The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer–Cement Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymer Modifier
2.2. Mineral Addition
2.3. Cement
2.4. Sand
2.5. Test Methods
3. Modified Polymer–Cement Composite Material Design Model
3.1. Research Program and Methodology
3.2. PCC Composites Containing Waste Perlite Powder
4. Results and Analysis
4.1. Flexural Strength
4.2. Compressive Strength
4.3. Tensile Strength
4.4. Microstructural Observations
5. Conclusions
- Cement substitution with waste perlite powder did not deteriorate the flexural strength of the PCC mortars containing more than 10% of the polymer modifier. At a low polymer-modifier content in PCC mortars (2.93%), the flexural strength decreases by 65% with a 6-fold increase in waste content.
- Considering the compressive strength, a minor reduction of 2% and 5% after 28 and 90 days, respectively, was observed for the PCC mortars containing more than 10% of the polymer modifier. At a low polymer-modifier content in PCC mortars (2.93%), the compressive strength decreases by 81% with a 6-fold increase in waste content.
- Considering the tensile strength, a minor reduction of 4% and 2% after 28 and 90 days, respectively, was observed for the PCC mortars containing more than 10% of the polymer modifier. At a low polymer-modifier content in PCC mortars (2.93%), the tensile strength decreases by 73% with a 6-fold increase in waste content.
- Waste perlite powder can be used as a substitute for part of the cement binder in polymer–cement composites; such composites have technical characteristics similar to conventional polymer–cement composites.
- The mechanical properties of polymer–cement composites containing waste pearlite powder depend more on the content of the polymer modifier than on the presence of the powder at higher polymer contents in mortars.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lefebure, V. Improvements in or Relating to Concrete, Cements, Plasters and the Like. British Patent 217279, 5 June 1924. [Google Scholar]
- Fowler, D.W. Polymers in concrete: A vision for the 21st century. Cem. Concr. Compos. 1999, 21, 449–452. [Google Scholar] [CrossRef]
- Giustozzi, F. Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Constr. Build. Mater. 2016, 111, 502–512. [Google Scholar] [CrossRef]
- Jusoh, S.N.; Mohamad, H.; Marto, A.; Yunus, N.M.; Kasim, F. Segment’s joint in precast tunnel lining design. J. Teknol. 2015, 77, 91–98. [Google Scholar] [CrossRef]
- Jeongyun, D.; Yangseob, S. Performance of polymer-modified self-leveling mortars with high polymer-cement ratio for floor finishing. Cem. Concr. Res. 2003, 33, 1497–1505. [Google Scholar] [CrossRef]
- Czarnecki, L.; Łukowski, P. Polymer-Cement Concretes. Cem. Wapno Beton 2010, 5, 243–258. [Google Scholar]
- Rashid, A.S.A.; Shirazi, M.G.; Mohamad, H.; Sahdi, F. Bearing capacity of sandy soil treated by Kenaf fibre geotextile. Environ. Earth. Sci. 2017, 76, 431. [Google Scholar] [CrossRef]
- Choi, N.; Ohama, Y.; Demura, K. Basic properties of polyester mortars with waste expanded polystyrene solutions. In Proceedings of the 10th International Congress on Polymers in Concrete, Honolulu, HI, USA, 21–24 May 2001. [Google Scholar]
- Jo, B.W.; Park, S.K.; Park, J.C. Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr. Build. Mater. 2008, 22, 2281–2291. [Google Scholar] [CrossRef]
- Li, Y.; White, D.; Peyton, R.L. Composite material from fly ash and post-consumer PET. Resour. Conserv. Recycl. 1998, 24, 87–93. [Google Scholar] [CrossRef]
- Siddique, R.; Naik, T.R. Properties of concrete containing scrap-tire rubber—An overview. Waste Manag. 2004, 24, 563–569. [Google Scholar] [CrossRef]
- Özkul, M. Effect of aggregate on the properties of epoxy concrete. In Proceedings of the 8th International Congress on Polymers in Concrete, Oostende, Belgium, 3–5 July 1995; pp. 193–198. [Google Scholar]
- Turkmen, I.; Kantarci, A. Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 2007, 42, 2378–2383. [Google Scholar] [CrossRef]
- Silva, L.M.; Ribeiro, R.A.; Labrincha, J.A.; Ferreira, V.M. Role of lightweight fillers on the properties of mixed-binder mortar. Cem. Concr. Compos. 2010, 32, 19–24. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Pichór, W.; Nocuń-Wczelik, W. Study of expanded perlite by-product as the mineral addition to Portland cement. Cem. Wapno Beton 2015, 1, 38–44. [Google Scholar] [CrossRef]
- Kotwica, Ł.; Pichór, W.; Nocuń-Wczelik, W. Study of pozzolanic action of ground waste expanded perlite by means of thermal methods. J. Therm. Anal. 2016, 23, 607–613. [Google Scholar] [CrossRef]
- Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A. Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 2011, 43, 671–676. [Google Scholar] [CrossRef]
- Lanzón, M.; García-Ruiz, P.A. Lightweight cement mortars: Advantages and inconveniences of expanded perlite and its influence on fresh and hardened state and durability. Constr. Build. Mater. 2008, 22, 1798–1806. [Google Scholar] [CrossRef]
- Erdoğan, S.T.; Saglik, A.U. Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cem. Concr. Compos. 2013, 38, 29–39. [Google Scholar] [CrossRef]
- Łagosz, A.; Olszowski, D.; Pichór, W.; Kotwica, Ł. Quantitative determination of processed waste expanded perlite performance as a supplementary cementitious material in low emission blended cement composites. J. Build. Eng. 2021, 40, 102335. [Google Scholar] [CrossRef]
- Yu, L.-H.; Ou, H.; Lee, L.-L. Investigation on pozzolanic effect of perlite powder in concrete. Cem. Concr. Res. 2003, 33, 73–76. [Google Scholar] [CrossRef]
- Urhan, S. Alkali silica reaction and pozzolanic reactions in concrete. Part 2. Observations on expanded perlite aggregate. Cem. Concr. Res. 1987, 17, 465–477. [Google Scholar] [CrossRef]
- Demirboga, R.; Orung, I.; Gül, R. Effects of expanded perlite aggregate and mineral admixtures on the compressive strength of low-density concretes. Cem. Concr. Res. 2001, 31, 1627–1632. [Google Scholar] [CrossRef]
- Erdem, T.K.; Meral, Ç.; Tokyay, M.; Erdoğan, T.Y. Use of perlite as a pozzolanic addition in producing blended cements. Cem. Concr. Compos. 2007, 29, 13–21. [Google Scholar] [CrossRef]
- ASTM C618-08a; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2008.
- USGS 2022—Mineral Commodity Summaries 2022—Perlite. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-perlite.pdf (accessed on 8 September 2023).
- Jaworska, B.; Sokołowska, J.; Łukowski, P.; Jaworski, J. Waste mineral powders as components of polymer-cement composites. Arch. Civ. Eng. 2015, 61, 199–212. [Google Scholar] [CrossRef]
- Łukowski, P.; Sokołowska, J.J.; Adamczewski, G.; Jaworska, B. Waste perlite powder as the potential microfiller of polymer composites. In Mechanics and Materials; Jemioło, S., Lutomirska, M., Eds.; Warsaw University of Technology: Warsaw, Poland, 2012; pp. 193–200. [Google Scholar]
- EN 450-1:2012; Fly Ash for Concrete—Part 1: Definitions, Specifications and Conformity Criteria. European Committee for Standardization: Brussels, Belgium, 2012.
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- PN-B-06714-02; Mineral Aggregates—Testing—Determination of Density with the Use of Le Chatelier Flask. Polish Committee for Standardization: Warsaw, Poland, 1976.
- PN-B-04500; Building Mortars—Testing of Physical and Mechanical Properties. Polish Committee for Standardization: Warsaw, Poland, 1985.
- Zeliaś, A. Statistical Methods; Polish Economic Publishing House: Warsaw, Poland, 2000. [Google Scholar]
- Li, P.; Lu, W.; An, X.; Zhou, L.; Du, S. Effect of Epoxy Latexes on the Mechanical Behavior and Porosity Property of Cement Mortar with Different Degrees of Hydration and Polymerization. Materials 2021, 14, 517. [Google Scholar] [CrossRef] [PubMed]
- Evbuomwan, N. Strengthening effects of microsilica in a polymer modified mortar under different curing regimes. In Proceedings of the 3rd Southern African Conference on Polymers in Concrete, Johannesburg, South Africa, 25–27 November 2019; pp. 15–17. [Google Scholar]
- Top, S.; Vapur, H.; Altiner, M.; Kaya, D.; Ekicibil, A. Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates. J. Mol. Struct. 2020, 1202, 127236. [Google Scholar] [CrossRef]
- Rashad, A.M. A synopsis about perlite as building material—A best practice guide for civil engineer. Constr. Build. Mater. 2016, 121, 338–353. [Google Scholar] [CrossRef]
- Mladenovic, A.; Suput, J.S.; Ducman, V.; Spain, A.S. Alkali-silica reactivity of some frequently used lightweight aggregates. Cem. Concr. Res. 2004, 34, 1809–1816. [Google Scholar] [CrossRef]
- Panagiotopoulou, C.; Angelopoulos, P.Μ.; Kosmidi, D.; Angelou, I.; Sakellariou, L.; Taxiarchou, M. Study of the influence of the addition of closed-structure expanded perlite microspheres on the density and compressive strength of cement pastes. Mater. Today Proc. 2022, 54, 118–124. [Google Scholar] [CrossRef]
- Akyuncu, V.; Sanliturk, F. Investigation of physical and mechanical properties of mortars produced by polymer coated perlite aggregate. J. Build. Eng. 2021, 38, 102182. [Google Scholar] [CrossRef]
- Ragul, P.; Hari, M.N.T.; Arunachelam, N.; Chellapandian, M. An experimental study on the partial replacement of fine aggregate with perlite in cement concrete. Mater. Today Proc. 2022, 68, 1219–1224. [Google Scholar] [CrossRef]
ρ g/cm3 | Dmin, µm | Dmax, µm | S.P., cm2/cm3 | Mean, µm | Median, µm | Variance, µm2 | CV, % | Mode, µm | D50, µm | D90, µm |
---|---|---|---|---|---|---|---|---|---|---|
2.24 | 4.5 | 116.2 | 2123 | 37.0 | 35.1 | 286.2 | 45.8 | 36.8 | 39.2 | 59.0 |
SiO2 | Fe2O3 | Al2O3 | TiO2 | CaO | MgO | SO3 | P2O5 | Na2O | K2O | Cl | F | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
73.74 | 1.25 | 13.12 | 0.08 | 1.23 | 0.03 | 0.01 | 0.02 | 3.42 | 4.20 | 0.07 | 0.05 | 2.78 |
No. | Coded Values | Actual Values | Proportion of the Ingredients, g | ||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | p/c, % (x1) | m/c, % (x2) | Polymer (SA) | Perlite Powder (P) | Cement | Water | Sand | |
1 | −1 | −1 | 2.93 | 2.20 | 6.5 | 4.9 | 215.9 | 110.4 | 662.3 |
2 | −1 | 1 | 2.93 | 12.80 | 6.5 | 28.3 | 192.5 | 110.4 | 662.3 |
3 | 1 | −1 | 17.07 | 2.20 | 36.5 | 4.7 | 209.4 | 107.1 | 642.3 |
4 | 1 | 1 | 17.07 | 12.80 | 36.5 | 27.4 | 186.7 | 107.1 | 642,3 |
5 | −1.414 | 0 | 0 | 7.50 | 0.0 | 16.7 | 205.5 | 111.1 | 666.7 |
6 | 1.414 | 0 | 20.00 | 7.50 | 42.6 | 15.9 | 196.8 | 106.4 | 638.3 |
7 | 0 | −1.414 | 10.00 | 0 | 21.7 | 0.0 | 217.4 | 108.7 | 652.2 |
8 | 0 | 1.414 | 10.00 | 15.00 | 21.7 | 32.6 | 184.8 | 108.7 | 652.2 |
9 | 0 | 0 | 10.00 | 7.50 | 21.7 | 16.3 | 201.1 | 108.7 | 652.2 |
10 | 0 | 0 | 10.00 | 7.50 | 21.7 | 16.3 | 201.1 | 108.7 | 652.2 |
No. | p/c, % | m/c, % | Flexural Strength, MPa | |||||
---|---|---|---|---|---|---|---|---|
28 Days | 90 Days | |||||||
Average | SD | CV, % | Average | SD | CV, % | |||
1 | 2.93 | 2.20 | 9.3 | 0.9 | 9.4 | 9.7 | 0.2 | 2.1 |
2 | 2.93 | 12.80 | 3.2 | 0.1 | 1.8 | 3.4 | 0.2 | 6.1 |
3 | 17.07 | 2.20 | 11.0 | 0.2 | 1.9 | 13.0 | 0.3 | 2.3 |
4 | 17.07 | 12.80 | 10.9 | 0.4 | 3.3 | 12.0 | 0.5 | 4.2 |
5 | 0.0 | 7.50 | 8.1 | 0.2 | 0.0 | 8.4 | 0.5 | 5.9 |
6 | 20.0 | 7.50 | 10.3 | 0.2 | 2.0 | 12.0 | 0.7 | 5.4 |
7 | 10.0 | 0.0 | 10.4 | 0.5 | 4.8 | 11.9 | 0.1 | 0.8 |
8 | 10.0 | 15.0 | 9.2 | 0.6 | 6.0 | 10.4 | 0.1 | 0.7 |
9 | 10.0 | 7.50 | 10.3 | 0.2 | 1.7 | 10.1 | 0.9 | 8.9 |
10 | 10.0 | 7.50 | 10.4 | 0.3 | 0.0 | 10.9 | 0.4 | 3.5 |
No. | p/c, % | m/c, % | Compressive Strength, MPa | |||||
---|---|---|---|---|---|---|---|---|
28 Days | 90 Days | |||||||
Average | SD | CV, % | Average | SD | CV, % | |||
1 | 2.93 | 2.20 | 42.1 | 0.9 | 2.0 | 46.8 | 0.8 | 1.8 |
2 | 2.93 | 12.80 | 7.8 | 0.6 | 8.3 | 9.1 | 0.9 | 9.6 |
3 | 17.07 | 2.20 | 38.7 | 0.5 | 1.2 | 48.0 | 0.9 | 1.9 |
4 | 17.07 | 12.80 | 37.9 | 0.9 | 2.4 | 45.3 | 0.4 | 0.8 |
5 | 0.0 | 7.50 | 37.4 | 2.2 | 5.8 | 40.1 | 1.4 | 3.5 |
6 | 20.0 | 7.50 | 33.6 | 0.9 | 2.8 | 41.9 | 0.8 | 2.0 |
7 | 10.0 | 0.0 | 40.1 | 0.7 | 1.7 | 47.7 | 0.5 | 1.1 |
8 | 10.0 | 15.0 | 35.5 | 1.0 | 2.7 | 39.9 | 1.6 | 3.9 |
9 | 10.0 | 7.50 | 41.1 | 1.6 | 3.9 | 46.3 | 1.8 | 3.8 |
10 | 10.0 | 7.50 | 39.6 | 2.3 | 5.7 | 43.5 | 1.0 | 2.3 |
No. | p/c, % | m/c, % | Tensile Strength, MPa | |||||
---|---|---|---|---|---|---|---|---|
28 Days | 90 Days | |||||||
Average | SD | CV, % | Average | SD | CV, % | |||
1 | 2.93 | 2.20 | 4.4 | 0.1 | 2.3 | 4.5 | 0.2 | 3.8 |
2 | 2.93 | 12.80 | 0.9 | 0.0 | 0.0 | 1.2 | 0.1 | 4.7 |
3 | 17.07 | 2.20 | 5.2 | 0.1 | 1.9 | 5.7 | 0.1 | 1.0 |
4 | 17.07 | 12.80 | 5.0 | 0.4 | 8.1 | 5.6 | 0.1 | 1.8 |
5 | 0.0 | 7.50 | 3.7 | 0.3 | 9.4 | 3.8 | 0.1 | 1.5 |
6 | 20.0 | 7.50 | 4.9 | 0.2 | 3.5 | 5.4 | 0.0 | 0.0 |
7 | 10.0 | 0.0 | 4.8 | 0.4 | 8.5 | 5.2 | 0.1 | 1.9 |
8 | 10.0 | 15.0 | 4.2 | 0.1 | 2.8 | 4.7 | 0.2 | 3.2 |
9 | 10.0 | 7.50 | 4.7 | 0.1 | 1.2 | 4.8 | 0.1 | 1.2 |
10 | 10.0 | 7.50 | 4.5 | 0.1 | 1.3 | 4.8 | 0.1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworska, B.; Stańczak, D.; Łukowski, P. The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer–Cement Composites. Buildings 2024, 14, 181. https://doi.org/10.3390/buildings14010181
Jaworska B, Stańczak D, Łukowski P. The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer–Cement Composites. Buildings. 2024; 14(1):181. https://doi.org/10.3390/buildings14010181
Chicago/Turabian StyleJaworska, Beata, Dominika Stańczak, and Paweł Łukowski. 2024. "The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer–Cement Composites" Buildings 14, no. 1: 181. https://doi.org/10.3390/buildings14010181
APA StyleJaworska, B., Stańczak, D., & Łukowski, P. (2024). The Influence of Waste Perlite Powder on Selected Mechanical Properties of Polymer–Cement Composites. Buildings, 14(1), 181. https://doi.org/10.3390/buildings14010181