Seismic Performance Evaluation of Pipelines Buried in Sandy Soils Reinforced with FRP Micropiles: A Numerical Study
Abstract
:1. Introduction
2. Methodology
2.1. Current Numerical Models
Model Description
2.2. Validation of the Finite Element Model
Geotechnical and Structural Characteristics of the Models
3. Results and Discussion
3.1. Model Validation
3.2. Seismic Response
3.2.1. Pile Material Type and Pile Spacing
3.2.2. Pile Dimension
3.2.3. Specific Case Study
3.2.4. Time History Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scawthorn, C.; Yanev, P.I. Preliminary report 17 January 1995, ‘Hyogo-ken Nambu, Japanese Earthquake’. Eng. Struct. 1995, 17, 146–157. [Google Scholar] [CrossRef]
- Yong, Y. Response of pipeline structure subjected to ground motion excitation. Eng. Struct. 1997, 19, 679–684. [Google Scholar] [CrossRef]
- Datta, T.K. Seismic response of buried pipelines: A state-of-the-art review. Nucl. Eng. Des. 1999, 192, 271–284. [Google Scholar] [CrossRef]
- Karinski, Y.S.; Yankelevsky, D.Z. Dynamic analysis of an elastic-plastic multisegment lining buried in soil. Eng. Struct. 2007, 29, 317–328. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, B.H.; Lee, H.; Kong, J.S. Seismic behavior of a buried gas pipeline under earthquake excitations. Eng. Struct. 2009, 31, 1011–1023. [Google Scholar] [CrossRef]
- Kennedy, R.P.; Chow, A.W.; Williamson, R.A. Fault movement effects on buried oil pipeline. J. Transp. Eng. Div. 1977, 103, 617–633. [Google Scholar] [CrossRef]
- O’Rourke, T.D.; Tratumann, C.H. Buried pipeline response to permanent earthquake ground movements. In Proceedings of the ASME Pressure Vessels and Piping Conference, San Francisco, CA, USA, 12–15 August 1980. [Google Scholar]
- Li, N.; Men, Y.; Gao, O.; Liu, X. Seismic response of landslide with micropiles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 392, 042014. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M.; Yu, X.; Guo, C.; Shao, J. Optimal Design and Numerical Analysis of Soil Slope Reinforcement by a New Developed Polymer Micro Anti-slide Pile. Preprint 2021. [Google Scholar] [CrossRef]
- Fleming, K.; Weltman, A.; Randolph, M.; Elson, K. Piling Engineering, 3rd ed.; Taylor & Francis Group: London, UK; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Lampo, R.; Nosker, T.; Bamo, D.; Busel, J.; Maher, A. Development and Demonstration of FRP Composite Fender, Loadbearing, and Sheet Piling Systems. In Soils and Foundations; US Army Corps of Engineers Construction Engineering Research Laboratories: Champaign, IL, USA, 1998. [Google Scholar]
- Al-Jeznawi, D.; Jasim, T.N.; Shafiqu, Q.S.M. Evaluating the Use of Polypropylene Polymer in Enhancing the Properties of Swelling Clayey Soil. IOP Conf. Ser.Earth Environ. Sci. 2021, 856, 012015. [Google Scholar] [CrossRef]
- Al-Saray, N.A.; Shafiqu, Q.S.; Ibrahim, M.A. Improvement of Strength Characteristics for Sandy Soils by Polypropylene Fibers (PPF). J. Phys. Conf. Ser. 2021, 1895, 012016. [Google Scholar] [CrossRef]
- Nikbakhtan, B.; Osanloo, M. Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations. Int. J. Rock Mech. Min. Sci. 2009, 46, 498–505. [Google Scholar] [CrossRef]
- Shaia, H.A. Behaviour of Fibre Reinforced Polymer Composite Piles: Experimental and Numerical Study. Ph.D. Dissertation, The University of Manchester, Manchester, UK, 2013. [Google Scholar]
- Hollaway, L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010, 24, 2419–2445. [Google Scholar] [CrossRef]
- Guades, E.; Aravinthan, T.; Islam, M.; Manalo, A. A review on the driving performance of FRP composite piles. Compos. Struct. 2012, 94, 1932–1942. [Google Scholar] [CrossRef]
- Hosseini, M.A.; Rayhani, M.T. Seismic evaluation of frictional FRP piles in saturated sands using shaking table tests. Soil Dyn. Earthq. Eng. 2022, 163, 107545. [Google Scholar] [CrossRef]
- Radwan, N.A.A. Improvement of Pipeline Settlement Using Micro Piles. J. Eng. Sci. 2022, 50, 89–99. [Google Scholar] [CrossRef]
- Wang, F.M.; Guo, C.C.; Gao, Y. Formation of a Polymer Thin Wall Using the Level Set Method. Int. J. Geomech. 2014, 14, 04014058. [Google Scholar] [CrossRef]
- Hao, M.M.; Wang, F.M.; Li, X.L.; Zhang, B.; Zhong, Y.H. Numerical and Experimental Studies of Diffusion Law of Grouting with Expansible Polymer. J. Mater. Civ. Eng. 2018, 30, 04017290. [Google Scholar] [CrossRef]
- Al-Jeznawi, D.; Jais, I.B.M.; Albusoda, B.; Alzabeebee, S.; Al-Janabi, M.A.Q.; Keawsawasvong, S. Response of Pipe Piles Embedded in Sandy Soils under Seismic Loads. Transp. Infrastruct. Geotechnol. 2024, 11, 1092–1118. [Google Scholar] [CrossRef]
- Al-Jeznawi, D.; Mohamed Jais, I.B.; Albusoda, B.S. A Soil-Pile Response under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction. Civ. Environ. Eng. 2022, 18, 96–103. [Google Scholar] [CrossRef]
- Al-Jeznawi, D.; Khatti, J.; Al-Janabi, M.A.Q.; Grover, K.S.; Mohamed Jais, I.B.; Albusoda, B.S.; Khalid, N. Seismic Performance Assessment of Single Pipe Piles Using Three-Dimensional Modelling Considering Different Parameters. Earthq. Struct. 2023, 24, 455–475. [Google Scholar] [CrossRef]
- Al-Jeznawi, D.; Jais, I.B.M.; Al-Janabi, M.A.Q.; Alzabeebee, S.; Albusoda, B.; Keawsawasvong, S. Scaling Effects on the Seismic Response of a Closed-End Pipe Pile Embedded in Dry and Saturated Coarse Grain Soils. Int. J. Comput. Mater. Sci. Eng. 2024, 13, 2350023. [Google Scholar] [CrossRef]
- Sharifi, S.; Abrishami, S.; Gandomi, A.H. Consolidation assessment using multi expression programming. Appl. Soft Comput. 2020, 86, 105842. [Google Scholar] [CrossRef]
- Esmaeili, M.; Gharouni, M.; Khayyer, F. Experimental and Numerical Study of Micropiles to Reinforce High Railway Embankments. Int. J. Geomech. 2013, 13, 729–744. [Google Scholar] [CrossRef]
- Beaty, M.H.; Byrne, P.M. UBCSAND constitutive model version 904aR. Itasca UDM Web Site 2011, 69, 1–4. [Google Scholar]
- ASTM D 1586-99; Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils. American Society for Testing and Materials: West Conshohocken, PA, USA, 1999.
Parameter | Ground Material | Micropile | PVC Pipeline | Asphalt Concrete Pavement | ||
---|---|---|---|---|---|---|
Concrete | Polymer | Polymeric Soil | ||||
ν | 0.3 | 0.1 | 0.35 | 0.28 | 0.45 | 0.35 |
γ (kN/m3) | 18 | 25 | 1.46 | 2.5 | 14.6 | 25 |
Ø (°) | 30 | - | - | 30 | - | - |
E (kPa) | 10,000 | 3 × 107 | 5 × 106 | 2 × 105 | 93 × 104 | 54 × 105 |
ψ (°) | 0 | - | - | - | - | - |
C (kPa) | 1 | - | - | 300 | - | - |
Dimension (cm) | (22.8 × 22.8 × 22.8) ×106 | 10 (Dia.) | 20 (Dia.) | 25 (Dia.) | 20 (Dia.) | 350 (width) |
Thickness (cm) | - | - | - | 2.5 | 0.5 | 5 |
No. | Station | Duration (s) | PGA (g) | Mw | No. | Station | Duration (s) | PGA (g) | Mw |
---|---|---|---|---|---|---|---|---|---|
1 | 1940, El Centro, 270 Deg | 53.72 | 0.360 | 6.9 | 26 | H24_T1-II-1 (2003, Tokachi-Coast, EW) | 120.00 | 0.630 | 8.3 |
2 | 1940, El Centro, 180 Deg | 53.46 | 0.211 | 6.9 | 27 | H24_T1-II-2 (2011, Tohoku-Coast, EW) | 240.00 | 0.690 | 9.1 |
3 | 1940, El Centro, Vertical | 53.78 | 0.250 | 6.9 | 28 | H24_T1-II-3 (2011, Tohoku-Coast, NS) | 240.00 | 0.520 | 9.1 |
4 | 1952, Taft Lincoln School, 69 Deg | 54.38 | 0.156 | 7.7 | 29 | H24_T1-III-1 (2003, Tokachi-Coast, EW) | 120.00 | 0.516 | 8.3 |
5 | 1952, Taft Lincoln School, 339 Deg | 54.40 | 0.180 | 7.7 | 30 | H24_T1-III-3 (2011, Tohoku-Coast, NS) | 240.00 | 0.70 | 9.1 |
6 | 1952, Taft Lincoln School, Vertical | 54.26 | 0.105 | 7.7 | 31 | Bonds Corner El Centro (1979) | 37.68 | 0.770 | 6.5 |
7 | 1952, Hollywood Storage P.E., 270 Deg | 78.62 | 0.060 | 7.7 | 32 | Parkfield Cholame, Shandon (1966) | 26.06 | 0.237 | 5.5 |
8 | 1952, Hollywood Storage P.E., 0 Deg | 78.62 | 0.042 | 7.7 | 33 | T1-I-3 (1993, Hokkaido-S/W_Coast, LG) | 40.00 | 0.330 | 7.7 |
9 | 1952, Hollywood Storage P.E., Vertical | 78.58 | 0.020 | 7.7 | 34 | T1-II-1 (1968, Hyuganada-Coast, LG) | 40.00 | 0.370 | 7.5 |
10 | 1971, San Fernando, 69 Deg | 61.84 | 0.315 | 6.6 | 35 | T1-II-2 (1968, Hyuganada-Coast, TR) | 40.00 | 0.390 | 7.5 |
11 | 1971, San Fernando, 159 Deg | 61.88 | 0.271 | 6.6 | 36 | T1-II-3 (1994, Hokkaido-East Coast, TR) | 65.00 | 0.370 | 8.1 |
12 | 1979, James RD. El Centro, 310 Deg | 37.82 | 0.600 | 6.5 | 37 | T1-III-1 (1983, Nihonkai-Central, TR) | 60.00 | 0.442 | 7.8 |
13 | 1979, James RD. El Centro, Up | 39.36 | 0.480 | 6.5 | 38 | T1-III-2 (1983, Nihonkai-Central, LG) | 60.00 | 0.430 | 7.8 |
14 | 1979, James RD. El Centro, 220 Deg | 37.68 | 0.780 | 6.5 | 39 | T1-III-3 (1994, Hokkaido-East Coast, LG) | 60.00 | 0.447 | 8.1 |
15 | 1979, James RD. El Centro, Up | 37.84 | 0.330 | 6.5 | 40 | T2-I-1 (1995, Hyogoken_South, NS) | 30.00 | 0.830 | 7.2 |
16 | T1-I-1 (1978, Miyagi-Coast, LG) | 30.00 | 0.330 | 7.7 | 41 | T2-I-2 (1995, Hyogoken_South, EW) | 30.00 | 0.780 | 7.2 |
17 | T1-I-2 (1978, Miyagi-Coast, TR) | 30.00 | 0.326 | 7.7 | 42 | T2-I-3 (1995, Hyogoken_South, NS) | 30.00 | 0.800 | 7.2 |
18 | 1989, Loma Prieta, Oakland Outer Wharf, 0 Deg | 39.98 | 0.220 | 6.9 | 43 | T2-II-1 (1995, Hyogoken_South, NS) | 40.00 | 0.700 | 7.2 |
19 | 1971, San Fernando Pocoima Dam, 196 Deg | 41.58 | 1.070 | 6.6 | 44 | T2-II-3 (1995, Hyogoken_South, N30W) | 40.00 | 0.750 | 7.2 |
20 | 1971, San Fernando Pocoima Dam, 286 Deg | 41.74 | 1.170 | 6.6 | 45 | T2-III-1 (1995, Hyogoken_South, N12W) | 50.00 | 0.600 | 7.2 |
21 | 1971, San Fernando 8244 Orion Blvd., 90 Deg | 59.34 | 0.250 | 6.6 | 46 | 1985, Mexico City, Station 1, 180 Deg | 180.10 | 0.170 | 8.1 |
22 | T2-III-3 (1995, Hyogoken_South, EW) | 50.00 | 0.630 | 7.2 | 47 | 1985, Mexico City, Station 1, 270 Deg | 180.10 | 0.100 | 8.1 |
23 | H24_T1-I-1 (2003, Tokachi-Coast, EW) | 120.00 | 0.550 | 8.3 | 48 | 1994, Northridge, Sylmar County Hosp., 90 Deg | 59.98 | 0.600 | 6.7 |
24 | H24_T1-I-2 (2011, Tohoku-Coast, EW) | 240.00 | 0.810 | 9.1 | 49 | San Fernando 8244 Orion Blvd (1971) | 59.50 | 0.134 | 6.6 |
25 | H24_T1-I-3 (2011, Tohoku-Coast, NS) | 240.00 | 0.710 | 9.1 | 50 | Ōsaka-Kōbe (Hanshin) metropolitan area, (1995) | 48.00 | 0.820 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jeznawi, D.; Al-Janabi, M.A.Q.; Shafiqu, Q.S.M.; Jasim, T.N.; Güler, E.; Bernardo, L.F.A.; Andrade, J.M.d.A. Seismic Performance Evaluation of Pipelines Buried in Sandy Soils Reinforced with FRP Micropiles: A Numerical Study. Buildings 2024, 14, 3044. https://doi.org/10.3390/buildings14103044
Al-Jeznawi D, Al-Janabi MAQ, Shafiqu QSM, Jasim TN, Güler E, Bernardo LFA, Andrade JMdA. Seismic Performance Evaluation of Pipelines Buried in Sandy Soils Reinforced with FRP Micropiles: A Numerical Study. Buildings. 2024; 14(10):3044. https://doi.org/10.3390/buildings14103044
Chicago/Turabian StyleAl-Jeznawi, Duaa, Musab Aied Qissab Al-Janabi, Qassun S. Mohammed Shafiqu, Tiba N. Jasim, Erol Güler, Luís Filipe Almeida Bernardo, and Jorge Miguel de Almeida Andrade. 2024. "Seismic Performance Evaluation of Pipelines Buried in Sandy Soils Reinforced with FRP Micropiles: A Numerical Study" Buildings 14, no. 10: 3044. https://doi.org/10.3390/buildings14103044
APA StyleAl-Jeznawi, D., Al-Janabi, M. A. Q., Shafiqu, Q. S. M., Jasim, T. N., Güler, E., Bernardo, L. F. A., & Andrade, J. M. d. A. (2024). Seismic Performance Evaluation of Pipelines Buried in Sandy Soils Reinforced with FRP Micropiles: A Numerical Study. Buildings, 14(10), 3044. https://doi.org/10.3390/buildings14103044