Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members
Abstract
:1. Introduction
2. Background
2.1. Laser Measurements
2.2. Post-Processing
2.3. Data Scheme
3. A Simulation Method for Digital Twins of CFS Members
3.1. Node Formation
3.2. Finite Element Modeling
3.2.1. Mesh Formation
3.2.2. Material Properties
3.2.3. Boundary Condition
3.2.4. Analysis Step
4. Validation Testing
4.1. Material Testing
4.2. Design of the Validation Testing
4.2.1. Testing Set Up
4.2.2. Sensor Arrangements
4.3. Experimental Procedures
5. Testing Results and Validation of Numerical Simulations
5.1. Testing Results
5.1.1. Failure Modes
5.1.2. Peak Loads
5.2. Validation of Finite Element Models
5.2.1. Calibration of Parameters
- Boundary conditions:
5.2.2. Peak Load Validation
5.2.3. Failure Modes Validation
5.2.4. Strain-Peak Load Curves
6. Discussion
6.1. Comparisons with Traditionally Numerical Simulations
6.1.1. Peak Load
6.1.2. Failure Modes
6.2. Parametric Analysis
6.2.1. Mesh Density
6.2.2. Analysis Step
7. Conclusions
- This paper introduces a newly developed DT-based numerical simulation method for Cee-section CFS members, which harnesses detailed geometries derived from laser scanning techniques. The dense measurement point clouds are de-sampled using heuristic guidelines to preserve essential geometric features. Finite element modeling is executed by scripting an ABAQUS running file using a suffix script. Key modeling parameters are identified and refined through empirical testing.
- Axial compression tests were conducted on 27 Cee-shaped CFS members, varying in lengths, sections, and thicknesses. Results from these tests were juxtaposed with model analysis outcomes, revealing a commendable alignment between the observed phenomena and the DT-based numerical simulations. The average discrepancy between the tested and simulated ultimate loads stood at 5.3% for stocky columns, 3.6% for medium columns, and 4.7% for slender columns. Moreover, the strain values at peak loads from the DT-based model’s critical points closely mirrored the test findings, with an average error of approximately 13.8% between the web and flange. Thus, the DT-based numerical simulation method effectively predicted the specimen’s failure mode and peak load.
- The DT-based numerical simulation method was benchmarked against the conventional numerical simulation approach for CFS member structural performance modeling. When juxtaposed with this traditional method, the DT-based simulation consistently outperformed in predicting structural behaviors, notably in areas like load capacities and failure modes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lechner, B.; Pircher, M. Analysis of imperfection measurements of structural members. Thin-Walled Struct. 2005, 43, 351–374. [Google Scholar] [CrossRef]
- Amouzegar, H.; Amirzadeh, B.; Zhao, X.; Schafer, B.; Tootkaboni, M. Statistical analysis of the impact of imperfection modes on collapse behavior of cold-formed steel members. In Proceedings of the Structural stability Research Council Annual Sta, Nashville, TN, USA, 24–27 March 2015. [Google Scholar]
- Farzanian, S.; Louhghalam, A.; Schafer, B.; Tootkaboni, M. Geometric imperfection models for CFS structural members, Part I: Comparative review of current models. Thin-Walled Struct. 2019. [Google Scholar] [CrossRef]
- AISI S240-15; North American Standard for Cold Formed Steel Structural Framing. American Iron and Steel Institute: Washington, DC, USA, 2015.
- G. 50017-2017; Steel Structure Design Standard. China Construction Industry Press Beijing: Beijing, China, 2017.
- Zhao, X. Measurement and Application of Geometric Imperfections in Cold-Formed Steel Members. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 2016. [Google Scholar]
- Ahmed, H.; Ghosh, S.; Mangal, M. Probabilistic estimation of the buckling strength of a CFS lipped-channel section with Type 1 imperfection. Thin-Walled Struct. 2017, 119, 447–456. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Sun, X.; Wang, X.; Schafer, B. Modeling of uncertain geometry of cold formed steel members based on laser measurements and machine learning. Eng. Struct. 2023, 115578, 279. [Google Scholar] [CrossRef]
- Schafer, B.; Pekoz, T. Computational modeling of cold-formed steel: Characterizing geometric imperfections and residual stresses. J. Constr. Steel Res. 1998, 47, 193–210. [Google Scholar] [CrossRef]
- Feng, P.; Zou, Y.; Hu, L.; Liu, T. Use of 3D laser scanning on evaluating reduction of initial geometric imperfection of steel column with pre-stressed CFRP. Eng. Struct. 2019, 198, 109527. [Google Scholar] [CrossRef]
- Zhao, X.; Tootkaboni, M.; Schafer, B. Laser-based cross-section measurement of cold-formed steel members: Model reconstruction and application. Thin-Walled Struct. 2017, 120, 70–80. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, Y.; Sun, Y.; Shao, X.; Wu, G. Deformation ability of precast concrete columns reinforced with steel-FRP composite bars (SFCBs) based on the DIC method. J. Build. Eng. 2023, 68, 106083. [Google Scholar] [CrossRef]
- Mai, B.; Pham, C.; Hancock, G.; Nguyen, G. Block shear strength and behaviour of cold-reduced G450 steel bolted connections using DIC. J. Constr. Steel Res. 2019, 157, 151–160. [Google Scholar] [CrossRef]
- Keyence. High-Speed 2D/3D Laser Scanner LJ-V7000 Specification. Available online: http://www1.keyence.com/topics/measure/ljv/ljv7000/ljv7000.php?ad=gapress1212prljv (accessed on 16 August 2023).
- Geomagic, Version 2013.0.2 [Computer Software]; Geomagic, Inc. and 3Dsystems. Inc.: Hangzhou, China, 2013.
- Xu, Y.; Zhang, M.; Yang, S.; Zheng, B. Measurement and qualification of welded I-column failure mode using laser scanning technique. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; Volume 34, pp. 2694–2707. [Google Scholar]
- Zhao, X.; Tootkaboni, M.; Schafer, B. Development of a laser-based geometric imperfection measurement platform with application to cold-formed steel construction. Exp. Mech. 2015, 55, 1779–1790. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Zhang, H.; Liu, Q.; Chen, X.; Zhang, D.; Leng, J. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line. IEEE Access 2017, 5, 26901–26911. [Google Scholar] [CrossRef]
- Zhang, Z.; Hui, P.; Gu, C.; Xu, P.; Wu, Y.; Hua, Z. Buckling of cold-stretched cylindrical vessels under external pressure: Experimental and numerical investigation. Thin-Walled Struct. 2018, 131, 475–486. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, B.; Zheng, B. Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes. J. Constr. Steel Res. 2023, 201, 107749. [Google Scholar] [CrossRef]
- Farzannian, S.; Louhghalam, A.; Schafer, B.; Tootkaboni, M. Geometric imperfections in CFS structural members: Part I: A review of the basics and some modeling strategies. Thin-Walled Struct. 2023, 186, 110619. [Google Scholar] [CrossRef]
- Aktepe, R.; Erkal, B. Experimental and numerical study on flexural behaviour of cold-formed steel hat-shaped beams with geometrical imperfections. J. Constr. Steel Res. 2023, 202, 107774. [Google Scholar] [CrossRef]
- Nie, B.; Xu, S.; Zhang, Z.; Li, A. Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections. J. Build. Eng. 2021, 42, 102786. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2021. (In Chinese)
- Galambos, T.V. (Ed.) Guide to Stability Design Criteria for Metal Structures; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
Section ID | t (mm) | |||||
---|---|---|---|---|---|---|
C1-H180-B70-t2.0-450 | 450 | 180 | 2.0 | 70 | 20 | 90 |
C2-H180-B70-t2.5-450 | 450 | 180 | 2.5 | 70 | 20 | 90 |
C3-H180-B70-t3.0-450 | 450 | 180 | 3.0 | 70 | 20 | 90 |
C4-H200-B70-t2.0-450 | 450 | 200 | 2.0 | 70 | 20 | 90 |
C5-H200-B70-t2.5-450 | 450 | 200 | 2.5 | 70 | 20 | 90 |
C6-H200-B70-t3.0-450 | 450 | 200 | 3.0 | 70 | 20 | 90 |
C7-H280-B70-t2.0-450 | 450 | 280 | 2.0 | 70 | 20 | 90 |
C8-H280-B70-t2.5-450 | 450 | 280 | 2.5 | 70 | 20 | 90 |
C9-H280-B70-t3.0-450 | 450 | 280 | 3.0 | 70 | 20 | 90 |
C10-H180-B70-t2.0-1200 | 1200 | 180 | 2.0 | 70 | 20 | 90 |
C11-H180-B70-t2.5-1200 | 1200 | 180 | 2.5 | 70 | 20 | 90 |
C12-H180-B70-t3.0-1200 | 1200 | 180 | 3.0 | 70 | 20 | 90 |
C13-H200-B70-t2.0-1200 | 1200 | 200 | 2.0 | 70 | 20 | 90 |
C14-H200-B70-t2.5-1200 | 1200 | 200 | 2.5 | 70 | 20 | 90 |
C15-H200-B70-t3.0-1200 | 1200 | 200 | 3.0 | 70 | 20 | 90 |
C16-H280-B70-t2.0-1200 | 1200 | 280 | 2.0 | 70 | 20 | 90 |
C17-H280-B70-t2.5-1200 | 1200 | 280 | 2.5 | 70 | 20 | 90 |
C18-H280-B70-t3.0-1200 | 1200 | 280 | 3.0 | 70 | 20 | 90 |
C19-H180-B70-t2.0-3000 | 3000 | 180 | 2.0 | 70 | 20 | 90 |
C20-H180-B70-t2.5-3000 | 3000 | 180 | 2.5 | 70 | 20 | 90 |
C21-H180-B70-t3.0-3000 | 3000 | 180 | 3.0 | 70 | 20 | 90 |
C22-H200-B70-t2.0-3000 | 3000 | 200 | 2.0 | 70 | 20 | 90 |
C23-H200-B70-t2.5-3000 | 3000 | 200 | 2.5 | 70 | 20 | 90 |
C24-H200-B70-t3.0-3000 | 3000 | 200 | 3.0 | 70 | 20 | 90 |
C25-H280-B70-t2.0-3000 | 3000 | 280 | 3.0 | 70 | 20 | 90 |
C26-H280-B70-t2.5-3000 | 3000 | 280 | 2.5 | 70 | 20 | 90 |
C27-H280-B70-t3.0-3000 | 3000 | 280 | 2.0 | 70 | 20 | 90 |
Name of Steel Tensile Coupons | Thickness (mm) | (mm) | (mm) | (mm) | (mm) | Number |
---|---|---|---|---|---|---|
Test1-2.0 | 2.0 | 90 | 130 | 250 | 40 | 3 |
Test2-2.5 | 2.5 | 95 | 135 | 255 | 50 | 3 |
Test3-3.0 | 3.0 | 100 | 140 | 260 | 60 | 3 |
Name of Steel Tensile Coupons | Young’s Modulus (MPa) | (MPa) | (MPa) | (MPa) |
---|---|---|---|---|
Test1-2.0 | 196,000 | 455 | 489 | 556 |
Test2-2.5 | 196,000 | 440 | 477 | 551 |
Test3-3.0 | 196,000 | 392 | 431 | 506 |
Stocky Columns | Medium Columns | Slender Columns | |||
---|---|---|---|---|---|
C1-H180-B70-t2.0-450 | 117.5 | C10-H180-B70-t2.0-1200 | 71.6 | C19-H180-B70-t2.0-3000 | 53.0 |
C2-H180-B70-t2.5-450 | 279.3 | C11-H180-B70-t2.5-1200 | 73.89 | C20-H180-B70-t2.5-3000 | 70.7 |
C3-H180-B70-t3.0-450 | 262.6 | C12-H180-B70-t3.0-1200 | 152.9 | C21-H180-B70-t3.0-3000 | 71.8 |
C4-H200-B70-t2.0-450 | 204.7 | C13-H200-B70-t2.0-1200 | 102.6 | C22-H200-B70-t2.0-3000 | 69.6 |
C5-H200-B70-t2.5-450 | 231.2 | C14-H200-B70-t2.5-1200 | 108.2 | C23-H200-B70-t2.5-3000 | 75.1 |
C6-H200-B70-t3.0-450 | 241.7 | C15-H200-B70-t3.0-1200 | 149.7 | C24-H200-B70-t3.0-3000 | 77.4 |
C7-H280-B70-t2.0-450 | 230.9 | C16-H280-B70-t2.0-1200 | 116.0 | C25-H280-B70-t2.0-3000 | 50.2 |
C8-H280-B70-t2.5-450 | 230.7 | C17-H280-B70-t2.5-1200 | 116.5 | C26-H280-B70-t2.5-3000 | 71.1 |
C9-H280-B70-t3.0-450 | 334.7 | C18-H280-B70-t3.0-1200 | 146.5 | C27-H280-B70-t3.0-3000 | 75.9 |
Section ID | |||||||
---|---|---|---|---|---|---|---|
C1-H180-B70-t2.0-450 | 117.6 | 129.3 | 124.1 | 11.7 | 9.1% | 6.6 | 5.3% |
C2-H180-B70-t2.5-450 | 279.3 | 301.2 | 277.6 | 21.8 | 7.3% | −1.8 | −0.6% |
C3-H180-B70-t3.0-450 | 262.6 | 261.2 | 315.6 | −1.4 | −0.5% | 52.9 | 16.8% |
C4-H200-B70-t2.0-450 | 204.7 | 207.2 | 156.0 | 2.5 | 1.2% | −48.6 | −31.2% |
C5-H200-B70-t2.5-450 | 231.2 | 225.9 | 292.4 | −5.3 | −2.3% | 61.2 | 20.9% |
C6-H200-B70-t3.0-450 | 241.8 | 237.4 | 260.6 | −4.43 | −1.9% | 18.8 | 7.2% |
C7-H280-B70-t2.0-450 | 230.9 | 210.0 | 247.9 | −20.9 | −9.9% | 17.0 | 6.9% |
C8-H280-B70-t2.5-450 | 230.8 | 246.8 | 204.1 | 16.0 | 6.5% | −26.7 | −13.1% |
C9-H280-B70-t3.0-450 | 334.7 | 304.9 | 375.2 | −29.9 | −9.8% | 40.5 | 10.8% |
C10-H180-B70-t2.0-1200 | 71.6 | 68.8 | 87.6 | −2.8 | −4.0% | 16.0 | 18.3% |
C11-H180-B70-t2.5-1200 | 73.9 | 71.6 | 97.9 | −2.3 | −3.3% | 24.0 | 24.5% |
C12-H180-B70-t3.0-1200 | 152.9 | 158.7 | 191.1 | 5.8 | 3.7% | 38.2 | 20.0% |
C13-H200-B70-t2.0-1200 | 102.6 | 105.1 | 124.4 | 2.4 | 2.3% | 21.8 | 17.5% |
C14-H200-B70-t2.5-1200 | 108.2 | 105.3 | 129.8 | −3.0 | −2.8% | 21.6 | 16.6% |
C15-H200-B70-t3.0-1200 | 149.8 | 144.0 | 182.1 | −5.8 | −4.0% | 32.4 | 17.8% |
C16-H280-B70-t2.0-1200 | 116.0 | 113.1 | 145.6 | −2.9 | −2.6% | 29.6 | 20.3% |
C17-H280-B70-t2.5-1200 | 116.5 | 124.4 | 156.5 | 7.9 | 6.3% | 40.0 | 25.6% |
C18-H280-B70-t3.0-1200 | 146.5 | 141.5 | 169.5 | −5.0 | −3.5% | 23.0 | 13.6% |
C19-H180-B70-t2.0-3000 | 53.0 | 56.3 | 64.7 | 3.3 | 5.9% | 11.7 | 18.1% |
C20-H180-B70-t2.5-3000 | 70.7 | 73.8 | 87.8 | 3.1 | 4.3% | 17.1 | 19.5% |
C21-H180-B70-t3.0-3000 | 71.9 | 72.0 | 85.7 | 0.2 | 0.3% | 13.8 | 16.1% |
C22-H200-B70-t2.0-3000 | 69.6 | 75.3 | 89.9 | 5.7 | 7.6% | 20.3 | 22.6% |
C23-H200-B70-t2.5-3000 | 75.1 | 77.8 | 96.5 | 2.7 | 3.5% | 21.4 | 22.2% |
C24-H200-B70-t3.0-3000 | 77.4 | 76.5 | 92.9 | −0.9 | −1.1% | 15.5 | 16.7% |
C25-H280-B70-t2.0-3000 | 50.2 | 53.5 | 61.1 | 3.2 | 6.1% | 10.9 | 17.9% |
C26-H280-B70-t2.5-3000 | 71.1 | 73.5 | 81.5 | 2.4 | 3.3% | 10.5 | 12.8% |
C27-H280-B70-t3.0-3000 | 75.9 | 69.1 | 90.6 | −6.80 | −9.8% | 14.8 | 16.3% |
Section ID | ) | ) | |||||||
---|---|---|---|---|---|---|---|---|---|
Left Flange | Web | Right Flange | Left Flange | Web | Right Flange | Left Flange | Web | Right Flange | |
C2-H180-B70-t2.5-450 | −2119.3 | −1599.1 | −1270.2 | −1493.8 | −1684.0 | −1464.0 | 29.5 | 5.3 | 15.3 |
C5-H200-B70-t2.5-450 | −1422.2 | −892.1 | −1764.3 | −1578.9 | −912.4 | −2227.0 | 11.0 | 2.3 | 26.2 |
C7-H280-B70-t2.0-450 | −1328.8 | −1368.1 | −1694.9 | −1134.0 | −1269.2 | −2181.7 | 14.7 | 7.2 | 28.7 |
C14-H200-B70-t2.5-1200 | −1732.3 | −270.0 | −917.7 | −1729.1 | −273.0 | −652.3 | 0.2 | 1.1 | 28.9 |
C15-H200-B70-t3.0-1200 | −1774.6 | −207.6 | −590.4 | −1692.1 | −254.1 | −494.8 | 4.7 | 22.4 | 16.2 |
C17-H280-B70-t2.5-1200 | −1499.0 | −320.3 | −1525.1 | −1919.3 | −347.0 | −1754.6 | 28.0 | 8.3 | 15.1 |
C20-H180-B70-t2.5-3000 | −814.4 | 292.9 | −444.3 | −799.5 | 228.6 | −369.3 | 1.8 | 21.9 | 16.9 |
C22-H200-B70-t2.0-3000 | −884.8 | 165.9 | −676.8 | −984.1 | 144.7 | −452.8 | 11.2 | 12.8 | 33.1 |
C27-H280-B70-t3.0-3000 | −1095.1 | 211.8 | −519.6 | −924.0 | 214.7 | −337.6 | 15.6 | 1.4 | 35.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Zhao, X.; Zhang, Z.; Sun, X.; Du, G. Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members. Buildings 2023, 13, 2388. https://doi.org/10.3390/buildings13092388
Du P, Zhao X, Zhang Z, Sun X, Du G. Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members. Buildings. 2023; 13(9):2388. https://doi.org/10.3390/buildings13092388
Chicago/Turabian StyleDu, Pengfei, Xi Zhao, Zhidong Zhang, Xiaoyan Sun, and Gang Du. 2023. "Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members" Buildings 13, no. 9: 2388. https://doi.org/10.3390/buildings13092388
APA StyleDu, P., Zhao, X., Zhang, Z., Sun, X., & Du, G. (2023). Digital Twin-Based Numerical Simulation Method for Cee-Shape Cold-Formed Steel Members. Buildings, 13(9), 2388. https://doi.org/10.3390/buildings13092388