Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology
Abstract
:1. Introduction
2. Experimental Model
3. Time-Domain Analysis
3.1. Sine Frequency Sweep Condition
3.2. Rectangular Pulse Frequency Sweep Condition
3.3. Periodic Rectangular Pulse Condition
3.4. Condition of 100 Hz Sinusoidal Fixed Frequency Vibration
3.5. Summary of Time-Domain Analysis
4. Frequency-Domain Analysis
4.1. Fourier Transform Analysis
4.2. Short-Time Fourier Transform Analysis
4.3. Frequency-Domain Decomposition Analysis
5. Conclusions
- (1)
- The FBG sensors arranged on the CFRP laminates can accurately measure their dynamic response, and can judge the excited position of the CFRP laminates and invert the strain distribution of the CFRP laminates through the signal properties of FBG sensors at different positions.
- (2)
- The short-time Fourier transform can accurately reflect the time–frequency characteristics of the excitation of CFRP laminates under 1–2500 Hz sweep frequency, shock, and 100 Hz sinusoidal excitation from the data monitored by the FBG sensors. Both the frequency information of the excitation and the time distribution of the frequency can be simultaneously obtained.
- (3)
- The first eight modal frequencies of the CFRP laminates can be extracted from the FBG monitoring data by FDD, and the modal frequencies extracted under the three working conditions are basically the same. The slight difference can be attributed to noise interference. This conclusion can be further used for damage identification of CFRP laminates.
- (4)
- Since FBG sensors have different sensitivities for different test directions, how to ensure excellent sensing effects in an actual structure should be carefully considered. Since FBG sensors can accurately measure the strain of a CFRP structure, it is a feasible solution to reconstruct the stress–strain field of the CFRP structure through an FBG sensor array.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karataş, M.A.; Gökkaya, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 2018, 14, 318–326. [Google Scholar] [CrossRef]
- Frhaan, W.K.M.; Abu Bakar, B.H.; Hilal, N.; Al-Hadithi, A.I. CFRP for strengthening and repairing reinforced concrete: A review. Innov. Infrastruct. Solut. 2021, 6, 49. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef]
- Oehlers, D.J.; Moran, J.P. Premature failure of externally plated reinforced concrete beams. J. Struct. Eng. 1990, 116, 978–995. [Google Scholar] [CrossRef]
- Oehlers, D.J. Reinforced concrete beams with plates glued to their soffits. J. Struct. Eng. 1992, 118, 2023–2038. [Google Scholar] [CrossRef]
- Francesconi, L.; Taylor, M.; Bertoldi, K.; Baldi, A. Static and modal analysis of low porosity thin metallic auxetic structures using speckle interferometry and digital image correlation. Exp. Mech. 2018, 58, 283–300. [Google Scholar] [CrossRef]
- Guinchard, M.; Angeletti, M.; Boyer, F.; Catinaccio, A.; Gargiulo, C.; Lacny, L.; Laudi, E.; Scislo, L. Experimental modal analysis of lightweight structures used in particle detectors: Optical non-contact method. In Proceedings of the 9th International Particle Accelerator Conference, IPAC18, Vancouver, BC, Canada, 29 April–4 May 2018; pp. 2565–2567. [Google Scholar]
- Liu, H.; Zhu, Z.; Zheng, Y.; Liu, B.; Xiao, F. Experimental study on an FBG strain sensor. Opt. Fiber Technol. 2018, 40, 144–151. [Google Scholar] [CrossRef]
- Wang, H.P.; Jiang, L.Z.; Xiang, P. Improving the durability of the optical fiber sensor based on strain transfer analysis. Opt. Fiber Technol. 2018, 42, 97–104. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wang, J.; Li, F. A high spatial resolution FBG sensor array for measuring ocean temperature and depth. Photonic Sens. 2020, 10, 57–66. [Google Scholar] [CrossRef]
- Wang, H.P.; Dai, J.G. Strain transfer analysis of fiber Bragg grating sensor assembled composite structures subjected to thermal loading. Compos. Part B Eng. 2019, 162, 303–313. [Google Scholar] [CrossRef]
- Panopoulou, A.; Fransen, S.; Gomez-Molinero, V.; Kostopoulos, V. Experimental modal analysis and dynamic strain fiber Bragg gratings for structural health monitoring of composite antenna sub-reflector. CEAS Space J. 2013, 5, 57–73. [Google Scholar] [CrossRef]
- Tserpes, K.I.; Karachalios, V.; Giannopoulos, I.; Prentzias, V.; Ruzek, R. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: Design, manufacturing and impact testing. Compos. Struct. 2014, 107, 726–736. [Google Scholar] [CrossRef]
- Ruzek, R.; Kudrna, P.; Kadlec, M.; Karachalios, V.; Tserpes, K.I. Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part II: Mechanical testing and validation. Compos. Struct. 2014, 107, 737–744. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, M.; Sui, Q.; Sai, Y.; Jia, L. Damage identification system of CFRP using fiber Bragg grating sensors. Compos. Struct. 2015, 125, 400–406. [Google Scholar] [CrossRef]
- Lu, S.; Jiang, M.; Sui, Q.; Sai, Y.; Jia, L. Low velocity impact localization system of CFRP using fiber Bragg grating sensors. Opt. Fiber Technol. 2015, 21, 13–19. [Google Scholar] [CrossRef]
- Rezayat, A.; De Pauw, B.; Lamberti, A.; El-Kafafy, M.; Nassiri, V.; Ertveldt, J.; Arroud, G.; Vanlanduit, S.; Guillaume, P. Reconstruction of impacts on a composite plate using fiber Bragg gratings (FBG) and inverse methods. Compos. Struct. 2016, 149, 1–10. [Google Scholar] [CrossRef]
- Zhao, G.; Li, S.; Hu, H.; Zhong, Y.; Li, K. Impact localization on composite laminates using fiber Bragg grating sensors and a novel technique based on strain amplitude. Opt. Fiber Technol. 2018, 40, 172–179. [Google Scholar] [CrossRef]
- Geng, X.; Lu, S.; Jiang, M.; Sui, Q.; Lv, S.; Xiao, H.; Jia, Y.; Jia, L. Research on FBG-based CFRP structural damage identification using BP neural network. Photonic Sens. 2018, 8, 168–175. [Google Scholar] [CrossRef]
- Datta, A.; Augustin, M.J.; Gupta, N.; Viswamurthy, S.R.; Gaddikeri, K.M.; Sundaram, R. Impact localization and severity estimation on composite structure using fiber Bragg grating sensors by least square support vector regression. IEEE Sens. J. 2019, 19, 4463–4470. [Google Scholar] [CrossRef]
- Falcetelli, F.; Martini, A.; Di Sante, R.; Troncossi, M. Strain modal testing with fiber bragg gratings for automotive applications. Sensors 2022, 22, 946. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.P.; Ni, Y.Q.; Dai, J.G.; Yuan, M.D. Interfacial debonding detection of strengthened steel structures by using smart CFRP-FBG composites. Smart Mater. Struct. 2019, 28, 115001. [Google Scholar] [CrossRef]
- Geng, X.; Jiang, M.; Gao, L.; Wang, Q.; Jia, Y.; Sui, Q.; Jia, L.; Li, D. Sensing characteristics of FBG sensor embedded in CFRP laminate. Measurement 2017, 98, 199–204. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, T.; Zhang, W. Integrated FPI-FBG composite all-fiber sensor for simultaneous measurement of liquid refractive index and temperature. Opt. Lasers Eng. 2018, 111, 167–171. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, P.; Li, X. Theoretical analysis on strain transfer error of FBG sensors attached on steel structures subjected to fatigue load. Strain 2016, 52, 522–530. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, L.; Xiang, P. Priority design parameters of industrialized optical fiber sensors in civil engineering. Opt. Laser Technol. 2018, 100, 119–128. [Google Scholar] [CrossRef]
- Meng, Q.; Sen, D.; Wang, S.; Hayes, L. Impulse response measurement with sine sweeps and amplitude modulation schemes. In Proceedings of the 2008 2nd International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 15–17 December 2008; pp. 1–5. [Google Scholar]
- Weiss, G.H.; Gitterman, M. Motion in a periodic potential driven by rectangular pulses. J. Stat. Phys. 1993, 70, 93–105. [Google Scholar] [CrossRef]
- Youngworth, R.N.; Gallagher, B.B.; Stamper, B.L. An overview of power spectral density (PSD) calculations. In Optical Manufacturing and Testing VI, Proceedings of the SPIE 2005, San Diego, CA, USA, 31 July–4 August 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5869, pp. 206–216. [Google Scholar]
- Nawab, S.; Quatieri, T.; Lim, J. Signal reconstruction from short-time Fourier transform magnitude. IEEE Trans. Acoust. Speech Signal Process. 1983, 31, 986–998. [Google Scholar] [CrossRef]
- Brincker, R.; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 2001, 10, 441. [Google Scholar] [CrossRef]
- Amador, S.D.R.; Brincker, R. Robust multi-dataset identification with frequency domain decomposition. J. Sound Vib. 2021, 508, 116207. [Google Scholar] [CrossRef]
- Wang, H.-P.; Chen, C.; Ni, Y.-Q.; Jayawickrema, M.; Epaarachchi, J. Computer-aided feature recognition of CFRP plates based on real-time strain fields reflected from FBG measured signals. Compos. Part B Eng. 2023, 263, 110866. [Google Scholar] [CrossRef]
Item | x (cm) | y (cm) | Laying Angle | Distance to Excitation Point (cm) |
---|---|---|---|---|
FBG1 | 7.5 | 7.5 | 45° | 21.2 |
FBG2 | 7.5 | 37.5 | −45° | 21.2 |
FBG3 | 37.5 | 37.5 | 45° | 21.2 |
FBG4 | 37.5 | 7.5 | −45° | 21.2 |
FBG5 | 6 | 7.5 | 90° | 22.3 |
FBG6 | 6 | 37.5 | 90° | 22.3 |
FBG7 | 39 | 37.5 | 90° | 22.3 |
FBG8 | 39 | 7.5 | 90° | 22.3 |
FBG9 | 14.25 | 22.5 | 90° | 8.25 |
FBG10 | 22.5 | 22.5 | 90° | 0 |
FBG11 | 30.75 | 22.5 | 90° | 8.25 |
FBG12 | 22.5 | 39 | 0° | 16.5 |
FBG13 | 22.5 | 6 | 0° | 16.5 |
FBG14 | 15.5 | 34.6 | 30° | 13.98 |
FBG15 | 29.5 | 34.6 | −30° | 13.98 |
FBG16 | 36.5 | 22.5 | 90° | 14 |
FBG17 | 29.5 | 10.4 | 30° | 13.98 |
FBG18 | 15.5 | 10.4 | −30° | 13.98 |
FBG19 | 8.5 | 22.5 | 90° | 14 |
Working Condition | Modal Frequency (Hz) | |||||||
---|---|---|---|---|---|---|---|---|
Sine sweep | 106.1 | 157.1 | 289.4 | 449 | 575.9 | 756.3 | 1138.6 | 1362.6 |
Pulse sweep | 106.2 | 163.1 | 297.1 | 449.1 | 576.8 | 757.4 | 1139.2 | 1363.6 |
Rectangular pulse | 107 | 164 | 300 | 449 | 579 | 762 | 1140.1 | 1368.1 |
Average value | 106.4 | 161.4 | 295.5 | 449 | 577.2 | 758.6 | 1139.3 | 1364.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wang, H.-P.; Ma, J.; Wusiman, M. Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology. Buildings 2023, 13, 2292. https://doi.org/10.3390/buildings13092292
Chen C, Wang H-P, Ma J, Wusiman M. Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology. Buildings. 2023; 13(9):2292. https://doi.org/10.3390/buildings13092292
Chicago/Turabian StyleChen, Cong, Hua-Ping Wang, Jie Ma, and Maihemuti Wusiman. 2023. "Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology" Buildings 13, no. 9: 2292. https://doi.org/10.3390/buildings13092292
APA StyleChen, C., Wang, H. -P., Ma, J., & Wusiman, M. (2023). Dynamic Feature Identification of Carbon-Fiber-Reinforced Polymer Laminates Based on Fiber Bragg Grating Sensing Technology. Buildings, 13(9), 2292. https://doi.org/10.3390/buildings13092292