Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials
Abstract
:1. Introduction
2. Theory of Bone-Based Peridynamics
2.1. Basic Theory
2.2. Numerical Simulation Method
3. Heterogeneity Characterization in the PD Model
3.1. PD Modeling of Heterogeneous Materials
3.2. Numerical Solution Process
4. Numerical Examples of Specimens with Pre-Notch
4.1. Load Case 1: Quasi-Static Loading
4.2. Load Case 2: Dynamic Loading
5. Discussion
6. Conclusions
- (1)
- In the improved PD model, uniform discretization is also performed, and the physical and mechanical parameters of the material are uniformly valued based on the heterogeneity coefficient. During simulation, only the heterogeneity coefficient represented by pre-breaking “bonds” is needed to establish the heterogeneous PD model, without additional pre-processing of the model, and can reflect the random distribution characteristics of the heterogeneity of rock-like materials. The size of the computational model and the number of material points have no effect on the efficiency of heterogeneous modeling, making it particularly suitable for applications in large-scale discontinuous and heterogeneous geotechnical engineering.
- (2)
- For heterogeneous materials, the crack propagation path appears to have obvious asymmetry in the crack propagation direction. As the load applied continues to increase, the asymmetric multi-crack branching phenomenon will occur. The higher the level of heterogeneity, the more complex the behaviors of crack propagation and branching become. The simulation results verify the effectiveness of the heterogeneous PD model in simulating the fracture and failure of heterogeneous materials, in which the heterogeneity of microscopic materials can be well matched, providing a high-precision model with realistic heterogeneity for numerical investigations.
- (3)
- The results indicate that the non-uniform characteristics of the material have a significant impact on its mechanical response mechanism under external loading. These findings further validate the effectiveness of the sub-homogeneous PD model in addressing fracture and failure issues in heterogeneous brittle rock-like materials. This research provides valuable insights into the interplay of material heterogeneity and crack evolution, offering a foundation for improved numerical simulations and contributing to the broader field of geomechanics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, H.P.; Lu, J.; Li, C.B.; Li, M.H.; Gao, M.Z. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. Int. J. Min. Sci. Technol. 2022, 32, 915–950. [Google Scholar] [CrossRef]
- Du, K.; Li, X.F.; Tao, M.; Wang, S.F. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests. Int. J. Rock Mech. Min. Sci. 2020, 133, 104411. [Google Scholar] [CrossRef]
- Kermanidis, A.T.; Tzamtzis, A. Analytical modeling of fatigue crack propagation based on cyclic hardening and a characteristic damage length. Int. J. Fatigue 2020, 141, 105864. [Google Scholar] [CrossRef]
- Yan, W.C.; Sun, J.M.; Dong, H.M.; Cui, L.K. Investigating NMR-based absolute and relative permeability models of sandstone using digital rock techniques. J. Pet. Sci. Eng. 2021, 207, 109105. [Google Scholar] [CrossRef]
- Li, C.; Wong, L.N. A review of numerical methods for modeling rock fragmentation. Int. J. Rock Mech. Min. Sci. 2020, 136, 104429. [Google Scholar]
- Zhang, K.Y.; Liu, F.; Xia, K.W.; Xu, Y.; Dong, P.; Yu, C.Y. On the calibration and verification of Voronoi-based discontinuous deformation analysis for modeling rock fracture. J. Rock Mech. Geotech. Eng. 2023, 15, 2025–2038. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, Z.K.; Arif, M.; Lebedev, M.; Busch, A.; Sarmadivaleh, M.; Iglauer, S. Carbonate rock mechanical response to CO₂ flooding evaluated by a combined X-ray computed tomography: DEM method. J. Nat. Gas Sci. Eng. 2020, 84, 103675. [Google Scholar] [CrossRef]
- Wu, M.Y.; Gao, K.; Liu, J.; Song, Z.L.; Huang, X.L. Influence of rock heterogeneity on hydraulic fracturing: A parametric study using the combined finite-discrete element method. Int. J. Solids Struct. 2022, 234–235, 111293. [Google Scholar] [CrossRef]
- Breithaupt, T.; Hansen, L.N.; Toppaladoddi, S.; Katz, R.F. The role of grain-environment heterogeneity in normal grain growth: A stochastic approach. Acta Mater. 2021, 209, 116699. [Google Scholar] [CrossRef]
- Liu, G.; Cai, M.; Huang, M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity. Comput. Geotech. 2018, 104, 358–372. [Google Scholar] [CrossRef]
- Nagaso, M.; Mikada, H.; Takekawa, J. The role of rock strength heterogeneities in complex hydraulic fracture formation: Numerical simulation approach for the comparison to the effects of brittleness. J. Pet. Sci. Eng. 2019, 172, 572–587. [Google Scholar] [CrossRef]
- Feng, W.Z.; Gao, L.F.; Qu, M.; Zhou, L.; Dai, Y.W.; Yang, K. An improved singular curved boundary integral evaluation method and its application in dual BEM analysis of two-and three-dimensional crack problems. Eur. J. Mech. A/Solids 2020, 84, 104071. [Google Scholar] [CrossRef]
- Wang, L.; Xu, F.; Yang, Y. An improved total lagrangian SPH method for modeling solid deformation and damage. Eng. Anal. Bound. Elem. 2021, 133, 286–302. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sloan, S.W.; Sheng, D.C.; Yang, S.Q.; Tang, C.A. Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. Int. J. Solids Struct. 2014, 51, 1132–1148. [Google Scholar] [CrossRef]
- Munjiza, A.; Andrews, K.R. Discrete element modeling of rock failure. Rock Mech. Rock Eng. 2017, 50, 553–575. [Google Scholar]
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Int. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Peng, Y.; Kondo, D. A numerical simulation of rock fracture using lattice Boltzmann method. Eng. Fract. Mech. 2011, 78, 2843–2852. [Google Scholar]
- Li, S.F.; Liu, W.K. Meshfree particle methods and their applications. ASME Appl. Mech. Rev. 2002, 55, 1–34. [Google Scholar] [CrossRef]
- Kavvadas, M.; Amorosi, A. A constitutive model for structured soils. Géotechnique 2000, 50, 263–273. [Google Scholar] [CrossRef]
- Savvides, A.A.; Papadrakakis, M. A computational study on the uncertainty quantification of failure of clays with a modified Cam-Clay yield criterion. SN Appl. Sci. 2021, 3, 659. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion–2002 Edition. Proc. NARMS-TAC Conf. 2002, 1, 267–273. [Google Scholar]
- O’Connor, K.M.; Gracie, R. Advancements in finite element modeling of rock fracture: A review. J. Geotech. Geoenviron. Eng. 2019, 145, 04019068. [Google Scholar]
- Zhu, Y.; Liu, C.; Liu, H.; Kou, Y.D.; Shi, B. A multi-field and fluid-solid coupling method for porous media based on DEM-PNM. Comput. Geotech. 2023, 154, 105118. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 1999, 45, 601–620. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209. [Google Scholar] [CrossRef]
- Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005, 83, 1526–1535. [Google Scholar] [CrossRef]
- Bobaru, F.; Zhang, G.F. Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 2015, 196, 59–98. [Google Scholar] [CrossRef]
- Fan, H.F.; Bergel, G.L.; Li, S.F. A hybrid Peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive. Int. J. Impact Eng. 2015, 87, 14–27. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, X.; Liu, Q.S. Numerical investigation of rock heterogeneity effect on rock dynamic strength and failure process using cohesive fracture model. Eng. Geol. 2015, 197, 198–210. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Liu, H.Y.; Roquete, M.; Kou, S.Q.; Lindqvist, P.A. Characterization of rock heterogeneity and numerical verification. Eng. Geol. 2004, 72, 89–119. [Google Scholar] [CrossRef]
- Momber, A.W. A transition function for the solid particle erosion of rocks. Wear 2015, 328, 348–355. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image-based numerical modeling method for prediction of in homogeneous rock failure. Int. J. Rock Mech. Min. Sci. 2004, 41, 939–957. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G.; Fan, C.; Liu, X.L.; Wu, M.M. Grain-scale reconstruction and simulation of coal mechanical deformation and failure behaviors using combined SEM digital rock data and DEM simulator. Powder Technol. 2020, 360, 1305–1320. [Google Scholar] [CrossRef]
- Chen, J.F.; Zhao, Z.H.; Zhang, J.T. Predicting peak shear strength of rock fractures using tree-based models and convolutional neural network. Comput. Geotech. 2024, 166, 105965. [Google Scholar] [CrossRef]
- Savvides, A.A.; Antoniou, A.A.; Papadopoulos, L.; Monia, A.; Kofina, K. An estimation of clayey-oriented rock mass material properties, sited in Koropi, Athens, Greece, through feed-forward neural networks. Geotechnics 2023, 3, 975–988. [Google Scholar] [CrossRef]
- Li, T.Y.; Zhang, Q.; Xia, X.Z.; Gu, X. A peridynamic model for heterogeneous concrete materials. Appl. Math. Mech. 2018, 39, 913–924. [Google Scholar]
- Zhao, S.J.; Zhang, Q.; Zhang, W.Z.; Miao, Y.S.; Zhao, X.B. Optimization study on the width of narrow coal pillar along the goaf tunnel with peridynamics. Chin. J. Solids Mech. 2023, 054. [Google Scholar] [CrossRef]
- Hu, W.K.; Ha, Y.D.; Bobaru, F. Numerical Integration in Peridynamics; Technical Report; University of Nebraska-Lincoln: Lincoln, NH, USA, 2010. [Google Scholar]
- Kaczmarek, M.; Goueygou, M. Dependence of elastic properties of materials on their porosity: Review of models. J. Porous Media 2006, 9, 335–355. [Google Scholar] [CrossRef]
- Manoylov, A.; Borodich, F.M.; Evans, H.P. Modelling of elastic properties of sintered porous materials. Proc. Math. Phys. Eng. Sci. 2013, 469, 20120689. [Google Scholar] [CrossRef]
- Feng, Z.C.; Zhao, Y.S.; Wen, Z.M. Percolation mechanism of fractured coal rocks as dual-continua. Chin. J. Rock Mech. Eng. 2005, 24, 236–240. [Google Scholar]
- Chen, Z.G.; Sina, N.; Bobaru, F. A peridynamic model for brittle damage and fracture in porous materials. Int. J. Rock Mech. Min. Sci. 2019, 122, 104059. [Google Scholar] [CrossRef]
Density | Young’s Modulus | Fracture Energy Density | Poisson’s Ratio |
---|---|---|---|
2483 kg/m3 | 7.2 GPa | 23 N/m | 1/3 |
Density | Young’s Modulus | Fracture Energy Density | Poisson’s Ratio |
---|---|---|---|
2460 kg/m3 | 13.3 GPa | 85 N/m | 1/3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhao, S.; Zhang, W.; Zhao, X. Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials. Buildings 2024, 14, 158. https://doi.org/10.3390/buildings14010158
Xu W, Zhao S, Zhang W, Zhao X. Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials. Buildings. 2024; 14(1):158. https://doi.org/10.3390/buildings14010158
Chicago/Turabian StyleXu, Wei, Shijun Zhao, Weizhao Zhang, and Xinbo Zhao. 2024. "Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials" Buildings 14, no. 1: 158. https://doi.org/10.3390/buildings14010158
APA StyleXu, W., Zhao, S., Zhang, W., & Zhao, X. (2024). Numerical Simulation of Crack Propagation and Branching Behaviors in Heterogeneous Rock-like Materials. Buildings, 14(1), 158. https://doi.org/10.3390/buildings14010158