The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites
Abstract
:1. Introduction
2. Materials and Methods
- ―
- Portladcement CEM I 52,5H GOST 31108-2020 (LLC « Heidelbergcement Rus »), R2 = 28.8 MPа, R28 = 62.9 MПа, normal consistency = 30.4%, beginning of setting—154 min.; uniform change in volume (expansion)—0.1%; C3S = 66.9%; C2S = 12.8%; C3A = 7%; C4AF = 13.2%; SO3 = 3.0%, grinding intensifier—0.02%;
- ―
- Plasticizers based on lignosulfonates (PLS) «LSTM» production LLC «POLIPLAST», Russia, Novomoskovsk; ρbulk = 468 g/dm3, loss on ignition—1–2%; pH 20% solution at 200 °C—7 ± 1;
- ―
- Superplasticizers based on naphthalene formaldehyde (SPNF) «SP-1» production LLC «POLIPLAST», Russia, Novomoskovsk; ρbulk = 585 g/dm3, loss on ignition—1–2%; pH 20% solution at 200 °C—8 ± 1;
- ―
- Superplasticizers based on polycarboxylate esters (PCE) «Melflux 2651» production of the concern BASF, Germany) ρbulk = 456 g/dm3, loss on ignition—1.5–2%; pH 20% solution at 200 °C—7.5 ± 0.5;
- ―
- Microsilica MKU-85 (MC), according to GOST R 58894-2020,
- ―
- Polifraction sand according to GOST 6139-2020 production LLC «Polyquartz». The total balance on the sieves is: 2.00 mm—0%; 1.6 mm—6.8%; 1.00 mm—34.1%; 0.5 mm—66.5%; 0.16 mm—86.3%; 0.08 mm—99.7%.
3. Tests Results
- -
- stirring for 120 s;
- -
- stopping the mixer to remove the mixture stuck to the walls of the mixer bowl within 90 s;
- -
- stirring for 60 s.
4. Conclusions
Limitations of this Study
- Data collection and analysis relate only to the topic of the research being conducted.
- Relatively short observation period.
- Application of an accelerated test method by storing in a solution with an increased pH.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanton, T.E. Influence of cement and aggregate on concrete expansion. In Engineering News-Record; McGraw-Hill: New York, NY, USA, 1940; pp. 59–61. [Google Scholar]
- Stanton, T.E. Expansion of concrete through reaction between cement and aggregate. Proc. Am. Soc. Civ. Eng. 1940, 66, 1781–1811. [Google Scholar] [CrossRef]
- Ivanov, F.M.; Lobarskaya, G.V.; Rosental, N.K. Interaction of concrete aggregates with cement alkalis and additives. Concr. Reinf. Concr. 1995, 1, 15–18. [Google Scholar]
- Moskvin, V.M.; Royak, G.S. Corrosion of Concrete under the Action of Cement Alkalis on Aggregate Silica; Gosstroyizda: Moscow, Russia, 1962; 164p. [Google Scholar]
- Yan, Y.; Yang, S.Y.; Miron, G.D.; Collings, I.E.; L'Hôpital, E.; Skibsted, J.; Winnefeld, F.; Scrivener, K.; Lothenbach, B. Lothenbach Effect of alkali hydroxide on calcium silicate hydrate (C-S-H). Cem. Concr. Res. 2022, 151, 106636. [Google Scholar] [CrossRef]
- Bagheri, M.; Lothenbach, B.; Scrivener, K. Scrivener The effect of paste composition, aggregate mineralogy and temperature on the pore solution composition and the extent of ASR expansion. Mater. Struct. 2022, 55, 192. [Google Scholar] [CrossRef]
- Davidyuk, A.N.; Orlov, A.D.; Davidyuk, A.A. Method of making a mixture for alkaline corrosion resistant lightweight concrete. Application No. 2021139673 RU 2788912 C1, 25 January 2023. Available online: https://findpatent.ru/patent/278/2788912.html (accessed on 8 November 2023).
- Ustyugov, A.S.; Chelovan, I.S.; Shepelenko, T.S. Corrosion resistance of a modified cement composite in an aggressive environment. In Selected reports of the 68th University Scientific and Technical Conference of Students and Young Scientists; Tomsk State University of Architecture and Civil Engineering: Tomsk, Russia, 2022; pp. 506–508. [Google Scholar]
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D. Thomas Alkali—Silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, J.; Ye, G.; De Schutter, G. De Schutter Insights in the chemical fundamentals of ASR and the role of calcium in the early stage based on a 3D reactive transport model. Cement Concr. Res. 2022, 157, 106778. [Google Scholar] [CrossRef]
- Rakhinbaev, S.M.; Tolipina, N.M.; Bales, A.A. The influence of plasticizer additives on internal corrosion of concrete. Innov. Mater. Technol. Omsk 2013, 4, 195–197. [Google Scholar]
- Leemann, A.; Lothenbach, B.; Thalmann, C. Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction. Constr. Build. Mater. 2011, 25, 344–350. [Google Scholar] [CrossRef]
- Kochetkov, A.V.; Yankovskiy, L.V. Project for flexible production of multicomponent mixtures of deicing materials. Transport. Transport facilities. Ecology. 2014, 1, 65–78. [Google Scholar]
- Antolik, A.; Jozwiak-Niedzwiedzka, D. Assessment of the alkali-silica reactivity potential in granitic rocks. Constr. Build. Mater. 2021, 295, 123690. [Google Scholar] [CrossRef]
- Romenenko, I.I. Resistance of aggregates in cement stone in ensuring the durability of structures. Reg. Archit. Constr. 2019, 2, 32–38. [Google Scholar]
- Kramar, L.Y.; Trofimov, B.Y.; Gamaliy, E.A.; Chernih, T.N.; Zimin, V.V. Modifiers for Cement Concrete and Mortars (Technical Characteristics and Mechanism of Action); Pero: Chelyabinsk, Russia, 2012; 202p. [Google Scholar]
- Usherov-Marshak, A.B. New Generation Supplements; Colorit: Kharkov, Ukraine, 2005; pp. 45–50. [Google Scholar]
- Carrasquillo, R.L.; Snow, P.G. Effect of fly ash on alkali-aggregate reaction in concrete. Mater. J. 1987, 84, 299–305. [Google Scholar]
- ACI 234R-06; Guide for the Use of Silica Fume in Concrete. ACI: Indianapolis, IN, USA; p. 63.
- Nagrockienė, D.; Rutkauskas, A. The effect of fly ash additive on the resistance of concrete to alkali silica reaction. Constr. Build. Mater. 2019, 201, 599–609. [Google Scholar] [CrossRef]
- Žvironaite, J.; Malaishkenė, J.; Pranckevicienė, J.; Shkamat, E.; Stonis, R. The influence of mineral additives on the development of alkali corrosion in Portland cement concrete with reactive gravel filler. Cem. Its Appl. 2020, 2, 64–69. [Google Scholar]
- Lindgard, J. Alkali-silica reactions (ASR): Literature review on parameters infl uencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243. [Google Scholar] [CrossRef]
- Diamond, S. Alkali-aggregate reactions in concrete—Pore solution effects. In Proceedings of the 6th International Conference on AAR in Concrete, Denmark, Copenhagen, 22–25 June 1983; pp. 155–167. [Google Scholar]
- Duchesne, J.; Bérubé, M.A. Effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Part 2 Effect on the pore solution chemistry. Cem. Concr. Res. 1994, 24, 221–230. [Google Scholar] [CrossRef]
- Sorvacheva, Y.A.; Petrova, T.M. The influence of the granulometric composition of metakaolin on the inhibition of the alkali-silicate reaction. Cem. Its Use 2014, 3, 102–106. [Google Scholar]
- Shehata, M.H.; Thomas, M.D. Use of ternary blends containing silica fume and fly ash to suppress expansion due to alkali-silica reaction in concrete. Cem. Concr. Res. 2002, 32, 341–349. [Google Scholar] [CrossRef]
- Sorvacheva, Y.A.; Petrova, T.M.; Gibson, K.; Fedchenko, A.A. The influence of superplasticizers based on polycarboxylates on alkali silicate expansion of concrete. Constr. Mater. 2014, 5, 15–21. [Google Scholar]
- Bazhenov, Y.M.; Demyanova, V.S.; Kalashnikov, V.I. Modified High Quality Concrete; Publishing House of the Association of Construction Universities: Moscow, Russia, 2006; 368p. [Google Scholar]
- Ratinov, V.B.; Rosenberg, T.I. Additives to Concrete; Stroyizdat: Moscow, Russia, 1989; 188p. [Google Scholar]
- Demyanenko, O.V.; Kopanitsa, N.O.; Sarkisov, Y.S.; Gorshkova, A.V. Cement compositions modified with combined nanodispersed additives. Bull. Tomsk. State Univ. Archit. Civ. Eng. 2017, 4, 101–110. [Google Scholar]
- Lothenbach, B.; Winnefeld, F.; Figi, R. The influence of superplasticizers on the hydration of Portland cement. In Proceedings of the 12th International Congress on the Chemistry of Cement, Montreal, QC, Canada, 8–13 July 2007. W1-05.3. [Google Scholar]
- Schwarz, W. Novel cement matrices by accelerated hydration of the ferrite phase in Portland cement via chemical activation: Kinetics and cementitious properties. Adv. Cem. Based Mater. 1995, 2, 189–200. [Google Scholar] [CrossRef]
- Paul, E. Influence of superplasticizer on workability and strength of ambient cured alkali activated mortar. Clean. Mater. 2022, 6, 100152. [Google Scholar] [CrossRef]
- Hemstad, P.; Zuschlag, P.; Kjellemyr, P.; Lindgård, J.; Kjellsen, K.O.; Rønning, T.F.; Justnes, H.; De Weerdt, K. Alkali Metal Distribution in Composite Cement Pastes and its Relation to Accelerated Asr Tests (under review). Cem. Concr. Res. 2023, 173, 107283. [Google Scholar] [CrossRef]
- Uchikawa, H.; Hanehara, S.; Sawaki, D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixtures. Cem. Concr. Res. 1997, 27, 37–50. [Google Scholar] [CrossRef]
- Kim, B.G.; Jiang, S.J.; Aïtcin, P.C. Influence of molecular weight of PNS superplasticizers on the properties of cement pastes containing different alkali contents. In The Role of Admixtures in High Performance Concrete; Cabrera, J.G., Rivera-Villarreal, R., Eds.; RILEM Proceedings PRO5; RILEM Publications: Champs sur Marne, France, 1999; pp. 97–111. [Google Scholar]
- ASTM C 227-03; Standard Test Method for Potential Alkali Reactivity of Cement–Aggregate Combinations (Mortar-Bar Method). Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2004; pp. 141–145.
- Wang, H.; Gillott, J.E. The effect of superplasticizers on alkali-silica reaction. In Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, 17–20 July 1989; pp. 187–192. [Google Scholar]
- ASTM C 1260-23; Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2023; p. 5.
- Tosun, K.; Felekoglu, B.; Baradan, B. The effect of cement alkali content on ASR susceptibility of mortars incorporating admixtures. Build. Environ. 2007, 42, 3444–3453. [Google Scholar] [CrossRef]
- Eleneva, A. Development of a Complex Additive for Accelerated Hardening of Cement Stone. Ph.D. Thesis, Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 2017; 17p. Available online: https://diss.muctr.ru/media/dissertations/2017/04/%D0%94%D0%B8%D1%81%D1%81%D0%B5%D1%80%D1%82%D0%B0%D1%86%D0%B8%D1%8F_%D0%95%D0%BB%D0%B5%D0%BD%D0%BE%D0%B2%D0%B0_%D0%90.%D0%90..pdf (accessed on 8 November 2023).
No | Name | Microsilica Content (MC) | Grams in One Mix | % of m(cem) Dry | W/C | ||||
---|---|---|---|---|---|---|---|---|---|
of the Composition | Portladcement | Sand | MC | PCE | SPNF-1 | PLS | |||
1 | Contr. | 0% MC | 600 | 1350 | - | - | - | - | 0.55 |
2 | PCE | 600 | 1350 | - | 0.5 | - | - | 0.23 | |
3 | SPNF-1 | 600 | 1350 | - | - | 0.5 | - | 0.34 | |
4 | PLS | 600 | 1350 | - | - | - | 0.5 | 0.35 | |
5 | 10%MC + PCE | 10% MC from m(cem) | 600 | 1290 | 60 | 0.5 | - | - | 0.28 |
6 | 10%MC + SPNF-1 | 600 | 1290 | 60 | - | 0.5 | - | 0.36 | |
7 | 10%MC+ PLS | 600 | 1290 | 60 | - | - | 0.5 | 0.38 | |
8 | 20%MC + PCE | 20% MC from m(cem) | 600 | 1230 | 120 | 0.5 | - | - | 0.35 |
9 | 20%MC + SPNF-1 | 600 | 1230 | 120 | - | 0.5 | - | 0.43 | |
10 | 20%MC + PLS | 600 | 1230 | 120 | - | - | 0.5 | 0.43 | |
11 | 30%MC + PCE | 30% MC from m(cem) | 600 | 1170 | 180 | 0.5 | - | - | 0.45 |
12 | 30%MC + SPNF-1 | 600 | 1170 | 180 | - | 0.5 | - | 0.53 | |
13 | 20%MC + PLS | 600 | 1170 | 180 | - | - | 0.5 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pustovgar, A.P.; Krivoborodov, Y.R.; Adamtsevich, A.O.; Elenova, A.A.; Butenko, K.A.; Kramerov, D.V.; Bugaev, A.M. The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites. Buildings 2024, 14, 172. https://doi.org/10.3390/buildings14010172
Pustovgar AP, Krivoborodov YR, Adamtsevich AO, Elenova AA, Butenko KA, Kramerov DV, Bugaev AM. The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites. Buildings. 2024; 14(1):172. https://doi.org/10.3390/buildings14010172
Chicago/Turabian StylePustovgar, Andrey P., Yury R. Krivoborodov, Aleksey O. Adamtsevich, Aurika A. Elenova, Kseniya A. Butenko, Dmitrii V. Kramerov, and Anton M. Bugaev. 2024. "The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites" Buildings 14, no. 1: 172. https://doi.org/10.3390/buildings14010172
APA StylePustovgar, A. P., Krivoborodov, Y. R., Adamtsevich, A. O., Elenova, A. A., Butenko, K. A., Kramerov, D. V., & Bugaev, A. M. (2024). The Impact of Plasticizers on the Nature of the Alkali-Silicate Corrosion in Cement Composites. Buildings, 14(1), 172. https://doi.org/10.3390/buildings14010172