Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects
Abstract
:1. Introduction
2. Key Terms, Concepts, and Scope of Study
2.1. Infrastructure
- Capacity—the infrastructure’s ability to meet current and future needs;
- Condition—the current and near-future physical condition of the infrastructure;
- Funding—the current amount of approved funding from all sources compared to the estimated funding needed to adequately maintain the infrastructure;
- Future need—estimated cost to improve the infrastructure to an adequate or better condition;
- Operation and maintenance—the ability of the owner to operate and maintain the infrastructure properly and to keep the infrastructure in compliance with regulations;
- Public safety—the extent to which the public’s safety will be jeopardized in the case that the infrastructure fails;
- Resilience—the infrastructure’s ability to withstand threats and incidents such as extreme weather and climate-rated disasters and the infrastructure’s ability to recover with minimum consequences for public safety and health, the economy, and national security in the case that the infrastructure cannot withstand an extreme weather event or climate-related disaster;
- Innovation—new techniques, materials, technologies, and delivery methods that are being implemented to improve the infrastructure.
2.2. BIM
2.3. Lifecycle Analysis of BIM Uses for Transportation Infrastructure
3. Research Methodology
3.1. Research Approach
3.2. Keywords
- (1)
- [(BIM OR “Building Information Modeling”) AND Transportation]
- (2)
- [(CiM OR “Civil Information Modeling”) AND Infrastructure]
- (3)
- [(VDC OR “Virtual Design and Construction”) AND Infrastructure]
- (4)
- [(BrIM OR “Bridge Information Modeling”) AND Infrastructure]
- (5)
- [(TIM OR “Transportation Information Modeling”) AND Infrastructure]
- (6)
- “Infrastructure Information Modeling”
3.3. Selection Criteria
3.4. Data Analysis
4. BIM Uses for Infrastructure Projects
BIM Uses | Plan | Design | Construct | Operate |
---|---|---|---|---|
Asset Management | [5,23,41,42,43,44] | |||
3D Coordination | [17,24] | |||
Code Validation | [17,20] | |||
Cost Estimation (5D) | [17,20,45] | [24] | ||
Design Review | [17,46] | [20,24,47,48] | ||
Emergency Management | [49] | [50,51] | ||
Engineering Analysis | [17,20,52,53,54] | [54] | ||
Existing Conditions Modeling | [24] | [17] | [41,54] | |
Record Modeling | [55,56,57] | [44] | ||
Phase Planning (4D) | [24] | [58] | [59,60] |
4.1. Asset Management
4.2. 3D Coordination
4.3. Code Validation
4.4. Cost Estimation (5D Modeling)
4.5. Design Review
4.6. Engineering Analysis
4.7. Emergency Management
4.8. Existing Conditions Modeling
4.9. As-Built (Record) Modeling
4.10. Phase Planning
5. Emerging Technologies for BIM Lifecycle Applications
5.1. Internet of Things (IoT)
5.2. Virtual Inspection
5.3. Imaging Technologies
5.3.1. LiDAR
5.3.2. Terrestrial Laser Scanning (TLS)
5.3.3. Time of Flight (ToF)
5.3.4. Photogrammetry
5.4. Big Data
5.5. Virtual Reality (VR)
5.6. Digital Twin
6. Discussion
6.1. Research Gaps
6.2. Challenges
6.3. Potential of BIM to Address Infrastructure Challenges
6.3.1. Bridge Infrastructure
6.3.2. Rail Infrastructure
6.3.3. Road Infrastructure
7. Limitations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ASCE. 2021 Report Card for America’s Infrastructure; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2021. [Google Scholar]
- Pasetto, M.; Giordano, A.; Borin, P.; Giacomello, G. Integrated railway design using Infrastructure-Building Information Modeling. The case study of the port of Venice. Transp. Res. Procedia 2020, 45, 850–857. [Google Scholar] [CrossRef]
- Justo, A.; Soilán, M.; Sánchez-Rodríguez, A.; Riveiro, B. Scan-to-BIM for the infrastructure domain: Generation of IFC-compliant models of road infrastructure assets and semantics using 3D point cloud data. Autom. Constr. 2021, 127, 103703. [Google Scholar] [CrossRef]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for transportation infrastructure–Literature review, applications, challenges, and recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Aziz, Z.; Riaz, Z.; Arslan, M. Leveraging BIM and Big Data to deliver well maintained highways. Facilities 2017, 35, 818–832. [Google Scholar] [CrossRef]
- TRIP. Bumpy Road Ahead: America’s Roughest Rides and Strategies to Make Our Roads Smoother. 2018. Available online: https://tripnet.org/reports/bumpy-roads-ahead-americas-roughest-rides-and-strategies-to-make-our-roads-smooth/ (accessed on 30 May 2023).
- TRIP. Restoring the Interstate Highway System: Meeting America’s Transportation Needs with a Reliable, Safe & Well-Maintained National Highway Network. 2020. Available online: https://tripnet.org/wp-content/uploads/2020/07/TRIP_Interstate_Report_2020.pdf (accessed on 30 May 2023).
- Schrank, D.; Eisele, B.; Lomax, T. Urban Mobility Report 2019; Texas A&M Transportation Institute: College Station, TX, USA; INRIX, Inc.: Kirkland, WA, USA, 2019. Available online: https://rosap.ntl.bts.gov/view/dot/61408/dot_61408_DS1.pdf (accessed on 30 May 2023).
- The White House. A Guidebook to the Bipartisan Infrastructure Law. Available online: https://www.whitehouse.gov/build/guidebook/ (accessed on 18 August 2023).
- ARTBA. 2020 Bridge Report; The American Road & Transportation Builders Association (ARTBA): Washington, DC, USA, 2020; Available online: https://artbabridgereport.org/reports/2020%20ARTBA%20Bridge%20Report.pdf (accessed on 18 August 2023).
- Tawelian, L.R.; Mickovski, S.B. The implementation of geotechnical data into the BIM process. Procedia Eng. 2016, 143, 734–741. [Google Scholar] [CrossRef]
- Eastman, C.M. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Azhar, S.; Khalfan, M.; Maqsood, T. Building information modeling (BIM): Now and beyond. Australas. J. Constr. Econ. Build. 2012, 12, 15–28. [Google Scholar]
- Ghaffarianhoseini, A.; Tookey, J.; Ghaffarianhoseini, A.; Naismith, N.; Azhar, S.; Efimova, O.; Raahemifar, K. Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renew. Sustain. Energy Rev. 2017, 75, 1046–1053. [Google Scholar] [CrossRef]
- Gurukul of Civil Engineers. What Is Building Information Modeling (BIM)-5 Important Points. Available online: https://www.gcelab.com/blog/what-is-bim-building-information-modeling (accessed on 15 April 2022).
- Cheng, J.C.P.; Lu, Q.; Deng, Y. Analytical review and evaluation of civil information modeling. Autom. Constr. 2016, 67, 31–47. [Google Scholar] [CrossRef]
- Castañeda, K.; Sánchez, O.; Herrera, R.F.; Pellicer, E.; Porras, H. BIM-based traffic analysis and simulation at road intersection design. Autom. Constr. 2021, 131, 103911. [Google Scholar] [CrossRef]
- Li, J.; Hou, L.; Wang, X.; Wang, J.; Guo, J.; Zhang, S.; Jiao, Y. A project-based quantification of BIM benefits. Int. J. Adv. Robot. Syst. 2014, 11, 123. [Google Scholar] [CrossRef]
- Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Vignali, V.; Acerra, E.M.; Lantieri, C.; Di Vincenzo, F.; Piacentini, G.; Pancaldi, S. Building information Modelling (BIM) application for an existing road infrastructure. Autom. Constr. 2021, 128, 103752. [Google Scholar] [CrossRef]
- Hardin, B.; McCool, D. BIM and Construction Management: Proven Tools, Methods, and Workflows; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kim, J.-U.; Kim, Y.-J.; Ok, H.; Yang, S.-H. A study on the status of infrastructure BIM and BIM library development. In Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; IEEE: Piscataway, NJ, USA; pp. 857–858. [Google Scholar]
- Moreno Bazán, Á.; Alberti, M.G.; Arcos Álvarez, A.; Trigueros, J.A. New perspectives for bim usage in transportation infrastructure projects. Appl. Sci. 2020, 10, 7072. [Google Scholar] [CrossRef]
- Sankaran, B.; O’Brien, W.J.; Goodrum, P.M.; Khwaja, N.; Leite, F.L.; Johnson, J. Civil integrated management for highway infrastructure: Case studies and lessons learned. Transp. Res. Rec. 2016, 2573, 10–17. [Google Scholar] [CrossRef]
- Shou, W.; Wang, J.; Wang, X.; Chong, H.Y. A comparative review of building information modelling implementation in building and infrastructure industries. Arch. Comput. Methods Eng. 2015, 22, 291–308. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Z. BIM implementation in handover management for underground rail transit project: A case study approach. Tunn. Undergr. Space Technol. 2021, 108, 103684. [Google Scholar] [CrossRef]
- Fulmer, J. What in the world is infrastructure. PEI Infrastruct. Investig. 2009, 1, 30–32. [Google Scholar]
- Chambers, J. Infrastructure Research Report; Pension Consulting Alliance Inc.: Portland, OR, USA, 2007. [Google Scholar]
- ASCE. 2009 Report Card for America’s Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2009. [Google Scholar]
- National Institute of Building Sciences (NIBS). About the National BIM Standard-United States. Available online: https://www.nationalbimstandard.org/about (accessed on 28 February 2022).
- Kymmell, W. Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations (McGraw-Hill Construction Series); McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- Kreider, R.G.; Messner, J.I. The Uses of BIM: Classifying and Selecting BIM Uses”; Version 0.9; The Pennsylvania State University: University Park, PA, USA, 2013; Available online: http://bim.psu.edu (accessed on 30 May 2023).
- National Institute of Building Sciences. National BIM Guide for Owners. 2017. Available online: https://www.nibs.org/files/pdfs/NIBS_BIMC_NationalBIMGuide.pdf (accessed on 20 April 2022).
- Messner, J.; Anumba, C.; Dubler, C.; Goodman, S.; Kasprzak, C.; Kreider, R.; Leicht, R.; Saluja, C.; Zikic, N. BIM Project Execution Planning Guide (V. 2.2); Computer Integrated Construction Research Program, Pennsylvania State University: State College, PA, USA, 2019. [Google Scholar]
- Susong, M. The Construction Project: Phases, People, Terms, Paperwork, Processes; American Bar Association: Chicago, IL, USA, 2006. [Google Scholar]
- Sanchez, A.X.; Hampson, K.D.; Vaux, S. Delivering Value with BIM: A Whole-of-Life Approach; Routledge: London, UK, 2016. [Google Scholar]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Jones, S.A.; Lorenz, A.; Buckley, B.; Barnett, S. The Business Value of BIM for Infrastructure; Dodge Data & Analytics: Hamilton, NJ, USA, 2017. [Google Scholar]
- Vilutienė, T.; Šarkienė, E.; Šarka, V.; Kiaulakis, A. BIM application in infrastructure projects. Balt. J. Road Bridge Eng. 2020, 15, 74–92. [Google Scholar] [CrossRef]
- Dong, J.; Meng, W.; Liu, Y.; Ti, J. A framework of pavement management system based on IoT and big data. Adv. Eng. Inform. 2021, 47, 101226. [Google Scholar] [CrossRef]
- Pregnolato, M. Bridge safety is not for granted–A novel approach to bridge management. Eng. Struct. 2019, 196, 109193. [Google Scholar] [CrossRef]
- Ding, L.; Fang, Q.; Li, C. Maintenance strategy of multi-equipment network systems based on topology vulnerability analysis. Procedia Eng. 2016, 164, 127–134. [Google Scholar] [CrossRef]
- Isailović, D.; Stojanovic, V.; Trapp, M.; Richter, R.; Hajdin, R.; Döllner, J. Bridge damage: Detection, IFC-based semantic enrichment and visualization. Autom. Constr. 2020, 112, 103088. [Google Scholar] [CrossRef]
- Vitásek, S.; Matějka, P. Utilization of BIM for automation of quantity takeoffs and cost estimation in transport infrastructure construction projects in the Czech Republic. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Volume 236, Building up Efficient and Sustainable Transport Infrastructure 2017 (BESTInfra2017), Prague, Czech Republic, 21–22 September 2017; p. 012110. [Google Scholar]
- Love, P.E.D.; Zhou, J.; Edwards, D.J.; Irani, Z.; Sing, C.-P. Off the rails: The cost performance of infrastructure rail projects. Transp. Res. Part A Policy Pract. 2017, 99, 14–29. [Google Scholar] [CrossRef]
- Cantisani, G.; Panesso, J.D.C.; Del Serrone, G.; Di Mascio, P.; Gentile, G.; Loprencipe, G.; Moretti, L. Re-design of a road node with 7D BIM: Geometrical, environmental and microsimulation approaches to implement a benefit-cost analysis between alternatives. Autom. Constr. 2022, 135, 104133. [Google Scholar] [CrossRef]
- Bae, A.; Lee, D.; Park, B. Building information modeling utilization for optimizing milling quantity and hot mix asphalt pavement overlay quality. Can. J. Civ. Eng. 2016, 43, 886–896. [Google Scholar] [CrossRef]
- Lin, S.-S.; Shen, S.-L.; Zhou, A.; Xu, Y.-S. Risk assessment and management of excavation system based on fuzzy set theory and machine learning methods. Autom. Constr. 2021, 122, 103490. [Google Scholar] [CrossRef]
- Tang, Y.; Xia, N.; Lu, Y.; Varga, L.; Li, Q.; Chen, G.; Luo, J. BIM-based safety design for emergency evacuation of metro stations. Autom. Constr. 2021, 123, 103511. [Google Scholar] [CrossRef]
- Luo, H.; Peng, X.; Zhong, B. Application of ontology in emergency plan management of metro operation. Procedia Eng. 2016, 164, 158–165. [Google Scholar] [CrossRef]
- Tang, F.; Ma, T.; Guan, Y.; Zhang, Z. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS. Autom. Constr. 2020, 111, 103066. [Google Scholar] [CrossRef]
- Korus, K.; Salamak, M.; Jasiński, M. Optimization of geometric parameters of arch bridges using visual programming FEM components and genetic algorithm. Eng. Struct. 2021, 241, 112465. [Google Scholar] [CrossRef]
- Soilán, M.; Nóvoa, A.; Sánchez-Rodríguez, A.; Justo, A.; Riveiro, B. Fully automated methodology for the delineation of railway lanes and the generation of IFC alignment models using 3D point cloud data. Autom. Constr. 2021, 126, 103684. [Google Scholar] [CrossRef]
- Duan, D.-Y.; Qiu, W.-G.; Cheng, Y.-J.; Zheng, Y.-C.; Lu, F. Reconstruction of shield tunnel lining using point cloud. Autom. Constr. 2021, 130, 103860. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Qiu, W.-G.; Duan, D.-Y. Automatic creation of as-is building information model from single-track railway tunnel point clouds. Autom. Constr. 2019, 106, 102911. [Google Scholar] [CrossRef]
- Getuli, V.; Capone, P.; Bruttini, A.; Rahimian, F.P. On-demand generation of as-built infrastructure information models for mechanised Tunnelling from TBM data: A computational design approach. Autom. Constr. 2021, 121, 103434. [Google Scholar] [CrossRef]
- Puri, N.; Turkan, Y. Bridge construction progress monitoring using lidar and 4D design models. Autom. Constr. 2020, 109, 102961. [Google Scholar] [CrossRef]
- Nili, M.H.; Taghaddos, H.; Zahraie, B. Integrating discrete event simulation and genetic algorithm optimization for bridge maintenance planning. Autom. Constr. 2021, 122, 103513. [Google Scholar] [CrossRef]
- Mawlana, M.; Vahdatikhaki, F.; Doriani, A.; Hammad, A. Integrating 4D modeling and discrete event simulation for phasing evaluation of elevated urban highway reconstruction projects. Autom. Constr. 2015, 60, 25–38. [Google Scholar] [CrossRef]
- Hagedorn, P.; Liu, L.; König, M.; Hajdin, R.; Blumenfeld, T.; Stöckner, M.; Billmaier, M.; Grossauer, K.; Gavin, K. BIM-Enabled Infrastructure Asset Management Using Information Containers and Semantic Web. J. Comput. Civ. Eng. 2023, 37, 04022041. [Google Scholar] [CrossRef]
- Bryde, D.; Broquetas, M.; Volm, J.M. The project benefits of building information modelling (BIM). Int. J. Proj. Manag. 2013, 31, 971–980. [Google Scholar] [CrossRef]
- Barakchi, M.; Torp, O.; Belay, A.M. Cost estimation methods for transport infrastructure: A systematic literature review. Procedia Eng. 2017, 196, 270–277. [Google Scholar] [CrossRef]
- Syamimi, A.; Gong, Y.; Liew, R. VR industrial applications—A singapore perspective. Virtual Real. Intell. Hardw. 2020, 2, 409–420. [Google Scholar] [CrossRef]
- Tang, F.; Ma, T.; Zhang, J.; Guan, Y.; Chen, L. Integrating three-dimensional road design and pavement structure analysis based on BIM. Autom. Constr. 2020, 113, 103152. [Google Scholar] [CrossRef]
- Koch, C.; Vonthron, A.; König, M. A tunnel information modelling framework to support management, simulations and visualisations in mechanised tunnelling projects. Autom. Constr. 2017, 83, 78–90. [Google Scholar] [CrossRef]
- Gbadamosi, A.-Q.; Oyedele, L.O.; Delgado, J.M.D.; Kusimo, H.; Akanbi, L.; Olawale, O.; Muhammed-Yakubu, N. IoT for predictive assets monitoring and maintenance: An implementation strategy for the UK rail industry. Autom. Constr. 2021, 122, 103486. [Google Scholar] [CrossRef]
- Sacks, R.; Kedar, A.; Borrmann, A.; Ma, L.; Brilakis, I.; Hüthwohl, P.; Daum, S.; Kattel, U.; Yosef, R.; Liebich, T. SeeBridge as next generation bridge inspection: Overview, information delivery manual and model view definition. Autom. Constr. 2018, 90, 134–145. [Google Scholar] [CrossRef]
- Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Autom. Constr. 2020, 117, 103250. [Google Scholar] [CrossRef]
- Perry, B.J.; Guo, Y.; Atadero, R.; van de Lindt, J.W. Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement 2020, 164, 108048. [Google Scholar] [CrossRef]
- Hamdan, A.-H.; Taraben, J.; Helmrich, M.; Mansperger, T.; Morgenthal, G.; Scherer, R.J. A semantic modeling approach for the automated detection and interpretation of structural damage. Autom. Constr. 2021, 128, 103739. [Google Scholar] [CrossRef]
- Morgenthal, G.; Hallermann, N.; Kersten, J.; Taraben, J.; Debus, P.; Helmrich, M.; Rodehorst, V. Framework for automated UAS-based structural condition assessment of bridges. Autom. Constr. 2019, 97, 77–95. [Google Scholar] [CrossRef]
- Artus, M.; Koch, C. State of the art in damage information modeling for RC bridges–A literature review. Adv. Eng. Inform. 2020, 46, 101171. [Google Scholar] [CrossRef]
- Li, T.; Alipour, M.; Harris, D.K. Mapping textual descriptions to condition ratings to assist bridge inspection and condition assessment using hierarchical attention. Autom. Constr. 2021, 129, 103801. [Google Scholar] [CrossRef]
- Niskanen, I.; Immonen, M.; Hallman, L.; Yamamuchi, G.; Mikkonen, M.; Hashimoto, T.; Nitta, Y.; Keränen, P.; Kostamovaara, J.; Heikkilä, R. Time-of-flight sensor for getting shape model of automobiles toward digital 3D imaging approach of autonomous driving. Autom. Constr. 2021, 121, 103429. [Google Scholar] [CrossRef]
- Sankaran, B.; Nevett, G.; O’Brien, W.J.; Goodrum, P.M.; Johnson, J. Civil Integrated Management: Empirical study of digital practices in highway project delivery and asset management. Autom. Constr. 2018, 87, 84–95. [Google Scholar] [CrossRef]
- Aboali, M.; Manap, N.A.; Darsono, A.M.; Yusof, Z.M. Review on three-dimensional (3-d) acquisition and range imaging techniques. Int. J. Appl. Eng. Res 2017, 12, 2409–2421. [Google Scholar]
- De Silva, V.; Roche, J.; Kondoz, A. Robust fusion of LiDAR and wide-angle camera data for autonomous mobile robots. Sensors 2018, 18, 2730. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, W.; Huang, L.; Vimarlund, V.; Wang, Z. Applications of terrestrial laser scanning for tunnels: A review. J. Traffic Transp. Eng. Engl. Ed. 2014, 1, 325–337. [Google Scholar] [CrossRef]
- Yang, J.; Xiang, F.; Li, R.; Zhang, L.; Yang, X.; Jiang, S.; Zhang, H.; Wang, D.; Liu, X. Intelligent bridge management via big data knowledge engineering. Autom. Constr. 2022, 135, 104118. [Google Scholar] [CrossRef]
- Miri, M.; Khaksefidi, M. Cost management in construction projects: Rework and its effects. Mediterr. J. Soc. Sci. 2015, 6, 209. [Google Scholar] [CrossRef]
- VRcollab. Case Study: How China Construction Uses Virtual Reality in Coordination Meetings. Available online: https://vrcollab.com/blog/case-study-how-china-construction-uses-virtual-reality-in-coordination-meetings/ (accessed on 24 April 2022).
- Li, X.; Yi, W.; Chi, H.-L.; Wang, X.; Chan, A.P.C. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 2018, 86, 150–162. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Gao, C.; Wang, J.; Dong, S.; Liu, Z.; Cui, Z.; Ma, N.; Zhao, X. Application of Digital Twins and Building Information Modeling in the Digitization of Transportation: A Bibliometric Review. Appl. Sci. 2022, 12, 11203. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.Y.; Nee, A.Y.C. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Omer, M.; Margetts, L.; Hadi Mosleh, M.; Hewitt, S.; Parwaiz, M. Use of gaming technology to bring bridge inspection to the office. Struct. Infrastruct. Eng. 2019, 15, 1292–1307. [Google Scholar] [CrossRef]
- Xie, X.; Lu, Q.; Rodenas-Herraiz, D.; Parlikad, A.K.; Schooling, J.M. Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance. Eng. Constr. Archit. Manag. 2020, 27, 1835–1852. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, W.; Luo, H. Building digital twins of existing highways using map data based on engineering expertise. Autom. Constr. 2022, 134, 104081. [Google Scholar] [CrossRef]
- Shim, C.-S.; Dang, N.-S.; Lon, S.; Jeon, C.-H. Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model. Struct. Infrastruct. Eng. 2019, 15, 1319–1332. [Google Scholar] [CrossRef]
- Ye, S.; Lai, X.; Bartoli, I.; Aktan, A.E. Technology for condition and performance evaluation of highway bridges. J. Civ. Struct. Health Monit. 2020, 10, 573–594. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Hu, M.; Wang, Y.K. Prediction of highway tunnel pavement performance based on digital twin and multiple time series stacking. Adv. Civ. Eng. 2020, 2020, 8824135. [Google Scholar] [CrossRef]
- Fanning, B.; Clevenger, C.M.; Ozbek, M.E.; Mahmoud, H. Implementing BIM on infrastructure: Comparison of two bridge construction projects. Pract. Period. Struct. Des. Constr. 2015, 20, 04014044. [Google Scholar] [CrossRef]
- Huang, M.Q.; Zhu, H.M.; Ninić, J.; Zhang, Q.B. Multi-LOD BIM for underground metro station: Interoperability and design-to-design enhancement. Tunn. Undergr. Space Technol. 2022, 119, 104232. [Google Scholar] [CrossRef]
- Ozorhon, B.; Karahan, U. Critical success factors of building information modeling implementation. J. Manag. Eng. 2017, 33, 04016054. [Google Scholar] [CrossRef]
- Tan, T.; Chen, K.; Xue, F.; Lu, W. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Ozturk, G.B. Interoperability in building information modeling for AECO/FM industry. Autom. Constr. 2020, 113, 103122. [Google Scholar] [CrossRef]
- Ding, L.; Li, K.; Zhou, Y.; Love, P.E.D. An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Autom. Constr. 2017, 84, 96–110. [Google Scholar] [CrossRef]
- Xia, T.; Yang, J.; Chen, L. Automated semantic segmentation of bridge point cloud based on local descriptor and machine learning. Autom. Constr. 2022, 133, 103992. [Google Scholar] [CrossRef]
- Ninić, J.; Bui, H.G.; Meschke, G. BIM-to-IGA: A fully automatic design-through-analysis workflow for segmented tunnel linings. Adv. Eng. Inform. 2020, 46, 101137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belcher, E.J.; Abraham, Y.S. Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects. Buildings 2023, 13, 2300. https://doi.org/10.3390/buildings13092300
Belcher EJ, Abraham YS. Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects. Buildings. 2023; 13(9):2300. https://doi.org/10.3390/buildings13092300
Chicago/Turabian StyleBelcher, Ethan J., and Yewande S. Abraham. 2023. "Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects" Buildings 13, no. 9: 2300. https://doi.org/10.3390/buildings13092300
APA StyleBelcher, E. J., & Abraham, Y. S. (2023). Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects. Buildings, 13(9), 2300. https://doi.org/10.3390/buildings13092300