The Impact of Freeze–Thaw Cycles on the Shear and Microstructural Characteristics of Compacted Silty Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Procedures
2.2.1. Specimen Preparation
2.2.2. NMR Analysis
2.2.3. Triaxial Compression
3. Results and Discussion
3.1. Stress–Strain Curves
3.2. Secant Modulus and Shear Strength
3.3. Strength Index
3.4. NMR-T2 Distribution
4. Theorical Model Development
4.1. Modified Duncan–Chang Model
4.2. Model Validation and Performance
5. Conclusions
- The stress–strain curves of all the compacted specimens under various manifest strain-hardening behavior. The mechanical response of the specimens was significantly impaired by FT action, as evidenced by a gradual decrease in strength, stiffness, cohesive properties, and internal friction angle with an increasing number of FT cycles.
- The T2 distribution curve of the unfrozen specimen exhibits a bimodal peak pattern. With an increase in the number of FT cycles, the micro-pores became continuously enlarged and developed into medium- and large-sized pores, resulting in deterioration of the mechanical behavior of the thawed specimen.
- An empirical equation was proposed for the − response of the compacted silty clay considering the deterioration of FT cycling, and then applied to effectively describe the – characteristics of the tested soil.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, S.B.; Qu, J.J.; Lai, Y.M.; Zhou, Z.W.; Xu, X.T. Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. J. Mt. Sci. 2015, 12, 999–1009. [Google Scholar] [CrossRef]
- Liu, J.K.; Chang, D.; Yu, Q.M. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- Zou, W.L.; Ding, L.Q.; Han, Z.; Wang, X.Q. Effects of freeze-thaw cycles on the moisture sensitivity of a compacted clay. Eng. Geol. 2020, 278, 105832. [Google Scholar] [CrossRef]
- Al-Omari, A.; Beck, K.; Brunetaud, X.; Török, Á.; Al-Mukhtar, M. Critical degree of saturation: A control factor of freeze-thaw damage of porous limestones at Castle of Chambord, France. Eng. Geol. 2015, 185, 71–80. [Google Scholar] [CrossRef]
- Özgan, E.; Serin, S.; Ertürk, S.; Vural, I. Effects of freezing and thawing cycles on the engineering properties of soils. Soil. Mech. Found. Eng. 2012, 52, 95–99. [Google Scholar] [CrossRef]
- Li, J.L.; Kaunda, B.R.; Zhou, K.P. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Reg. Sci. Technol. 2018, 154, 133–141. [Google Scholar] [CrossRef]
- Lu, J.G.; Zhang, M.Y.; Zhang, X.Y.; Pei, W.S.; Bi, J. Experimental study on the freezing–thawing deformation of a silty clay. Cold Reg. Sci. Technol. 2018, 151, 19–27. [Google Scholar] [CrossRef]
- Tian, L.H.; Yu, L.L.; Liu, S.M.; Zhang, B. Deformation research of silty clay under freeze-thaw cycles. KSCE J. Civ. Eng. 2020, 24, 435–442. [Google Scholar] [CrossRef]
- Li, T.G.; Kong, L.W.; Guo, A.G. The deformation and microstructure characteristics of expansive soil under freeze–thaw cycles with loads. Cold Reg. Sci. Technol. 2021, 192, 103393. [Google Scholar] [CrossRef]
- Ma, W.; Cheng, G.D.; Wu, Q.B. Construction on permafrost foundations: Lessons learned from the Qinghai–Tibet railroad. Cold Reg. Sci. Technol. 2009, 59, 3–11. [Google Scholar]
- Zhou, Z.W.; Ma, W.; Zhang, S.J.; Mu, Y.H.; Li, G.Y. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg. Sci. Technol. 2018, 146, 9–18. [Google Scholar] [CrossRef]
- Sheng, Z.J. Weathering resistant design-an important aspect of future development of geotechnical engineering design. Chin. J. Geotech. Eng. 2004, 26, 866–869. [Google Scholar]
- Konrad, J.M. Physical processes during freeze-thaw cycles in clayey silts. Cold Reg. Sci. Technol. 1989, 16, 291–303. [Google Scholar] [CrossRef]
- Simonsen, E.; Isacsson, U. Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests. Can. Geotech. J. 2001, 38, 863–875. [Google Scholar] [CrossRef]
- Wang, D.Y.; Ma, W.; Niu, Y.H.; Chang, X.X.; Wen, Z. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Reg. Sci. Technol. 2007, 48, 34–43. [Google Scholar] [CrossRef]
- Qi, J.L.; Ma, W.; Song, C.X. Influence of freeze-thaw on engineering properties of a silty soil. Cold Reg. Sci. Technol. 2008, 53, 397–404. [Google Scholar] [CrossRef]
- Cui, Z.D.; He, P.P.; Yang, W.H. Mechanical properties of a silty clay subjected to freezing-thawing. Cold Reg. Sci. Technol. 2014, 98, 26–34. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.; Wang, N.; Wang, Q.J.; Zhang, X.D.; Cheng, S.K.; Kong, Y.Y. Effect of freeze-thaw cycles on shear strength of saline soil. Cold Reg. Sci. Technol. 2018, 154, 42–53. [Google Scholar] [CrossRef]
- Gao, Z.N.; Zhong, X.M.; Wang, Q.; Su, Y.Q.; Wang, J. The influence of freeze-thaw cycles on unconfined compressive strength of lignin fiber-reinforced loess. J. Renew. Mater. 2022, 10, 1063. [Google Scholar] [CrossRef]
- Chen, Z.F.; Chen, H.E.; Li, J.F.; Li, H.; Ma, W.L. Study on the changing rules of silty clay’s pore structure under freeze-thaw cycles. Adv. Civ. Eng. 2019, 2019, 7493872. [Google Scholar] [CrossRef]
- Li, J.L.; Zhou, K.P.; Liu, W.J.; Deng, H.W. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles. Trans. Nonferrous Met. Soc. China 2016, 26, 2997–3003. [Google Scholar] [CrossRef]
- Yang, D.H.; Yan, R.T.; Yan, M.Q.; Lu, D.; Wei, C.F. Geomechanical properties of artificial methane hydrate-bearing fine-grained sediments. Gas Sci. Eng. 2023, 109, 104852. [Google Scholar] [CrossRef]
- Zhang, X.H.; Luo, D.S.; Lu, X.B.; Liu, L.L.; Liu, C.L. Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation. Acta Mech. Sin. 2018, 34, 266–274. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Yang, Z.J.; Wei, C.F.; Chen, P.; Yan, R.T. Mechanical behavior of hydrate-bearing sands with fine particles under isotropic and triaxial compression. Gas Sci. Eng. 2021, 92, 103991. [Google Scholar] [CrossRef]
- Bird, N.R.A.; Preston, A.R.; Randall, E.W.; Whalley, W.R.; Whitmore, A.P. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. Eur. J. Soil. Sci. 2005, 56, 135–143. [Google Scholar] [CrossRef]
- Jaeger, F.; Bowe, S.; Van As, H.; Schaumann, G.E. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples. Eur. J. Soil. Sci. 2009, 60, 1052–1064. [Google Scholar] [CrossRef]
- Tian, H.H.; Wei, C.F.; Wei, H.C.; Zhou, J.Z. Freezing and thawing characteristics of frozen soils: Bound water content and hysteresis phenomenon. Cold Reg. Sci. Technol. 2014, 103, 74–81. [Google Scholar] [CrossRef]
- Yang, D.H.; Yan, R.T.; Cheng, F.; Lu, D.; Wei, C.F.; Tian, H.H. Influencing Factors of Hydration Number of Synthesized Methane Hydrates in Sediment. Energy Fuels 2023, 37, 1929–1939. [Google Scholar] [CrossRef]
- Duncan, J.M.; Chang, C.Y. Nonlinear analysis of stress and strain in soils. J. Soil. Mech. Fdn. Div. 1970, 96, 1629–1653. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Aoki, K.; Tenma, N. A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples. Energies 2012, 5, 4057–4075. [Google Scholar]
- Yan, M.Q.; Yan, R.T.; Yu, H.H. Strain-Softening Characteristics of Hydrate-Bearing Sediments and Modified Duncan–Chang Model. Adv. Mater. Sci. Eng. 2021, 2021, 2809370. [Google Scholar] [CrossRef]
- Luo, T.; Yao, Y.; Hou, W. Soil Constitutive Models; China Communications Press: Beijing, China, 2010; pp. 65–67. [Google Scholar]
- Janbu, N. Soil Compressibility as determined by oedometer and triaxial test. Soil. Mech. Fdn. Eng. Wiesbaden. Ger. 1963, 1963, 19–25. [Google Scholar]
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
MPa | 45.41 | MPa | −0.05 | ||
MPa | 0.15 | MPa | −0.04 | ||
° | 30.43 | - | 0.29 | ||
- | 0.75 | MPa | −0.34 | ||
- | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Wei, H.; Yang, D.; Wu, Y. The Impact of Freeze–Thaw Cycles on the Shear and Microstructural Characteristics of Compacted Silty Clay. Buildings 2023, 13, 2308. https://doi.org/10.3390/buildings13092308
Jia J, Wei H, Yang D, Wu Y. The Impact of Freeze–Thaw Cycles on the Shear and Microstructural Characteristics of Compacted Silty Clay. Buildings. 2023; 13(9):2308. https://doi.org/10.3390/buildings13092308
Chicago/Turabian StyleJia, Jia, Hongying Wei, Dehuan Yang, and Yuancheng Wu. 2023. "The Impact of Freeze–Thaw Cycles on the Shear and Microstructural Characteristics of Compacted Silty Clay" Buildings 13, no. 9: 2308. https://doi.org/10.3390/buildings13092308
APA StyleJia, J., Wei, H., Yang, D., & Wu, Y. (2023). The Impact of Freeze–Thaw Cycles on the Shear and Microstructural Characteristics of Compacted Silty Clay. Buildings, 13(9), 2308. https://doi.org/10.3390/buildings13092308