Numerical Study of Thermal Efficiency in Light-Gauge Steel Panels Designed with Varying Insulation Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Numerical Simulation and Governing Equations
2.3. Numerical Finite Element Modelling
2.3.1. General
2.3.2. Thermal Conductivity Properties
2.3.3. Boundary Conditions and Meshing
2.4. Validation of Thermal Finite Element Models
2.4.1. General
2.4.2. Test Case 1 by ISO 10211 [36]
2.4.3. Test Case 2 by ISO 10211 [36]
2.4.4. LGSPs by Santos et al. [37]
2.5. Parametric Study
2.5.1. General
2.5.2. Computational Specimens
3. Results and Discussion
3.1. Walls with a Thickness of 275 mm
3.2. Walls with a Thickness of 325 mm
3.3. Comparison between Walls with Thicknesses of 275 mm and 325 mm
3.4. Comparison of LGSP Results with 3D-Printed Concrete Panels
4. Design Approach
4.1. General
4.2. Design Equations
4.3. Optimum Thickness of Insulation Material
5. Conclusions
- Increasing the insulation layer thickness led to a decrease in the U-value of the wall.
- The U-value of LGSP walls is directly associated with the thermal conductivity of the insulation material, with a lower thermal conductivity resulting in lower U-values.
- Walls fully insulated with E-PLA exhibited the lowest U-values for both 275 mm and 325 mm thicknesses.
- As wall thickness increased, U-values decreased, with 325 mm thick walls showing lower U-values for each h/H ratio compared to 275 mm thick walls.
- Utilizing 80% of insulation materials for 275 mm thick walls and 60% for 325 mm thick walls achieved more than a 65% reduction in U-values compared to walls with no cavity insulation.
- A simplified and unified equation was developed to predict the U-values for LGSP walls with varying insulation ratios.
- The optimum h/H ratios for new builds and existing building extensions were found to be around 0.9 and 0.7 for 275 mm and 325 mm thick walls, respectively, with stone wool and E-PLA being the only materials that met the standard U-values for 275 mm thick walls. For internal and external insulation and cavity insulations, the optimum ratios were 0.3 and 0.05 for both wall thicknesses.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gatheeshgar, P.; Poologanathan, K.; Gunalan, S.; Shyha, I.; Sherlock, P.; Rajanayagam, H.; Nagaratnam, B. Development of affordable steel-framed modular buildings for emergency situations (COVID-19). Structures 2021, 31, 862–875. [Google Scholar] [CrossRef]
- Gatheeshgar, P.; Poologanathan, K.; Gunalan, S.; Tsavdaridis, K.D.; Nagaratnam, B.; Iacovidou, E. Optimised cold-formed steel beams in modular building applications. J. Build. Eng. 2020, 32, 101607. [Google Scholar] [CrossRef]
- Tadeu, A.; Simões, I.; Simões, N.; Prata, J. Simulation of dynamic linear thermal bridges using a boundary element method model in the frequency domain. Energy Build. 2011, 43, 3685–3695. [Google Scholar] [CrossRef]
- Santos, P.; Martins, C.; Simões da Silva, L. Thermal performance of lightweight steel-framed construction systems. Metall. Res. Technol. 2014, 111, 329–338. [Google Scholar] [CrossRef]
- Lawson, R.M. ED011—Light Steel Residential Buildings; Steel Construction Institute: Ascot, UK, 2012. [Google Scholar]
- P402; Light Steel Framing in Residential Construction. Steel Construction Institute: Ascot, UK, 2015.
- BS EN 520:2004+A1:2009; Gypsum Plasterboards—Definitions, Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2009.
- Santos, P.; Gonçalves, M.; Martins, C.; Soares, N.; Costa, J.J. Thermal transmittance of lightweight steel framed walls: Experimental versus numerical and analytical approaches. J. Build. Eng. 2019, 25, 100776. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Cho, B.-H.; Jung, D.-I.; Lee, J.-S.; Lee, K.-W. Experimental Study on the Cyclic Behavior of Integrated Panels for Cold-Formed Steel Shear Wall System. Appl. Sci. 2020, 10, 1649. [Google Scholar] [CrossRef]
- Liang, H.; Roy, K.; Fang, Z.; Lim, J.B.P. A Critical Review on Optimization of Cold-Formed Steel Members for Better Structural and Thermal Performances. Buildings 2022, 12, 34. [Google Scholar] [CrossRef]
- Gunalan, S.; Kolarkar, P.; Mahendran, M. Experimental study of load bearing cold-formed steel wall systems under fire conditions. Thin-Walled Struct. 2013, 65, 72–92. [Google Scholar] [CrossRef]
- Gatheeshgar, P.; Poologanathan, K.; Thamboo, J.; Roy, K.; Rossi, B.; Molkens, T.; Perera, D.; Navaratnam, S. On the fire behaviour of modular floors designed with optimised cold-formed steel joists. Structures 2021, 30, 1071–1085. [Google Scholar] [CrossRef]
- Usefi, N.; Sharafi, P.; Mortazavi, M.; Ronagh, H.; Samali, B. Structural performance and sustainability assessment of hybrid-cold formed modular steel frame. J. Build. Eng. 2021, 34, 101895. [Google Scholar] [CrossRef]
- Zalewski, L.; Lassue, S.; Rousse, D.; Boukhalfa, K. Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Convers. Manag. 2010, 51, 2869–2877. [Google Scholar] [CrossRef]
- Martins, C.; Santos, P.; da Silva, L.S. Lightweight steel-framed thermal bridges mitigation strategies: A parametric study. J. Build. Phys. 2015, 39, 342–372. [Google Scholar] [CrossRef]
- Roque, E.; Santos, P. The Effectiveness of Thermal Insulation in Lightweight Steel-Framed Walls with Respect to Its Position. Buildings 2017, 7, 13. [Google Scholar] [CrossRef]
- Jan Kosny, J.E.C. Thermal evaluation of several configurations of insulation and structural materials for some metal stud walls. Energy Build. 1995, 22, 157–163. [Google Scholar] [CrossRef]
- Santos, P.; Mateus, D. Experimental assessment of thermal break strips performance in load-bearing and non-load-bearing LSF walls. J. Build. Eng. 2020, 32, 101693. [Google Scholar] [CrossRef]
- Liu, C.; Mao, X.; He, L.; Chen, X.; Yang, Y.; Yuan, J. A new demountable light-gauge steel framed wall: Flexural behavior, thermal performance and life cycle assessment. J. Build. Eng. 2022, 47, 103856. [Google Scholar] [CrossRef]
- Al-Radhi, Y.; Roy, K.; Liang, H.; Ghosh, K.; Clifton, G.C.; Lim, J.B.P. Thermal performance of different construction materials used in New Zealand dwellings comparatively to international practice—A systematic literature review. J. Build. Eng. 2023, 72, 106346. [Google Scholar] [CrossRef]
- Rajanayagam, H.; Upasiri, I.; Poologanathan, K.; Gatheeshgar, P.; Sherlock, P.; Konthesingha, C.; Nagaratnam, B.; Perera, D. Thermal Performance of LSF Wall Systems with Vacuum Insulation Panels. Buildings 2021, 11, 621. [Google Scholar] [CrossRef]
- Kapoor, D.R.; Peterman, K.D. Quantification and prediction of the thermal performance of cold-formed steel wall assemblies. Structures 2021, 30, 305–315. [Google Scholar] [CrossRef]
- Lupan, L.M.; Manea, D.L.; Moga, L.M. Improving Thermal Performance of the Wall Panels Using Slotted Steel Stud Framing. Procedia Technol. 2016, 22, 351–357. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, L.; Nan, B.; Wei, S. Thermal Performance of Slotted Light Steel-Framed Composite Wall. Energies 2023, 16, 2482. [Google Scholar] [CrossRef]
- Santos, P.; Poologanathan, K. The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls. Sustainability 2021, 13, 3970. [Google Scholar] [CrossRef]
- Gatheeshgar, P.; Alsanat, H.; Poologanathan, K.; Gunalan, S.; Degtyareva, N.; Wanniarachchi, S.; Fareed, I. Web crippling of slotted perforated Cold-Formed Steel channels under EOF load case: Simulation and design. J. Build. Eng. 2021, 44, 103306. [Google Scholar] [CrossRef]
- Gatheeshgar, P.; Alsanat, H.; Poologanathan, K.; Gunalan, S.; Degtyareva, N.; Hajirasouliha, I. Web crippling behaviour of slotted perforated cold-formed steel channels: IOF load case. J. Constr. Steel Res. 2022, 188, 106974. [Google Scholar] [CrossRef]
- Lohmann, V.; Santos, P. Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments. Energies 2020, 13, 2744. [Google Scholar] [CrossRef]
- Gervásio, H.; Santos, P.; da Silva, L.S.; Lopes, A.M.G. Influence of thermal insulation on the energy balance for cold-formed buildings. Adv. Steel Constr. 2010, 6, 742–766. [Google Scholar]
- Kaynakli, O. A review of the economical and optimum thermal insulation thickness for building applications. Renew. Sustain. Energy Rev. 2012, 16, 415–425. [Google Scholar] [CrossRef]
- Soares, N.; Martins, C.; Gonçalves, M.; Santos, P.; da Silva, L.S.; Costa, J.J. Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review. Energy Build. 2019, 182, 88–110. [Google Scholar] [CrossRef]
- Roque, E.; Santos, P.; Pereira, A.C. Thermal and sound insulation of lightweight steel-framed façade walls. Sci. Technol. Built Environ. 2018, 25, 156–176. [Google Scholar] [CrossRef]
- Perera, D.; Poologanathan, K.; Gillie, M.; Gatheeshgar, P.; Sherlock, P.; Nanayakkara, S.M.A.; Konthesingha, K.M.C. Fire performance of cold, warm and hybrid LSF wall panels using numerical studies. Thin-Walled Struct. 2020, 157, 107109. [Google Scholar] [CrossRef]
- Sun, K.; Zheng, C.; Wang, X. Thermal performance and thermal transmittance prediction of novel light-gauge steel-framed straw walls. J. Build. Eng. 2023, 67, 105973. [Google Scholar] [CrossRef]
- Perera, D.; Upasiri, I.R.; Poologanathan, K.; Gatheeshgar, P.; Sherlock, P.; Hewavitharana, T.; Suntharalingam, T. Energy performance of fire rated LSF walls under UK climate conditions. J. Build. Eng. 2021, 44, 103293. [Google Scholar] [CrossRef]
- ISO 10211; Thermal Bridges in Building Construction—Heat Flows and Surface Temperatures—Detailed Calculations. International Organization for Standardization: Geneva, Switzerland, 2017.
- Santos, P.; Lemes, G.; Mateus, D. Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study. Energies 2019, 12, 2671. [Google Scholar] [CrossRef]
- ISO 6946; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. International Organization for Standardization: Geneva, Switzerland, 2017.
- Santos, P.; Lemes, G.; Mateus, D. Analytical Methods to Estimate the Thermal Transmittance of LSF Walls: Calculation Procedures Review and Accuracy Comparison. Energies 2020, 13, 840. [Google Scholar] [CrossRef]
- THERM. Software Version 7.8. Available online: https://windows.lbl.gov/tools/therm/software-download (accessed on 3 March 2023).
- Alkhalidi, A.; Hatuqay, D. Energy efficient 3D printed buildings: Material and techniques selection worldwide study. J. Build. Eng. 2020, 30, 101286. [Google Scholar] [CrossRef]
- Ravula, R.; Gatheeshgar, P. On the thermal-energy performance of 3D printed concrete wall panels designed with varying insulation ratios. J. Build. Eng. 2023, 77, 107374. [Google Scholar] [CrossRef]
- HM Government. The Building Regulations 2010. In Conservation of Fuel and Power: Approved Document L. Available online: https://assets.publishing.service.gov.uk/media/63d8edbde90e0773d8af2c98/Approved_Document_L__Conservation_of_fuel_and_power__Volume_2_Buildings_other_than_dwellings__2021_edition_incorporating_2023_amendments.pdf (accessed on 3 March 2023).
Grid No. | Temperature (°C) | Grid No. | Temperature (°C) | Grid No. | Temperature (°C) | Grid No. | Temperature (°C) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
TISO | TTHERM | TISO | TTHERM | TISO | TTHERM | TISO | TTHERM | ||||
1 | 9.7 | 9.7 | 2 | 13.4 | 13.4 | 3 | 14.7 | 14.7 | 4 | 15.1 | 15.1 |
5 | 5.3 | 5.3 | 6 | 8.6 | 8.6 | 7 | 10.3 | 10.3 | 8 | 10.8 | 10.8 |
9 | 3.2 | 3.2 | 10 | 5.6 | 5.6 | 11 | 7.0 | 7.0 | 12 | 7.5 | 7.5 |
13 | 2.0 | 2.0 | 14 | 3.6 | 3.6 | 15 | 4.7 | 4.7 | 16 | 5.0 | 5.0 |
17 | 1.3 | 1.3 | 18 | 2.3 | 2.3 | 19 | 3.0 | 3.0 | 20 | 3.2 | 3.2 |
21 | 0.7 | 0.7 | 22 | 1.4 | 1.4 | 23 | 1.8 | 1.8 | 24 | 1.9 | 1.9 |
25 | 0.3 | 0.3 | 26 | 0.6 | 0.6 | 27 | 0.8 | 0.8 | 28 | 0.9 | 0.9 |
Layer Number | Material | Thermal Conductivity (W/mK) |
---|---|---|
1 | Concrete | 1.15 |
2 | Wood | 0.12 |
3 | Insulation | 0.029 |
4 | Aluminium | 230 |
Node | Temperature Suggested by ISO 10211 (°C) | Temperature Obtained by THERM (°C) |
---|---|---|
A | 7.1 | 7.1 |
B | 0.8 | 0.8 |
C | 7.9 | 7.9 |
D | 6.3 | 6.3 |
E | 0.8 | 0.8 |
F | 16.4 | 16.4 |
G | 16.3 | 16.3 |
H | 16.8 | 16.8 |
I | 18.3 | 18.3 |
Model | Evaluated Parameter | UTHERM | USantos et al. [37] | USantos et al. [37]/UTHERM |
---|---|---|---|---|
Reference model | 0.457 | 0.449 | 0.98 | |
I1 | Thickness of steel studs (mm) | |||
1.0 | 0.484 | 0.474 | 0.98 | |
1.2 | 0.495 | 0.482 | 0.97 | |
1.5 | 0.505 | 0.491 | 0.97 | |
I2 | Clearance between steel studs (mm) | |||
300 | 0.587 | 0.580 | 0.99 | |
400 | 0.525 | 0.515 | 0.98 | |
800 | 0.432 | 0.420 | 0.97 | |
I3 | Thickness of aerogel strips (mm) | |||
2.5 | 0.421 | 0.415 | 0.99 | |
5.0 | 0.398 | 0.392 | 0.98 | |
10.0 | 0.381 | 0.374 | 0.98 | |
I4 | Material of thermal break strips with 10 mm | |||
Acoustic (recycled rubber) | 0.430 | 0.421 | 0.98 | |
Extruded polystyrene | 0.402 | 0.396 | 0.99 | |
Cold break strip (aerogel) | 0.381 | 0.374 | 0.98 | |
I5 | Sheathing panel materials | |||
GPB + OSB | 0.422 | 0.419 | 0.99 | |
OSB + OSB | 0.405 | 0.397 | 0.98 | |
GPB + XPS | 0.341 | 0.338 | 0.99 | |
Mean | 0.98 | |||
COV | 0.007 |
Model | Evaluated Parameter | UTHERM | USantos et al. [37] | USantos et al. [37]/UTHERM |
---|---|---|---|---|
Reference model | 0.281 | 0.276 | 0.98 | |
E1 | Thickness of steel studs (mm) | |||
0.6 | 0.272 | 0.267 | 0.98 | |
1.0 | 0.275 | 0.272 | 0.99 | |
1.2 | 0.279 | 0.274 | 0.98 | |
E2 | Clearance between steel studs (mm) | |||
300 | 0.331 | 0.323 | 0.98 | |
400 | 0.305 | 0.299 | 0.98 | |
800 | 0.269 | 0.263 | 0.98 | |
E3 | Thickness of aerogel strips (mm) | |||
2.5 | 0.265 | 0.263 | 0.99 | |
5.0 | 0.259 | 0.256 | 0.99 | |
10.0 | 0.253 | 0.248 | 0.98 | |
E4 | Material of thermal break strips with 10 (mm) | |||
Acoustic (recycled rubber) | 0.269 | 0.265 | 0.99 | |
Extruded polystyrene | 0.259 | 0.256 | 0.99 | |
Cold break strip (aerogel) | 0.253 | 0.248 | 0.98 | |
E5 | Sheathing panel materials | |||
GPB + OSB | 0.286 | 0.282 | 0.99 | |
OSB + OSB | 0.277 | 0.271 | 0.98 | |
GPB + XPS | 0.261 | 0.256 | 0.98 | |
E6 | Thickness of EPS 7 ETICS 8 (mm) | |||
0.0 | 0.499 | 0.494 | 0.99 | |
30 | 0.331 | 0.327 | 0.99 | |
80 | 0.227 | 0.223 | 0.98 | |
Mean | 0.98 | |||
COV | 0.005 |
Wall Thickness | Insulation Ratio (h/H) | Insulation Type | Number of Models |
---|---|---|---|
275 mm and 325 mm | 0 | Air layer Stone wool E-PLA Mineral wool Rock wool Glass Fibre | 2 |
0.2 | 10 | ||
0.4 | 10 | ||
0.6 | 10 | ||
0.8 | 10 | ||
1.0 | 10 | ||
Total | 52 |
h/H | Wall Configuration | Insulation Layer Thickness (mm) | Insulation Material | U-Value (W/m2k) | Percentage of Decrease in U-Value (%) |
---|---|---|---|---|---|
0 | - | Air | 0.641 | - | |
0.2 | 39.2 | Stone wool | 0.382 | 40.41 | |
E-PLA | 0.363 | 43.37 | |||
Mineral wool | 0.387 | 39.63 | |||
Rock wool | 0.395 | 38.38 | |||
Glass fibre | 0.406 | 36.66 | |||
0.4 | 78.2 | Stone wool | 0.288 | 55.07 | |
E-PLA | 0.270 | 57.88 | |||
Mineral wool | 0.292 | 54.45 | |||
Rock wool | 0.300 | 53.20 | |||
Glass fibre | 0.312 | 51.33 | |||
0.6 | 117.6 | Stone wool | 0.239 | 62.71 | |
E-PLA | 0.222 | 65.37 | |||
Mineral wool | 0.243 | 62.09 | |||
Rock wool | 0.250 | 61.00 | |||
Glass fibre | 0.261 | 59.28 | |||
0.8 | 156.8 | Stone wool | 0.210 | 67.24 | |
E-PLA | 0.195 | 69.58 | |||
Mineral wool | 0.213 | 66.77 | |||
Rock wool | 0.220 | 65.68 | |||
Glass fibre | 0.230 | 64.12 | |||
1.0 | 196.0 | Stone wool | 0.193 | 69.89 | |
E-PLA | 0.179 | 72.07 | |||
Mineral wool | 0.197 | 69.27 | |||
Rock wool | 0.204 | 68.17 | |||
Glass fibre | 0.213 | 66.77 |
h/H | Wall Configuration | Insulation Layer Thickness (mm) | Insulation Material | U-Value (W/m2k) | Percentage of Decrease in U-Value |
---|---|---|---|---|---|
0 | - | Air | 0.638 | - | |
0.2 | 49.2 | Stone wool | 0.348 | 45.45 | |
E-PLA | 0.329 | 48.43 | |||
Mineral wool | 0.352 | 44.83 | |||
Rock wool | 0.361 | 43.42 | |||
Glass fibre | 0.372 | 41.69 | |||
0.4 | 98.4 | Stone wool | 0.246 | 61.44 | |
E-PLA | 0.229 | 64.11 | |||
Mineral wool | 0.250 | 60.82 | |||
Rock wool | 0.258 | 59.56 | |||
Glass fibre | 0.269 | 57.84 | |||
0.6 | 147.6 | Stone wool | 0.194 | 69.59 | |
E-PLA | 0.179 | 71.94 | |||
Mineral wool | 0.197 | 69.12 | |||
Rock wool | 0.204 | 68.03 | |||
Glass fibre | 0.214 | 66.46 | |||
0.8 | 196.8 | Stone wool | 0.164 | 74.29 | |
E-PLA | 0.151 | 76.33 | |||
Mineral wool | 0.167 | 73.82 | |||
Rock wool | 0.173 | 72.88 | |||
Glass fibre | 0.183 | 71.32 | |||
1.0 | 246.0 | Stone wool | 0.147 | 76.96 | |
E-PLA | 0.134 | 79.00 | |||
Mineral wool | 0.150 | 76.49 | |||
Rock wool | 0.156 | 75.55 | |||
Glass fibre | 0.165 | 74.14 |
h/H | Decrease in U-Value (%) | |||
---|---|---|---|---|
LGSPs (This Study) | 3D-Printed Concrete Walls [42] | |||
275 mm Wall | 325 mm Wall | 100 mm Wall | 200 mm Wall | |
0.2 | 37 | 42 | 43 | 53 |
0.4 | 51 | 58 | 60 | 68 |
0.6 | 59 | 66 | 63 | 76 |
0.8 | 64 | 71 | 72 | 81 |
1.0 | 67 | 74 | 75 | 83 |
Wall Thickness | Insulation Material | a | b | c | d | e |
---|---|---|---|---|---|---|
275 mm | Stone wool | 1.9531 | 5.3993 | 5.6615 | 2.9141 | 0.9994 |
E-PLA | 2.7344 | 7.1238 | 6.9358 | 3.2657 | 0.9997 | |
Mineral wool | 2.6042 | 6.6435 | 6.3611 | 3.0106 | 0.9994 | |
Rock wool | 2.0833 | 5.4630 | 5.4861 | 2.7858 | 0.9997 | |
Glass fibre | 2.0833 | 5.4861 | 5.4583 | 2.7246 | 0.9995 | |
325 mm | Stone wool | 2.3437 | 6.3773 | 6.5660 | 3.3007 | 0.9991 |
E-PLA | 2.7344 | 7.4016 | 7.4770 | 3.5987 | 0.9992 | |
Mineral wool | 2.7344 | 7.1470 | 7.0330 | 3.3795 | 0.9996 | |
Rock wool | 2.0833 | 5.7639 | 6.0625 | 3.1415 | 0.9998 | |
Glass fibre | 2.2135 | 5.9896 | 6.1302 | 3.0935 | 0.9996 |
Type of Wall | Recommended U-Value for Domestic Walls |
---|---|
New build | 0.18 W/m2K |
Existing building extension | 0.18 W/m2K |
Existing building refurbishment | 0.30 W/m2K, for internal or external insulation |
0.55 W/m2K, for cavity insulation |
Insulation | Stone Wool | E-PLA | Mineral Wool | Rock Wool | Glass Fibre | |||||
---|---|---|---|---|---|---|---|---|---|---|
Thickness (mm) | 275 | 325 | 275 | 325 | 275 | 325 | 275 | 325 | 275 | 325 |
New build | 1 | 0.7 | 0.9 | 0.62 | - | 0.71 | - | 0.75 | - | 0.82 |
Existing building extension | 1 | 0.7 | 0.9 | 0.62 | - | 0.71 | - | 0.75 | - | 0.82 |
Internal or external insulation | 0.35 | 0.27 | 0.31 | 0.24 | 0.37 | 0.27 | 0.4 | 0.3 | 0.44 | 0.31 |
Cavity insulation | 0.05 | 0.05 | 0.05 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.06 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrasiri, D.; Gatheeshgar, P.; Ahmadi, H.M.; Simwanda, L. Numerical Study of Thermal Efficiency in Light-Gauge Steel Panels Designed with Varying Insulation Ratios. Buildings 2024, 14, 300. https://doi.org/10.3390/buildings14010300
Chandrasiri D, Gatheeshgar P, Ahmadi HM, Simwanda L. Numerical Study of Thermal Efficiency in Light-Gauge Steel Panels Designed with Varying Insulation Ratios. Buildings. 2024; 14(1):300. https://doi.org/10.3390/buildings14010300
Chicago/Turabian StyleChandrasiri, Dilanka, Perampalam Gatheeshgar, Hadi Monsef Ahmadi, and Lenganji Simwanda. 2024. "Numerical Study of Thermal Efficiency in Light-Gauge Steel Panels Designed with Varying Insulation Ratios" Buildings 14, no. 1: 300. https://doi.org/10.3390/buildings14010300
APA StyleChandrasiri, D., Gatheeshgar, P., Ahmadi, H. M., & Simwanda, L. (2024). Numerical Study of Thermal Efficiency in Light-Gauge Steel Panels Designed with Varying Insulation Ratios. Buildings, 14(1), 300. https://doi.org/10.3390/buildings14010300