Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Investigation on Slender Hybrid RuDSTC
2.2. Finite Element Modelling of Hybrid Slender RuDSTC
2.2.1. Numerical Modelling Approach
2.2.2. Material Models
2.2.3. Surface Interaction, Boundary Conditions, and Load Application
2.2.4. Validation of FE Model
2.3. Validation of Eccentric Loading on Composite Column
3. Simulation of Eccentric Loading on Hybrid Columns and Parametric Study
3.1. Axial Load–Axial Displacement Behaviour for Different Percentages of Rubber
3.2. Concrete Contribution Ratio (CCR) for Different Concrete Strength
3.3. Strength Index (SI) for Different Yield Strengths of Steel
3.4. Comparison of the Axial Capacities of the Columns
4. Conclusions
- These hybrid columns have merit in realistic applications, especially when ductility is desirable.
- Double-skin confinement effectively restored the strength of the hybrid column. Though the rubber replacement ratio had some effect on the axial capacity of the columns, at higher eccentricity, this effect was negligible.
- Axial load–axial displacement behaviour of the hybrid columns showed a smoother transition from the elastic first phase to the linear second phase, indicating smooth dilation of the column compared to the non-rubberised columns. This tendency was more pronounced for the hybrid column with the greater rubber content of 30%.
- The behaviour of the column with increasing rubber percentage and load eccentricity is acceptable and enables the hybrid RuDSTC to be effectively used in locations witht greater load eccentricities.
- Further exploration for future study could involve testing the eccentrically loaded hybrid RuDSTC column under impact, cyclic, or combined loading, and experimenting with diverse combinations of material parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bompa, D.V.; Elghazouli, A.Y. Stress–strain response and practical design expressions for FRP-confined recycled tyre rubber concrete. Constr. Build. Mater. 2020, 237, 117633. [Google Scholar] [CrossRef]
- Zhou, T. New physical science behind climate change: What does IPCC AR6 tell us? Innovation 2021, 2, 100173. [Google Scholar] [CrossRef] [PubMed]
- Garito, M.A.; Caforio, A.; Falegnami, A.; Tomassi, A.; Romano, E. Shape the EU future citizen. Environmental education on the European Green Deal. Energy Rep. 2023, 9, 340–354. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlík, Z.; Čítek, D.; Jankovský, O.; Pavlíková, M. Eco-friendly concrete with scrap-tyre-rubber-based aggregate—Properties and thermal stability. Constr. Build. Mater. 2019, 225, 709–722. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. Mechanical properties of concrete containing a high volume of tire–rubber particles. Waste Manag. 2008, 28, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Khusru, S.; Fawzia, S.; Thambiratnam, D.P.; Elchalakani, M. Confined rubberised concrete tubular column for high-performance structures–Review. Constr. Build. Mater. 2021, 276, 122216. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, K.; Wei, Y.; Liu, L.; Tang, X.; Qin, X. Compressive performance of SWSSC-filled CFRP-stainless steel composite tube columns. Constr. Build. Mater. 2023, 385, 131471. [Google Scholar] [CrossRef]
- Deng, Y.; Liang, J.-F.; Li, W. Axial Performance of Steel Fiber-Reinforced Rubberized Concrete-Filled Circular Tubular Columns. Adv. Mater. Sci. Eng. 2021, 2021, 6678802. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Zhuge, Y. Axial compression behaviour of hybrid double-skin tubular columns filled with rubcrete. J. Compos. Sci. 2019, 3, 62. [Google Scholar] [CrossRef]
- Youssf, O.; Hassanli, R.; Mills, J.E. Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content. J. Build. Eng. 2017, 11, 115–126. [Google Scholar] [CrossRef]
- Khusru, S.; Fawzia, S.; Thambiratnam, D.P.; Elchalakani, M. Experimental testing of Novel Hybrid Rubberised Concrete Double Skin Tubular Columns with filament Wound CFRP tube under axial compressive loading. Compos. Struct. 2021, 276, 114568. [Google Scholar] [CrossRef]
- Khusru, S.; Thambiratnam, D.P.; Elchalakani, M.; Fawzia, S. Hybrid double skin FRP–Steel column with rubberised concrete infill under axial loading. Eng. Struct. 2021, 249, 113267. [Google Scholar] [CrossRef]
- Lee, S.-H.; Uy, B.; Kim, S.-H.; Choi, Y.-H.; Choi, S.-M. Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J. Constr. Steel Res. 2011, 67, 1–13. [Google Scholar] [CrossRef]
- Liang, Q.Q.; Fragomeni, S. Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading. J. Constr. Steel Res. 2010, 66, 159–169. [Google Scholar] [CrossRef]
- Liu, D. Behaviour of eccentrically loaded high-strength rectangular concrete-filled steel tubular columns. J. Constr. Steel Res. 2006, 62, 839–846. [Google Scholar] [CrossRef]
- Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N. Experimental and numerical studies of square concrete-filled double steel tubular short columns under eccentric loading. Eng. Struct. 2019, 197, 109419. [Google Scholar] [CrossRef]
- Li, W.; Han, L.-H.; Ren, Q.-X.; Zhao, X.-L. Behavior and calculation of tapered CFDST columns under eccentric compression. J. Constr. Steel Res. 2013, 83, 127–136. [Google Scholar] [CrossRef]
- Pour, A.F.; Gholampour, A.; Zheng, J.; Ozbakkaloglu, T. Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns. Compos. Struct. 2019, 220, 261–272. [Google Scholar] [CrossRef]
- Alelaimat, R.A.; Sheikh, M.N.; Hadi, M.N. Behaviour of square concrete filled FRP tube columns under concentric, uniaxial eccentric, biaxial eccentric and four-point bending loads. Thin-Walled Struct. 2021, 168, 108252. [Google Scholar] [CrossRef]
- Yu, T.; Wong, Y.; Teng, J. Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to eccentric compression. Adv. Struct. Eng. 2010, 13, 961–974. [Google Scholar] [CrossRef]
- Xie, P. Behavior of Large-Scale Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns Subjected to Concentric and Eccentric Compression. Ph.D. Thesis, Hong Kong Polytechnic University, Hong Kong, China, 2018. [Google Scholar]
- Khusru, S.; Fawzia, S.; Thambiratnam, D.P.; Elchalakani, M. Behaviour of Filament Wound FRP-Rubberised Concrete-Steel Hybrid Double Skin Tubular Column (Hybrid RuDSTC) Under Axial Loading; Springer International Publishing: Cham, Switzerland, 2022; pp. 1076–1084. [Google Scholar]
- ABAQUS 6.14. ABAQUS/CAE User’s Guide; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2014; Volume 6. [Google Scholar]
- Albero, V.; Ibañez, C.; Piquer, A.; Hernández-Figueirido, D. Behaviour of slender concrete-filled dual steel tubular columns subjected to eccentric loads. J. Constr. Steel Res. 2021, 176, 106365. [Google Scholar] [CrossRef]
- Hany, N.F.; Hantouche, E.G.; Harajli, M.H. Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity. Eng. Struct. 2016, 125, 1–14. [Google Scholar] [CrossRef]
- Ayough, P.; Ibrahim, Z.; Sulong, N.H.R.; Hsiao, P.-C.; Elchalakani, M. Numerical analysis of square concrete-filled double skin steel tubular columns with rubberized concrete. Structures 2021, 32, 1026–1047. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Toh, W.; Tan, L.B.; Tse, K.M.; Giam, A.; Raju, K.; Lee, H.P.; Tan, V.B.C. Material characterization of filament-wound composite pipes. Compos. Struct. 2018, 206, 474–483. [Google Scholar] [CrossRef]
- Yu, T.; Teng, J.G.; Wong, Y.L.; Dong, S.L. Finite element modeling of confined concrete-II: Plastic-damage model. Eng. Struct. 2010, 32, 680–691. [Google Scholar] [CrossRef]
- Zeng, J.; Guo, Y.; Li, L.; Chen, W. Behavior and Three-Dimensional Finite Element Modeling of Circular Concrete Columns Partially Wrapped with FRP Strips. Polymers 2018, 10, 253. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Silva, B.A.; Silvestre, N.; de Brito, J.; Júlio, E.; Castro, J.M. Finite element modelling of short steel tubes filled with rubberized concrete. Compos. Struct. 2016, 150, 28–40. [Google Scholar] [CrossRef]
- Nasrin, S.; Ibrahim, A. Numerical study on the low-velocity impact response of ultra-high-performance fiber reinforced concrete beams. Structures 2019, 20, 570–580. [Google Scholar] [CrossRef]
- Papanikolaou, V.K.; Kappos, A.J. Confinement-sensitive plasticity constitutive model for concrete in triaxial compression. Int. J. Solids Struct. 2007, 44, 7021–7048. [Google Scholar] [CrossRef]
- Bompa, D.V.; Elghazouli, A.Y. Behaviour of confined rubberised concrete members under combined loading conditions. Mag. Concr. Res. 2019, 73, 555–573. [Google Scholar] [CrossRef]
- Bompa, D.; Elghazouli, A.; Xu, B.; Stafford, P.; Ruiz-Teran, A. Experimental assessment and constitutive modelling of rubberised concrete materials. Constr. Build. Mater. 2017, 137, 246–260. [Google Scholar] [CrossRef]
- Han, L.-H.; Li, Y.-J.; Liao, F.-Y. Concrete-filled double skin steel tubular (CFDST) columns subjected to long-term sustained loading. Thin-Walled Struct. 2011, 49, 1534–1543. [Google Scholar] [CrossRef]
- Pagoulatou, M.; Sheehan, T.; Dai, X.; Lam, D. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 2014, 72, 102–112. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.-H.; Zhao, X.-L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J. Constr. Steel Res. 2004, 60, 1129–1158. [Google Scholar] [CrossRef]
- Zhang, B.; Teng, J.G.; Yu, T. Compressive Behavior of Double-Skin Tubular Columns with High-Strength Concrete and a Filament-Wound FRP Tube. J. Compos. Constr. 2017, 21, 04017029. [Google Scholar] [CrossRef]
- Elchalakani, M.; Dong, M.; Karrech, A. Interaction diagram of rubberised concrete filled circular hollow sections. J. Civ. Eng. Constr. 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Ibañez, C.; Piquer, A.; Hernández-Figueirido, D.; Martínez-Ramos, Ó. 08.37: Experimental analysis of concrete-filled double skin tubular columns subjected to eccentric loads. ce/papers 2017, 1, 2138–2146. [Google Scholar] [CrossRef]
Sl No. | Specimen ID | Outer FRP Tube Properties | Inner Steel Tube Properties | Rubber Replacement | ||
---|---|---|---|---|---|---|
Do (mm) | to (mm) | Di (mm) | ti (mm) | |||
1. | CL-I60-00 | 152 | 2.5 | 60.3 | 3.6 | 0% |
2. | CL-I60-15 | 152 | 2.5 | 60.3 | 3.6 | 15% |
3. | CL-I60-30 | 152 | 2.5 | 60.3 | 3.6 | 30% |
Parameter | Value |
---|---|
Modulus of elasticity (longitudinal) | 65 GPa |
Compressive strength (longitudinal) | 140 MPa |
Tensile strength (longitudinal) | 592 MPa |
Compressive strength (transverse) | 140 MPa |
Tensile strength (transverse) | 242 MPa |
Specimen | PExp (kN) | PFE (kN) | uExp (mm) | uFE (mm) | PExp/PFE | uExp/uEE |
---|---|---|---|---|---|---|
CL-I60-00 | 1432 | 1405 | 22.39 | 23.29 | 1.02 | 0.96 |
CL-I60-15 | 1164 | 1202 | 26.69 | 28.21 | 0.97 | 0.95 |
CL-I60-30 | 781 | 716 | 23.06 | 20.25 | 0.92 | 1.13 |
Mean | 0.97 | 1.01 | ||||
COV | 0.05 | 0.10 |
Specimen ID | % Rubber | FRP Tube | Steel Tube | Control Concrete Strength | |||
---|---|---|---|---|---|---|---|
Do (mm) | to (mm) | Di (mm) | ti (mm) | fy (mm) | f′c (MPa) | ||
fy = 250, 0%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | 50 |
fy = 250, 0%, 30 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 0%, 60 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 15%, 0 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 15%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 15%, 60 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 30%, 0 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 30%, 30 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 250, 30%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
fy = 450, 0%, 0 | 0% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 0%, 30 | 0% | 200 | 2.5 | 159 | 5 | 450 | 50 |
fy = 450, 0%, 60 | 0% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 15%, 0 | 15% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 15%, 30 | 15% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 15%, 60 | 15% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 30%, 0 | 30% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 30%, 30 | 30% | 200 | 2.5 | 159 | 5 | 450 | |
fy = 450, 30%, 60 | 30% | 200 | 2.5 | 159 | 5 | 450 | |
f′c = 40, 0%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | 40 |
f′c = 40, 0%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 0%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 15%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 15%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 15%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 30%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 30%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 40, 30%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 0%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | 80 |
f′c = 80, 0%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 0%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 15%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 15%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 15%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 30%, 0 | 0% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 30%, 30 | 15% | 200 | 2.5 | 159 | 5 | 250 | |
f′c = 80, 30%, 60 | 30% | 200 | 2.5 | 159 | 5 | 250 |
Specimen ID | % Rubber | Eccentricity (mm) | Axial Capacity (kN) | % Capacity Reduction |
---|---|---|---|---|
fy = 250, 0%, 0 | 0% | 0 | 1980 | - |
fy = 250, 0%, 30 | 0% | 30 | 1552 | 22 |
fy = 250, 0%, 60 | 0% | 60 | 1336 | 33 |
fy = 250, 15%, 0 | 15% | 0 | 1363 | 31 |
fy = 250, 15%, 30 | 15% | 30 | 1228 | 38 |
fy = 250, 15%, 60 | 15% | 60 | 1068 | 46 |
fy = 250, 30%, 0 | 30% | 0 | 1195 | 40 |
fy = 250, 30%, 30 | 30% | 30 | 1165 | 41 |
fy = 250, 30%, 60 | 30% | 60 | 1008 | 49 |
fy = 450, 0%, 0 | 0% | 0 | 2434 | - |
fy = 450, 0%, 30 | 0% | 30 | 2168 | 11 |
fy = 450, 0%, 60 | 0% | 60 | 1845 | 24 |
fy = 450, 15%, 0 | 15% | 0 | 2040 | 16 |
fy = 450, 15%, 30 | 15% | 30 | 1765 | 27 |
fy = 450, 15%, 60 | 15% | 60 | 1916 | 21 |
fy = 450, 30%, 0 | 30% | 0 | 1780 | 27 |
fy = 450, 30%, 30 | 30% | 30 | 1551 | 36 |
fy = 450, 30%, 60 | 30% | 60 | 1691 | 31 |
f′c = 40, 0%, 0 | 0% | 0 | 2096 | - |
f′c = 40, 0%, 30 | 15% | 30 | 1246 | 41 |
f′c = 40, 0%, 60 | 30% | 60 | 1010 | 52 |
f′c = 40, 15%, 0 | 0% | 0 | 1646 | 21 |
f′c = 40, 15%, 30 | 15% | 30 | 1181 | 44 |
f′c = 40, 15%, 60 | 30% | 60 | 999 | 52 |
f′c = 40, 30%, 0 | 0% | 0 | 1498 | 29 |
f′c = 40, 30%, 30 | 15% | 30 | 1180 | 44 |
f′c = 40, 30%, 60 | 30% | 60 | 971 | 54 |
f′c = 80, 0%, 0 | 0% | 0 | 3575 | - |
f′c = 80, 0%, 30 | 15% | 30 | 2668 | 25 |
f′c = 80, 0%, 60 | 30% | 60 | 1602 | 55 |
f′c = 80, 15%, 0 | 0% | 0 | 3010 | 16 |
f′c = 80, 15%, 30 | 15% | 30 | 2521 | 29 |
f′c = 80, 15%, 60 | 30% | 60 | 2116 | 41 |
f′c = 80, 30%, 0 | 0% | 0 | 2507 | 30 |
f′c = 80, 30%, 30 | 15% | 30 | 2414 | 32 |
f′c = 80, 30%, 60 | 30% | 60 | 2030 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khusru, S.; Thambiratnam, D.P.; Elchalakani, M.; Fawzia, S. Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading. Buildings 2024, 14, 57. https://doi.org/10.3390/buildings14010057
Khusru S, Thambiratnam DP, Elchalakani M, Fawzia S. Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading. Buildings. 2024; 14(1):57. https://doi.org/10.3390/buildings14010057
Chicago/Turabian StyleKhusru, Shovona, David P. Thambiratnam, Mohamed Elchalakani, and Sabrina Fawzia. 2024. "Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading" Buildings 14, no. 1: 57. https://doi.org/10.3390/buildings14010057
APA StyleKhusru, S., Thambiratnam, D. P., Elchalakani, M., & Fawzia, S. (2024). Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading. Buildings, 14(1), 57. https://doi.org/10.3390/buildings14010057