Model
4.2.1. Axial Load versus Axial Strain Curves and Ultimate Capacities
4.2.2. Failure Mode
5. Mechanism Analysis
5.1. Axial Load Distribution
5.2. Interaction between Steel Tube and Concrete
5.3. Longitudinal Stress Distribution across Concrete Section
6. Conclusions
- (1)
- The various bulging failure modes were discovered at the upper and lower ends and middle sections of the fully loaded CFDST columns. However, the outer bulging failure occurred in the middle of the partially loaded CFDST columns, and the bulging range is larger than that of the fully loaded ones. In addition, a certain degree of inward bulging occurred in the middle part of the internal steel tube of the fully loaded CFDST columns. However, there is almost no change in the inner steel tube of the partially loaded CFDST columns.
- (2)
- The ultimate capacity of the partially loaded CFDST specimens with the void ratios of 0 and 0.2 is greater than that of the fully loaded ones, while the conclusions are just the opposite for the specimens with the void ratios of 0.4 and 0.6. In addition, the ultimate capacity of CFDST specimens increases as the concrete strength increases, and decreases as the tube diameter-to-wall thickness ratio of outside tube enhances.
- (3)
- The developed FEA model can provide an accurate depiction of the overall performance analysis and failure patterns of the CFDST specimens, and can be employed to conduct the mechanism analysis of the CFDST columns under different loading arrangements.
- (4)
- The axial load of the outer steel tube of CFDST columns under different loading arrangements first increased and then decreased. When the axial strain reached around 0.01, the axial force of outer steel tube reached the minimum value. Then, as the axial strain continued to increase, the axial force borne by the outer steel tube increased. This is principally due to the strain hardening of the outer steel tube.
- (5)
- The axial load of the inner steel tube of the fully loaded CFDST columns first increased linearly and then kept almost constant. Because of the inevitable friction, the inner steel tube of the partially loaded CFDST columns also bore a certain axial load that first increased and then decreased to zero.
- (6)
- Due to different loading arrangements, during the initial loading stage, a certain restraint stress generated by the outer steel tube of the partially loaded CFDST columns was imposed on the concrete, but the confining stress of the fully loaded ones was almost zero.
- (7)
- The longitudinal stress of the concrete infill in the different loading stages of the partially loaded CFDST columns was larger than those of the fully loaded ones except for the edge concrete stress at the loading termination point. The main reason is that the confining stress generated by the steel tubes of the partially loaded CFDST columns to the concrete was larger than that of the fully loaded ones.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Groups | Specimens | Do × to (mm × mm) | Do/to | Di × ti (mm × mm) | Di/ti | χ | Nu,Exp (kN) | Nu,FE (kN) | Nu,FE /Nu,Exp |
---|---|---|---|---|---|---|---|---|---|
G1 | C4-36-0-5WL-1 | 189.2 × 5.11 | 37.0 | / | / | 0 | 2374 | 2380 | 1.003 |
C4-36-0-1C | 190.0 × 5.13 | 37.0 | / | / | 0 | 2631 | 2545 | 0.967 | |
C4-36-0.18-5WL-1 | 190.6 × 5.15 | 37.0 | 34.0 × 3.08 | 11.0 | 0.19 | 2718 | 2452 | 0.902 | |
C4-36-0.19-1C | 190.1 × 5.11 | 37.1 | 33.9 × 3.10 | 10.9 | 0.19 | 2758 | 2622 | 0.951 | |
C4-36-0.31-5WL-1 | 190.5 × 5.15 | 37.0 | 59.6 × 3.32 | 18.0 | 0.34 | 2718 | 2396 | 0.882 | |
C4-36-0.34-1C | 188.2 × 5.04 | 37.3 | 59.1 × 3.28 | 18.0 | 0.34 | 2422 | 2358 | 0.974 | |
C4-36-0.53-5WL-1 | 190.7 × 5.11 | 37.3 | 101.6 × 4.03 | 25.2 | 0.56 | 2626 | 2264 | 0.862 | |
C4-36-0.56-1C | 189.2 × 5.00 | 37.2 | 101.2 × 4.05 | 25.0 | 0.56 | 1848 | 1961 | 1.061 | |
G2 | C9-36-0-5WL-1 | 189.6 × 5.09 | 37.2 | / | / | 0 | 3168 | 2927 | 0.924 |
C9-36-0-1C | 190.0 × 5.10 | 37.3 | / | / | 0 | 3291 | 3121 | 0.948 | |
C9-36-0.18-5WL-1 | 188.9 × 5.09 | 37.1 | 33.7 × 3.09 | 10.9 | 0.19 | 3182 | 2968 | 0.933 | |
C9-36-0.19-1C | 188.9 × 5.12 | 36.9 | 33.5 × 3.06 | 10.9 | 0.19 | 3358 | 3203 | 0.954 | |
C9-36-0.31-5WL-1 | 191.0 × 5.15 | 37.1 | 59.4 × 3.31 | 17.9 | 0.34 | 3286 | 2839 | 0.864 | |
C9-36-0.34-1C | 190.1 × 5.11 | 37.2 | 59.1 × 3.29 | 18.0 | 0.34 | 2997 | 2846 | 0.950 | |
C9-36-0.53-5WL-1 | 190.7 × 5.15 | 37.0 | 101.1 × 4.10 | 24.7 | 0.56 | 3082 | 2660 | 0.863 | |
C9-36-0.56-1C | 190.7 × 5.09 | 37.5 | 100.9 × 4.07 | 24.8 | 0.56 | 2366 | 2406 | 1.017 | |
G3 | C4-24-0.31-5WL-1 | 190.4 × 5.15 | 37.0 | 59.9 × 3.33 | 18.0 | 0.34 | 2460 | 2202 | 0.895 |
C4-24-0.34-1C | 190.0 × 5.11 | 37.2 | 59.1 × 3.31 | 17.9 | 0.34 | 2111 | 2122 | 1.005 | |
C4-36-0.31-5WL-1 | 189.1 × 5.10 | 37.1 | 59.4 × 3.35 | 17.7 | 0.34 | 2623 | 2401 | 0.915 | |
C4-36-0.34-1C | 190.1 × 5.07 | 37.5 | 59.7 × 3.35 | 17.8 | 0.34 | 2560 | 2328 | 0.909 | |
C4-48-0.31-5WL-1 | 189.9 × 5.12 | 37.1 | 58.9 × 3.31 | 17.8 | 0.34 | 2950 | 2396 | 0.812 | |
C4-48-0.34-1C | 188.6 × 5.08 | 37.1 | 58.9 × 3.33 | 17.7 | 0.34 | 2823 | 2358 | 0.835 | |
G4 | C4-36-0.31-4WL-1 | 190.3 × 4.26 | 44.7 | 59.4 × 3.36 | 17.7 | 0.33 | 2376 | 2112 | 0.889 |
C4-36-0.33-1C(4.3) | 190.1 × 4.21 | 45.2 | 59.3 × 3.30 | 18.0 | 0.33 | 2121 | 2073 | 0.977 | |
C4-36-0.31-5WL-1 | 189.7 × 5.12 | 37.1 | 59.5 × 3.32 | 17.9 | 0.34 | 2611 | 2396 | 0.918 | |
C4-36-0.34-1C(5.3) | 188.8 × 5.08 | 37.2 | 59.5 × 3.31 | 18.0 | 0.34 | 2457 | 2358 | 0.960 | |
C4-36-0.31-6WL-1 | 189.1 × 6.77 | 27.9 | 59.7 × 3.34 | 17.9 | 0.34 | 2894 | 2739 | 0.946 | |
C4-36-0.34-1C(6.8) | 188.6 × 6.73 | 28.0 | 59.8 × 3.33 | 18.0 | 0.34 | 3053 | 2560 | 0.839 |
Type of Steel | Location | Nominal Sectional Size (mm) | fsy (MPa) | fsu (MPa) | Es (GPa) | εf (%) |
---|---|---|---|---|---|---|
STK400 | Internal skin | 34.0 × 3.2 | 348.2 | 401.1 | 202.1 | 16.2 |
60.5 × 3.8 | 342.1 | 406.4 | 199.6 | 18.8 | ||
101.6 × 4.2 | 345.8 | 407.7 | 201.1 | 17.9 | ||
External skin | 190.7 × 4.3 | 336.8 | 398.8 | 198.9 | 18.4 | |
190.7 × 5.3 | 346.9 | 413.2 | 200.4 | 19.1 | ||
190.7 × 6.8 | 327.3 | 383.9 | 203.7 | 17.3 | ||
STK490 | External skin | 190.7 × 5.3 | 464.0 | 524.8 | 197.9 | 13.1 |
References
- Han, L.H.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar]
- Ding, F.X.; Fu, Q.; Wen, B.; Zhou, Q.S.; Liu, X.M. Behavior of circular concrete-filled steel tubular columns under pure torsion. Steel Compos. Struct. 2018, 26, 501–511. [Google Scholar]
- Bai, Y.T.; Lin, X.C.; Mou, B. Numerical modeling on post-local buckling behavior of circular and square concrete filled steel tubular beam columns. Int. J. Steel. Struct. 2016, 16, 531–546. [Google Scholar] [CrossRef]
- Lai, M.H.; Song, W.; Ou, X.; Chen, M.; Wang, Q.; Ho, J. A path dependent stressstrain model for concrete-filled-steel-tube column. Eng. Struct. 2020, 211, 110312. [Google Scholar] [CrossRef]
- Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N.S. Behavior of eccentrically loaded double circular steel tubular short columns filled with concrete. Eng. Struct. 2019, 201, 109790. [Google Scholar] [CrossRef]
- Yan, X.F.; Zhao, Y.G.; Lin, S.Q. Compressive behaviour of circular CFDST short columns with high- and ultrahigh-strength concrete. Thin-Walled Struct. 2021, 164, 107898. [Google Scholar] [CrossRef]
- Yan, X.F.; Zhao, Y.G. Compressive strength of axially loaded circular concrete-filled double-skin steel tubular short columns. J. Constr. Steel Res. 2020, 170, 106114. [Google Scholar] [CrossRef]
- Patel, V.I.; Liang, Q.Q.; Muhammad, N.S.H. Numerical study of circular double-skin concrete-filled aluminum tubular stub columns. Eng. Struct. 2019, 197, 109418. [Google Scholar] [CrossRef]
- Wang, F.Y.; Young, B.; Gardner, L. Experimental study of square and rectangular CFDST sections with stainless steel outer tubes under axial compression. J. Struct. Eng. 2019, 145, 04019139. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Kharoob, O.F.; Gardner, L. Behaviour and design of square concrete-filled double skin tubular columns with inner circular tubes. Eng. Struct. 2015, 100, 410–424. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Kharoob, O.F.; Liang, Q.Q. Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression. Thin-Walled Struct. 2013, 73, 252–263. [Google Scholar] [CrossRef]
- Yan, X.F.; Ahmed, M.; Hassanein, M.F.; He, M.N. Performance analysis and design of circular high-strength concrete-filled double-skin aluminum tubular short columns under axial loading. Struct. Concr. 2023. [Google Scholar] [CrossRef]
- Yang, B.; Shen, L.; Chen, K.; Feng, C. Mechanical performance of circular ultrahigh-performance concrete-filled double skin high-strength steel tubular stub columns under axial compression. J. Struct. Eng. 2022, 148, 04021298. [Google Scholar]
- Wang, F.Y.; Young, B.; Gardner, L. CFDST sections with square stainless steel outer tubes under axial compression: Experimental investigation, numerical modelling and design. Eng. Struct. 2020, 207, 110189. [Google Scholar]
- Wei, S.; Mau, S.T.; Vipulanandan, C.; Mantrala, S.K. Performance of new sandwich tube under axial loading: Experiment. J. Struct. Eng. 1995, 121, 1806–1814. [Google Scholar]
- Zhao, X.L.; Tong, L.W.; Wang, X.Y. CFDST stub columns subjected to large deformation axial loading. Eng. Struct. 2010, 32, 692–703. [Google Scholar] [CrossRef]
- Han, L.H.; Ren, Q.X.; Li, W. Tests on stub stainless steel-concrete-carbon steel double-skin tubular (DST) columns. J. Constr. Steel Res. 2011, 67, 437–452. [Google Scholar] [CrossRef]
- Wang, W.D.; Fan, J.H.; Shi, Y.L.; Xian, W. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. J. Constr. Steel Res. 2021, 182, 106689. [Google Scholar]
- Tao, Z.; Han, L.H. Behavior of concrete-filled double skin rectangular steel tubular beam columns. J. Constr. Steel. Res. 2006, 62, 631–646. [Google Scholar] [CrossRef]
- Fan, J.H.; Wang, W.D.; Shi, Y.L.; Ji, S.H. Torsional behaviour of tapered CFDST members with large void ratio. J. Build. Eng. 2022, 52, 104434. [Google Scholar] [CrossRef]
- Deng, R.; Zhou, X.H.; Wang, Y.H.; Bai, J.L.; Deng, X.W. Experimental study on tapered concrete-filled double skin steel tubular columns under torsion. Thin-Walled Struct. 2022, 177, 109444. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.; Han, L.H. Behaviour of grout-filled double skin steel tubes under compression and bending: Experiments. Thin-Walled Struct. 2017, 116, 307–319. [Google Scholar]
- Han, L.H.; Tao, Z.; Huang, H.; Zhao, X.L. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns. Thin-Walled Struct. 2004, 42, 1329–1355. [Google Scholar] [CrossRef]
- Imani, R.; Mosqueda, G.; Bruneau, M. Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires. J. Struct. Eng. 2015, 141, 04015055. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Han, L.H.; Zhao, X.L. Behavior of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam columns. J. Constr. Steel Res. 2004, 60, 1129–1158. [Google Scholar] [CrossRef]
- Uenaka, K.; Kitoh, H.; Sonoda, K. Concrete filled double skin circular stub columns under compression. Thin-Walled Struct. 2010, 48, 19–24. [Google Scholar]
- Essopjee, Y.; Dundu, M. Performance of concrete-filled double skin circular tubes in compression. Compos. Struct. 2015, 133, 1276–1283. [Google Scholar] [CrossRef]
- Ekmekyapar, T.; Hasan, H.G. The influence of the inner steel tube on the compression behavior of the concrete filled double skin steel tube (CFDST) columns. Mar. Struct. 2019, 66, 197–212. [Google Scholar] [CrossRef]
- Shi, Y.L.; Ji, S.H.; Wang, W.D.; Xian, W.; Fan, J.H. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. J. Constr. Steel Res. 2022, 191, 107206. [Google Scholar] [CrossRef]
- Wang, F.Y.; Yong, B.; Gardner, L. Compressive testing and numerical modelling of concrete-filled double skin CHS with austenitic stainless steel outer tubes. Thin-Walled Struct. 2019, 141, 345–359. [Google Scholar]
- Yan, X.F.; Zhao, Y.G.; Lin, S.Q.; Zhang, H.Z. Confining stress path-based compressive strength model of axially compressed circular concrete-filled double-skin steel tubular short columns. Thin-Walled Struct. 2021, 165, 107949. [Google Scholar]
- Huang, H.; Han, L.H.; Tao, Z.; Zhao, X.L. Analytical behavior of concrete-filled double skin steel tubular (CFDST) stub columns. J. Constr. Steel Res. 2010, 66, 542–555. [Google Scholar]
- Li, W.; Cai, Y.X. Performance of CFDST stub columns using high-strength steel subjected to axial compression. Thin-Walled Struct. 2019, 141, 411–422. [Google Scholar] [CrossRef]
- Hu, H.T.; Su, F.C. Nonlinear analysis of short concrete-filled double skin tube columns subjected to axial compressive forces. Mar. Struct. 2011, 24, 319–337. [Google Scholar] [CrossRef]
- Pagoulatou, M.; Sheehan, T.; Dai, X.H.; Lam, D. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 2014, 72, 101–112. [Google Scholar]
- ABAQUS Standard User’s Manual; Version 6.8; The Abaqus Software Is a Product of Dassault Systemes Simulia Corp. Providence, RI, USA; Dassault Systemes: Waltham, MA, USA, 2008; Available online: http://130.149.89.49:2080/v6.8/index.html (accessed on 7 August 2023).
- Liang, Q.Q. Nonlinear analysis of circular double-skin concrete-filled steel tubular columns under axial compression. Eng. Struct. 2017, 131, 639–650. [Google Scholar]
- Liang, Q.Q. Numerical simulation of high strength circular double-skin concrete-filled steel tubular slender columns. Eng. Struct. 2018, 168, 205–217. [Google Scholar]
- Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N.S. Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Struct. 2019, 138, 105–116. [Google Scholar]
- Patel, V.I.; Liang, Q.Q.; Muhammad, N.S.H. Numerical analysis of circular double-skin concrete-filled stainless steel tubular short columns under axial loading. Structures 2020, 24, 754–765. [Google Scholar]
- Yan, X.F.; Hao, J.P.; Zhao, Y.G. Study on axial compressive behavior of concrete-filled double-skin steel tubular short columns considering effective concrete strength. Eng. Mech. 2023, 40, 1–13. (In Chinese) [Google Scholar]
- Yang, Y.F.; Han, L.H.; Sun, B.H. Experimental behavior of partially loaded concrete filled double-skin steel tube (CFDST) sections. J. Constr. Steel Res. 2012, 71, 63–73. [Google Scholar] [CrossRef]
- Yan, X.F.; Zhao, Y.G. Experimental and numerical studies of circular sandwiched concrete axially loaded CFDST short columns. Eng. Struct. 2021, 230, 111617. [Google Scholar] [CrossRef]
- JIS G 3444-2015; Carbon Steel Tubes for General Structure. Japanese Standards Association: Tokyo, Japan, 2015.
- Han, L.H.; Yao, G.H.; Tao, Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Struct. 2007, 45, 24–36. [Google Scholar] [CrossRef]
- Ding, F.X.; Wu, X.; Xiang, P.; Yu, Z.W. New damage ratio strength criterion for concrete and lightweight aggregate concrete. ACI Struct. J. 2021, 118, 165–178. [Google Scholar]
- ACI 318-19; Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2019.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.-F.; Lin, S.; He, M. Comparative Study on Behavior of Circular Axially Loaded CFDST Short Columns under Different Loading Arrangements. Buildings 2023, 13, 2054. https://doi.org/10.3390/buildings13082054
Yan X-F, Lin S, He M. Comparative Study on Behavior of Circular Axially Loaded CFDST Short Columns under Different Loading Arrangements. Buildings. 2023; 13(8):2054. https://doi.org/10.3390/buildings13082054
Chicago/Turabian StyleYan, Xi-Feng, Siqi Lin, and Mengnan He. 2023. "Comparative Study on Behavior of Circular Axially Loaded CFDST Short Columns under Different Loading Arrangements" Buildings 13, no. 8: 2054. https://doi.org/10.3390/buildings13082054
APA StyleYan, X. -F., Lin, S., & He, M. (2023). Comparative Study on Behavior of Circular Axially Loaded CFDST Short Columns under Different Loading Arrangements. Buildings, 13(8), 2054. https://doi.org/10.3390/buildings13082054