The Impact of New Composite Curing Agents on the Curing Properties of Glacial Debris in the Pulang Copper Deposit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Experimental Scheme
2.2.2. Fluidity Test
2.2.3. Strength Test
2.2.4. Shearing Test
2.2.5. Water Stability Test
2.2.6. Permeability Test
2.2.7. Microanalysis
2.3. Flowchart of the Paper
3. Results and Analysis
3.1. Study on the Fluidity of the Curing Agents
3.2. The Effect of Different Curing Agents on the Compressive Strength of the Glacial Debris Consolidated Body
3.3. The Effect of Different Curing Agents on the Shear Performance of the Glacial Debris Consolidated Body
3.4. The Effect of Different Curing Agents on the Water Stability of the Glacial Debris Consolidated Body
3.5. The Effect of Different Curing Agents on the Permeability of the Glacial Debris Consolidated Body
3.6. Microscopic Test
3.6.1. XRD Analysis
3.6.2. SEM Analysis
4. Conclusions
- Through a large number of compressive strength tests on the glacial debris body solidified using different proportions of curing agents, it can be concluded that curing agents A, B, and C can achieve good curing effects, and all indicators can meet the requirements of engineering construction. Taking cost into consideration, Three optimal schemes of curing agents A, B and C with a content of 7% were initially selected.
- An XRD and SEM microscopic analysis of the cured glacial debris showed that the three curing agents and cement generated AFt and C-S-H gel through their hydration reactions in the process of curing the glacial debris. The crystalline hydration products were used to establish a supporting skeleton in the cured glacial debris system. The gelatinous hydration products acted as the cement among the glacial debris particles and filled the pores among the glacial debris particles, thus improving the engineering properties of the glacial debris and solving the ore dilution caused by the caving mining of Pulang Copper Deposit and the debris flow formed by the collapse of the glacial debris.
- During the research and development of solidifying agents, the application of a multi-component curing material ratio scheme can yield a synergistic effect by leveraging the combined properties of multiple components. This approach effectively enhances the activity of the target material, resulting in a more substantial curing effect. Furthermore, it compensates for the limitations and deficiencies of using a single curing agent in practical engineering applications. These findings provide crucial insights for the further investigation of glacial debris hardeners.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Pan, L.; Huang, F.; Xu, J.F. Magma Mixing in the Giant Pulang Porphyry Copper Deposit, Yunnan Province: Evidence from Melt Inclusions. Geotecton. Metallog. 2018, 42, 880–892. [Google Scholar] [CrossRef]
- Zhang, S.Y.; He, W.Y.; Gao, X.; Zhang, H.R.; Yuan, J.J. Ore-forming fluids evolution of the porphyry Cu deposits: Alteration mineralogy and thermodynamic modeling of the Pulang Cu deposit, Zhongdian district. Acta Petrol. Sin. 2020, 36, 1611–1626. [Google Scholar]
- Guo, D.X.; Liu, X.; Zhang, H.L.; Zhang, Z.G. The Infrared Spectroscopy Characteristics of Alteration and Mineralizationin the Porphyry Copper Deposit in Pulang, Yunnan Province. Rock Miner. Anal. 2021, 40, 698–709. [Google Scholar] [CrossRef]
- Li, W.C.; Zeng, P.S. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2007, 34, 436–446. [Google Scholar]
- Liu, H.W.; Feng, X.L.; Liang, J.B.; Wu, M.; Li, X.H.; Zhao, B.F. Application Research on the Key Technologies of Large-scale Mining in Pulang Copper Mine. Min. Res. Dev. 2016, 36, 1–5. [Google Scholar] [CrossRef]
- Wu, W.H.; Wu, L.R.; Liu, H.W.; Feng, X.L.; Shen, Q.W.; Cao, Y. Research on the Productive Ore Management for Natural Caving Mining Method in Pulang Copper Mine. Min. Res. Dev. 2018, 38, 46–49. [Google Scholar] [CrossRef]
- Xiao, W.G.; Li, Z.R.; Chen, L.; Feng, X.L.; Zhu, J.N.; Liu, H.W.; Li, Q.S. Study on the Formation Technique of the Cutting Shaft by Natural Caving Method of Pulang Copper Mine. Met. Mine 2021, 11, 64–68. [Google Scholar] [CrossRef]
- Liu, H.J.; Peng, P.A.; Wang, L.G. Comprehensive evaluation and simulation for large-scale mining using natural caving method. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 617–624. [Google Scholar]
- Liu, H.W.; Feng, X.L.; Wu, M.; Li, X.H. Simulation Research on Stress Change of Bottom Structure in Pulang Copper Mine. Min. Res. Dev. 2016, 36, 28–31. [Google Scholar] [CrossRef]
- Yu, S.F.; Wu, A.X.; Han, B. Application of Natural Caving Method on the Thick and Broken Orebody. Met. Mine 2012, 9, 1–4. [Google Scholar]
- Zhu, Z.H.; Dai, B.B.; Tao, G.Q.; Feng, X.L. Research and Application Overview of Block Caving Method. Met. Mine 2019, 12, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Sha, W.Z.; Wang, P.; Peng, Z.; Cai, Y.S.; Wei, Y.H.; Huang, Z.G. Stability Monitoring and Analysis on Bottom Structure for Natural Caving Mining Method. Min. Res. Dev. 2021, 41, 31–35. [Google Scholar] [CrossRef]
- Sanchez, V.; Castro, R.L.; Palma, S. Gravity flow characterization of fine granular material for Block Caving. Int. J. Rock Mech. Min. Sci. 2018, 114, 24–32. [Google Scholar]
- Fu, J.X.; Tan, Y.Y.; Song, W.D. Study on mechanism of rainfall infiltration through overlying loess formation on block caving collapse area. J. China Univ. Min. Technol. 2015, 44, 349–353. [Google Scholar] [CrossRef]
- Niu, X.D.; Hou, K.P.; Sun, H.F. Experimental Study on the Flow Mechanism of Fine-grained Moraine in the Process of Uniform Ore Drawing. J. Min. Strat. Control. Eng. 2023, 5, 24–31. [Google Scholar] [CrossRef]
- Qu, Y.P.; Tang, C.; Liu, Y.; Chang, M.; Tang, D.S. Investigation and Analysis of Glacier Debris Flow in Nyingchi Area, Tibet. Chin. J. Rock Mech. Eng. 2015, 34, 4013–4022. [Google Scholar] [CrossRef]
- Shen, B.; Ma, D.T.; Wang, Y.Q. Suggestions on identification of Sesiman debris flow and preventive measures of Aba area of Sichuan Province. Yangtze River 2013, 44, 44–46. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wei, S.W.; Zhou, W.J.; Li, D.W.; Zhou, B. Model test study on anti-sliding behaviours of multiple segmented grouting steel pile group structure. Chin. J. Rock Mech. Eng. 2019, 38, 982–992. [Google Scholar] [CrossRef]
- Ma, X.F.; Wang, L.C.; Gong, L.; Chen, L.B. Deformation and Grouting Reinforcement for Railway Subgrade Crossed by a Double-Track Metro Shield Tunnel in Sandy-Cobble Strata. Tunn. Constr. 2021, 41, 181–189. [Google Scholar]
- Zhang, Y.B.; Zhang, W.C.; Li, Y.S.; Zhao, L.M.; Li, H.Y.; Lei, Y.B.; Yang, Y.Q. Experimental of Consolidation Performance of Laterite in Plateau Based on RSM. Mater. Rep. 2023, 37, 259–264. [Google Scholar]
- Wu, Y.P.; Wang, X.S.; Kim, S.; Wang, Z.H.; Liu, T.Y.; Liu, Y. Experimental study of the working property and strength behavior of waste marine clay with high water content modified with quicklime, ground calcium carbonate, and a WXS-II soil stabilizer. Constr. Build. Mater. 2022, 360, 129622. [Google Scholar] [CrossRef]
- Huang, Y.F.; Fan, W.F.; Wu, J.L.; Xiang, X.L.; Wang, G. Experimental Study on Strength and Microstructure of Glacial Till Stabilized by Ionic Soil Stabilizer. Buildings 2022, 12, 1446. [Google Scholar] [CrossRef]
- Chen, A.D.; Gu, J.N.; Zhao, Z.Z.; Qian, F.; Wang, H.L. Quartz grains SEM surface microtextures of Quaternary glacial sediments along the Diancang Mountain in Yunnan, Southwest China. J. Glaciol. Geocryol. 2016, 38, 453–462. [Google Scholar]
- Yang, D.; Wang, J.C.; Yang, D.X. Moraine slope structure in Parlung Zangbo River Basin and its stability evaluation method. Yangtze River 2019, 50, 108–112. [Google Scholar] [CrossRef]
- Gao, B.; Wang, J.C.; Zhang, J.J.; Chen, L.; Li, Y.L. Analysis of the Development Characteristics of Typical Glacial Debris Flow that has Materials Source of Moraine and Colluvial or Slide Deposits in the Parlung River (Bomi-Suotong). Sci. Technol. Eng. 2018, 18, 176–182. [Google Scholar]
- Yang, D.X.; You, Y.; Wang, J.C.; Yang, D.; Liu, J.K. Characteristics of Typical Glacial Tills in Parlung Zangbo Basin in Southeastern Tibet and Its Engineering Effect. J. Disaster Prev. Mitig. Eng. 2020, 40, 841–851. [Google Scholar] [CrossRef]
- Liu, K.; Cai, J.S.; Mu, S.; Zhang, H.; Ma, Q.; Liu, G.Y. Study on the effect of synergist on the properties of cement. Concrete 2023, 3, 69–73. [Google Scholar]
- Ma, X.T.; Wan, G.X.; Zhen, X. Influence of metal ions on fine slime cover in coal flotation. Coal Eng. 2023, 55, 167–172. [Google Scholar]
- Hou, Y.Y.; Zeng, X.H.; Long, G.C.; Xie, Y.J.; Xiao, B.C.; Gu, Y.H.; Dong, H.Z.; Pan, Z.L.; Zhao, W.Q.; Yang, J.F. Rheological Properties of Natural Pozzolan-Cement-Fly Ash Composite Slurry. Mater. Rep. 2022, 36, 97–102. [Google Scholar]
- Fan, H.H.; Wu, P.T.; Li, P.; Jia, L.; Zhang, S. Study on identification of dispersive clay soils. Chin. J. Geotech. Eng. 2005, 27, 75–81. [Google Scholar]
- Wang, L.; Wang, D.M.; Bao, W.Z. Effect of Clay on Polycarboxylate Superplasticizer Performance and Mechanism Research. J. Wuhan Univ. Technol. 2013, 35, 6–9. [Google Scholar]
- Yang, N.R. Non-Tradition Cementitious Materials Chemistry; Wuhan University of Technology Press: Wuhan, China, 2018; p. 179. (In Chinese) [Google Scholar]
- Wang, P.M.; Xu, L.L.; Zhang, G.F. Formation and Conversion of Ettringite during Hydration of Portland Cement from 0 to 20 °C. J. Chin. Ceram. Soc. 2012, 40, 646–650. [Google Scholar] [CrossRef]
- Gao, F.H.; Wang, L.; Liu, S.H. Deterioration Mechanism of Supersulfated Cement Paste by Acid Erosion. Bull. Chin. Ceram. Soc. 2022, 41, 2618–2627. [Google Scholar] [CrossRef]
- Yang, N.R.; Yue, W.H. The Handbook of Inorganic Metalloid Materials Atlas; Wuhan University of Technology Press: Wuhan, China, 2000; pp. 277–278. (In Chinese) [Google Scholar]
Composition | Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | TiO2 | Cr2O3 |
mass fraction | 1.91 | 3.96 | 18.94 | 56.1 | 0.93 | 0.16 | 0.04 | 4.99 | 2.79 | 1.02 | 0.02 |
Composition | MnO | Fe2O3 | CuO | ZnO | Rb2O | SrO | Sc2O3 | ZrO2 | BaO | NiO | Total |
mass fraction | 0.06 | 8.61 | 0.11 | 0.01 | 0.03 | 0.13 | 0.01 | 0.06 | 0.11 | 0.01 | 100 |
Wet Density (kg/m3) | Dry Density (kg/m3) | Moisture Content (%) |
---|---|---|
2.29 × 103 | 2.21 × 103 | 11.83 |
Materials | CaO | SiO2 | SO3 | MgO | Al2O3 | Fe2O3 | K2O | Na2O | MnO2 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
Cement | 62.40 | 21.55 | 1.64 | 2.17 | 5.68 | 3.69 | 0.62 | - | - | 2.25 | 100 |
Lime | 97.04 | - | - | - | - | - | - | - | - | - | 97.04 |
Gypsum | 33.57 | 2.45 | 41.03 | 0.55 | 1.21 | 0.61 | 0.67 | 0.72 | - | 18.66 | 99.47 |
Slag | 38.22 | 32.87 | - | 8.4 | 11.48 | 0.48 | 6.82 | - | 0.11 | 1.04 | 99.42 |
Specific Surface Area (m2/kg) | Initial Setting Time (min) | Final Setting Time (min) | Stability | Loss (%) | Compressive Strength | |
---|---|---|---|---|---|---|
3 d (MPa) | 28 d (MPa) | |||||
342 | 201 | 256 | Qualified | 2.25 | 26.4 | 50.8 |
Curing Agents | Cement | Lime | Gypsum | Slag | Surfactant |
---|---|---|---|---|---|
cement | 100 | 0 | 0 | 0 | 0 |
A | 30 | 48 | 6 | 16 | 0.6 |
B | 35 | 43 | 6 | 16 | 0.6 |
C | 40 | 38 | 6 | 16 | 0.6 |
Sample Code | Glacial Debris | Curing Agent | Water | |||
---|---|---|---|---|---|---|
A | B | C | Cement | |||
A05 | 84 | 4 | 0 | 0 | 0 | 12 |
A07 | 82 | 5.5 | 0 | 0 | 0 | 12.5 |
A09 | 80 | 7 | 0 | 0 | 0 | 13 |
A11 | 78 | 8.5 | 0 | 0 | 0 | 13.5 |
A13 | 76 | 10 | 0 | 0 | 0 | 14 |
B05 | 84 | 0 | 4 | 0 | 0 | 12 |
B07 | 82 | 0 | 5.5 | 0 | 0 | 12.5 |
B09 | 80 | 0 | 7 | 0 | 0 | 13 |
B11 | 78 | 0 | 8.5 | 0 | 0 | 13.5 |
B13 | 76 | 0 | 10 | 0 | 0 | 14 |
C05 | 84 | 0 | 0 | 4 | 0 | 12 |
C07 | 82 | 0 | 0 | 5.5 | 0 | 12.5 |
C09 | 80 | 0 | 0 | 7 | 0 | 13 |
C11 | 78 | 0 | 0 | 8.5 | 0 | 13.5 |
C13 | 76 | 0 | 0 | 10 | 0 | 14 |
Cement05 | 84 | 0 | 0 | 0 | 4 | 12 |
Cement07 | 82 | 0 | 0 | 0 | 5.5 | 12.5 |
Cement09 | 80 | 0 | 0 | 0 | 7 | 13 |
Cement11 | 78 | 0 | 0 | 0 | 8.5 | 13.5 |
Cement13 | 76 | 0 | 0 | 0 | 10 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Q.; Feng, X.; Ren, H.; Sui, S.; Wang, S.; Sun, W.; Liu, J. The Impact of New Composite Curing Agents on the Curing Properties of Glacial Debris in the Pulang Copper Deposit. Buildings 2023, 13, 2189. https://doi.org/10.3390/buildings13092189
Zeng Q, Feng X, Ren H, Sui S, Wang S, Sun W, Liu J. The Impact of New Composite Curing Agents on the Curing Properties of Glacial Debris in the Pulang Copper Deposit. Buildings. 2023; 13(9):2189. https://doi.org/10.3390/buildings13092189
Chicago/Turabian StyleZeng, Qingtian, Xinglong Feng, Hanmeng Ren, Sugang Sui, Shaoyong Wang, Wei Sun, and Juanhong Liu. 2023. "The Impact of New Composite Curing Agents on the Curing Properties of Glacial Debris in the Pulang Copper Deposit" Buildings 13, no. 9: 2189. https://doi.org/10.3390/buildings13092189
APA StyleZeng, Q., Feng, X., Ren, H., Sui, S., Wang, S., Sun, W., & Liu, J. (2023). The Impact of New Composite Curing Agents on the Curing Properties of Glacial Debris in the Pulang Copper Deposit. Buildings, 13(9), 2189. https://doi.org/10.3390/buildings13092189