GFRP-Reinforced Concrete Columns: State-of-the-Art, Behavior, and Research Needs
Abstract
:1. Introduction
2. Research Limitations
3. GFRP Rebar Properties
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Thermal Properties
3.4. Durability Properties
4. GFRP-Reinforced Columns Behavior
4.1. Concrete Type and Strength
4.2. Cross-Sectional Geometry
4.3. Slenderness Ratio
- (a)
- Not braced against side-sway
- (b)
- Braced against side-sway
- (a)
- Not braced against side-sway
- (b)
- Braced against side-sway
4.4. Longitudinal Reinforcement Type and Ratio
4.5. Transverse Reinforcement Type and Ratio
4.6. Loading Protocol
5. Analytical Models
5.1. Finite Element Models
5.2. Machine Learning Models
5.3. Simplified Design Models
6. Current Research Needs
7. Concluding Remarks
- The analysis of the Scopus database revealed that the number of publications on GFRP-reinforced columns has been increasing throughout the 21st century. Furthermore, the research on GFRP-reinforced columns has been prolific in China, Canada, and the United States. Out of 1534 of the Scopus-indexed publications on GFRP-reinforced columns, 69% of the publications were journal articles.
- The mechanical properties of GFRP, tensile strength, and stiffness-to-weight ratio make it an ideal alternative to conventional steel reinforcement in concrete structures that require significant strength and durability. However, GFRP reinforcement is not recommended in corrosive environments of greater than 50% concentration, although GFRP is non-corrosive, and GFRP-reinforced structures have a lower probability of suffering from corrosion-related issues.
- The analysis of publications data revealed that GFRP is most commonly implemented with conventional Normal Strength Concrete (NSC) structures. As such, further efforts are still required to promote other types of concrete with GFRP reinforcement.
- The compression GFRP rebars’ contribution to the columns’ capacity ranged between 5% and 40%. However, current design codes underestimate the compressive contribution of GFRP bars in concrete columns, leading to conservative load-bearing capacity estimates. To bridge this gap, new models and design provisions that reflect the unique behavior of GFRP under compression are urgently needed.
- AI and ML techniques, such as ANNs, demonstrate outstanding potential in the GFRP-reinforced columns research field. However, a limited number of publications were produced employing such techniques.
- This study has meticulously identified and underscored a broad spectrum of critical research needs within the realm of GFRP-reinforced concrete structures, marking a pivotal step toward advancing structural engineering and construction technology. From exploring the synergistic potential of GFRP with UHPC to delving into the effects of cross-sectional shapes, seismic loading conditions, and the environmental sustainability of GFRP applications, this research agenda is poised to fill existing knowledge gaps. Furthermore, it emphasizes the need for rigorous cost-benefit analyses and resilience studies under extreme conditions, alongside leveraging AI and ML technologies for enhanced predictive modeling. By addressing these diversified research needs, this study not only aims to foster significant technological innovations and sustainability in construction but also seeks to enhance future infrastructure’s safety, efficiency, and environmental footprint, thereby contributing to the enduring resilience and advancement of built environments worldwide.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, Z.; Huang, J.; Yang, X.; Yan, J.; Shi, Y.; Zhang, C. Eccentric compressive behavior and design of high-strength CFST columns with embedded GFRP tubes. Eng. Struct. 2024, 320, 118903. [Google Scholar] [CrossRef]
- Isleem, H.F.; Qiong, T.; Alsaadawi, M.M.; Elshaarawy, M.K.; Mansour, D.M.; Abdullah, F.; Mandor, A.; Sor, N.H.; Jahami, A. Numerical and machine learning modeling of GFRP confined concrete-steel hollow elliptical columns. Sci. Rep. 2024, 14, 18647. [Google Scholar] [CrossRef]
- Hou, C.; Ma, G.; Hwang, H.-J.; Yang, O.; Kang, S.-M. Retrofitting performance of precast UHPC jackets and NSM GFRP bars in pre-damaged RC columns with deficient lap splices. Eng. Struct. 2024, 320, 118906. [Google Scholar] [CrossRef]
- Elkafrawy, M.; Khalil, A.; AlHamaydeh, M.; Hawileh, R.; Abuzaid, W. Enhancing the Shear Capacity of RC Beams with Web Openings in Shear Zones Using Pre-Stressed Fe-SMA Bars: Numerical Study. Buildings 2023, 13, 1505. [Google Scholar] [CrossRef]
- Ali, A.H.; Mohamed, H.M.; Benmokrane, B. Shear Strength of Circular Concrete Beams Reinforced with Glass Fiber-reinforced Polymer Bars and Spirals. ACI Struct. J. 2017, 114, 39–49. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Wang, P.; Li, S.; Jiao, Y. Axial performance of concrete-filled GFRP tube columns jacketed by outer stainless steel tube and sandwiched concrete. Eng. Struct. 2024, 314, 118401. [Google Scholar] [CrossRef]
- Bian, Y.; Liu, Y.; Wang, H. Experimental study and optimal design of axial behavior of UHPC-filled glass-fiber-reinforced polymer pultruded square columns. Eng. Struct. 2024, 314, 118325. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Awera, Y.; Elkafrawy, M. Axial Compressive Behavior of Slender Circular Columns Made of Green Concrete and Double Layers of Steel and GFRP Reinforcement. J. Compos. Constr. 2023, 27, 4023050. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Anwar Orabi, M. Punching Shear Behavior of Synthetic Fiber–Reinforced Self-Consolidating Concrete Flat Slabs with GFRP Bars. J. Compos. Constr. 2021, 25, 04021029. [Google Scholar] [CrossRef]
- Pang, L.; Qu, W.; Zhu, P.; Xu, J. Design Propositions for Hybrid FRP-Steel Reinforced Concrete Beams. J. Compos. Constr. 2016, 20, 04015086. [Google Scholar] [CrossRef]
- Alkhudery, H.H.; Albuthbahak, O.M.; Al-Katib, H.A.A. Investigation of Effective Hybrid FRP and Steel Reinforcement Ratio for Concrete Members. J. Eng. Appl. Sci. 2018, 13, 5150–5161. [Google Scholar]
- Shirmardi, M.M.; Mohammadizadeh, M.R. Numerical Study on the Flexural Behaviour of Concrete Beams Reinforced by GFRP Bars. J. Rehabil. Civ. Eng. 2018, 7, 88–99. [Google Scholar] [CrossRef]
- LaftahAbbas, A.; Ahmed, Q.W.; Salman, W.D. Nonlinear Behavior of Reinforced Concrete Deep Beams Reinforced with Internal Fiber-reinforced Polymer. Int. J. Civ. Eng. Technol. 2018, 9, 2811–2825. [Google Scholar]
- AlHamaydeh, M.; Afghan, F.; Mithani, R.; Besiso, T.; Al Salim, H. Shear Strength of Circular Beams Made of Geopolymer Concrete and Reinforced with GFRP Rebars. AIP Conf. Proc. 2020, 2297, 020031. [Google Scholar] [CrossRef]
- El-Sayed, A.K.; Benmokrane, B. Evaluation of the New Canadian Highway Bridge Design Code Shear Provisions for Concrete Beams with Fiber-reinforced Polymer Reinforcement. Can. J. Civ. Eng. 2008, 35, 609–623. [Google Scholar] [CrossRef]
- Shehata, E.; Morphy, R.; Rizkalla, S. Fibre Reinforced Polymer Shear Reinforcement for Concrete Members: Behaviour and Design Guidelines. Can. J. Civ. Eng. 2000, 27, 859–872. [Google Scholar] [CrossRef]
- Razaqpur, A.G.; Spadea, S. Shear Strength of FRP Reinforced Concrete Members with Stirrups. J. Compos. Constr. 2015, 19, 04014025. [Google Scholar] [CrossRef]
- Markou, G.; Alhamaydeh, M. 3D Finite Element Modeling of GFRP-Reinforced Concrete Deep Beams without Shear Reinforcement. Int. J. Comput. Methods 2018, 15, 1850001. [Google Scholar] [CrossRef]
- Pandey, A.K.P.K.; Dada, M.; Patton, M.L.; Adak, D. A comparative review on the structural behaviour of GFRP rebars with conventional steel rebars in reinforced concrete columns. Innov. Infrastruct. Solut. 2024, 9, 373. [Google Scholar] [CrossRef]
- Gudonis, E.; Timinskas, E.; Gribniak, V.; Kaklauskas, G.; Arnautov, A.K.; Tamulėnas, V. FRP Reinforcement for Concrete Structures: State-of-the-Art Review of Application and Design. Eng. Struct. Technol. 2014, 5, 147–158. [Google Scholar] [CrossRef]
- Reichhold. FRP Material Selection Guide; Reichhold: Research Triangle Park, NC, USA, 2009. [Google Scholar]
- Zheng, Z.; Zhang, J.; Lu, Q.; Zhou, B.; Huang, W.; He, Y.; Wang, Y. The performance of waste glass aggregate concrete GFRP-steel double-skin tubular columns under axial compression: Experimental study. Constr. Build. Mater. 2024, 447, 138075. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, Y.; Kang, L.; Geng, T.; Ma, K. Compressive axial load performance of GFRP–confined recycled aggregate concrete–filled steel tube stub columns. J. Constr. Steel Res. 2024, 220, 108835. [Google Scholar] [CrossRef]
- Chen, B.L.; Gao, H.Y.; Wang, L.G. Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading. Steel Compos. Struct. 2024, 52, 451–460. [Google Scholar] [CrossRef]
- Johnston, C.D. Fiber-Reinforced Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Allen, M.N.; El-Salakawy, E.F. Investigation of Strut-and-Tie Model Performance Using Symmetrically Loaded GFRP-RC Double Corbels. J. Compos. Constr. 2024, 28, 04024039. [Google Scholar] [CrossRef]
- Tran, D.Q.; Pantelides, C.P. Seismic Performance of Self-Centering Post-Tensioned Concrete Columns Reinforced with Steel-GFRP Bars and GFRP Spirals. J. Bridge Eng. 2024, 29, 04024055. [Google Scholar] [CrossRef]
- Pang, L.; Han, Z.; Xiao, J.; Liu, Z.; Qu, W.; Dong, S. Bearing Capacity of Hybrid (Steel and GFRP) Reinforced Columns under Eccentric Loading: Theory and Experiment. Buildings 2024, 14, 2472. [Google Scholar] [CrossRef]
- Nawar, M.T.; Selim, M.; Zaghlal, M.; El-Zohairy, A.; Emara, M. Performance of GFRP-Confined Rubberized Engineered Cementitious Composite Columns. J. Compos. Sci. 2024, 8, 330. [Google Scholar] [CrossRef]
- Abed, F.; Ghazal Aswad, N.; Obeidat, K. Effect of BFRP ties on the axial performance of RC columns reinforced with BFRP and GFRP rebars. Compos. Struct. 2024, 340, 118184. [Google Scholar] [CrossRef]
- Liao, J.; Di, B.; Zheng, Y.; Xuan, Z.-W.; Zeng, J.-J. Shear behavior of circular concrete short columns reinforced with GFRP longitudinal bars and CFRP grid stirrups. Compos. Struct. 2024, 340, 118181. [Google Scholar] [CrossRef]
- Huang, D.; Lin, C.; Liu, Z.; Lu, Y.; Li, S. Compressive behaviors of steel fiber-reinforced geopolymer recycled aggregate concrete-filled GFRP tube columns. Structures 2024, 66, 106829. [Google Scholar] [CrossRef]
- Fathi, H.G.; Ghali, M.K.N.; Shanour, A.S.; Khater, A.N.M. Experimental and analytical study on eccentrically loaded Fiber concrete columns reinforced longitudinally with GFRP bars. Eng. Struct. 2024, 312, 118251. [Google Scholar] [CrossRef]
- Long, X.; Chen, Z.; Li, P. Seismic Performance of Corroded ECC-GFRP Spiral-Confined Reinforced-Concrete Column. Polymers 2024, 16, 2110. [Google Scholar] [CrossRef]
- Belarbi, A.; Acun, B. FRP Systems in Shear Strengthening of Reinforced Concrete Structures. Procedia Eng. 2013, 57, 2–8. [Google Scholar] [CrossRef]
- Hodhod, O.A.; Hassan, W.; Hilal, M.S.; Bahnasawy, H. Strength and ductility of biaxially loaded high strength RC short square columns wrapped with GFRP jackets. Struct. Eng. Mech. 2005, 20, 727–745. [Google Scholar] [CrossRef]
- Mugahed Amran, Y.H.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.C. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Mubin, S.M.; Syamsir, A.; Mohamad, D. A Review on experimental and numerical studies of Glass Fibre Reinforced Polymer (GFRP) strips strengthened Reinforced Concrete (RC) slab subjected to low velocity impact. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012075. [Google Scholar] [CrossRef]
- Shan, B.; Xiao, Y.; Guo, Y. Residual Performance of FRP-Retrofitted RC Columns after Being Subjected to Cyclic Loading Damage. J. Compos. Constr. 2006, 10, 304–312. [Google Scholar] [CrossRef]
- Zaher, A.H.A.; Montaser, W.M.; Elsonbaty, M.M. Strengthening and Repairing of RC Deep Beams Using CFRP and GFRP. Int. J. Civ. Eng. Technol. 2020, 11, 64–85. [Google Scholar] [CrossRef]
- Ghobarah, A.; Ghorbel, M.N.; Chidiac, S.E. Upgrading Torsional Resistance of Reinforced Concrete Beams Using Fiber-Reinforced Polymer. J. Compos. Constr. 2002, 6, 257–263. [Google Scholar] [CrossRef]
- Ebead, U.; Saeed, H. FRP/stirrups interaction of shear-strengthened beams. Mater. Struct. 2017, 50, 103. [Google Scholar] [CrossRef]
- Zarringol, M.; Zarringol, M. A Comparative Study on the Efficiency of CFRP and GFRP in the Improvement of Compressive Strength, Acoustic Impedance and Bracing of Filled and Hollow Concrete Columns in Different Layers and Ages. J. Sustain. Dev. 2016, 9, 110. [Google Scholar] [CrossRef]
- Wang, W.C.; Wang, H.Y.; Chang, K.H.; Wang, S.Y. Effect of high temperature on the strength and thermal conductivity of glass fiber concrete. Constr. Build. Mater. 2020, 245, 118387. [Google Scholar] [CrossRef]
- Kasagani, H.; Rao, C.B.K. Effect of graded fibers on stress strain behaviour of Glass Fiber Reinforced Concrete in tension. Constr. Build. Mater. 2018, 183, 592–604. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, J.; Li, J.; Liu, P.; Shi, C.; Lu, Z. Flexural behaviour of seawater–sea sand concrete beams reinforced with GFRP bars: Effects of the reinforcement ratio, stirrup ratio, shear span ratio and prestress level. J. Build. Eng. 2022, 54, 104566. [Google Scholar] [CrossRef]
- Maranan, G.B.; Manalo, A.C.; Benmokrane, B.; Karunasena, W.; Mendis, P. Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars. Eng. Struct. 2015, 101, 529–541. [Google Scholar] [CrossRef]
- Hasan, M.A.; Sheehan, T.; Ashour, A.; Elkezza, O. Flexural behaviour of geopolymer concrete T-Beams reinforced with GFRP bars. Structures 2023, 49, 345–364. [Google Scholar] [CrossRef]
- Gouda, M.G.; Mohamed, H.M.; Manalo, A.C.; Benmokrane, B. Experimental investigation of concentrically and eccentrically loaded circular hollow concrete columns reinforced with GFRP bars and spirals. Eng. Struct. 2023, 277, 115442. [Google Scholar] [CrossRef]
- Hassanli, R.; Manalo, A.; Vafaei, D.; Yekrangnia, M.; Elchalakani, M.; Noël, M. Cyclic behavior of GFRP-reinforced concrete one-way slabs with synthetic fibers. J. Build. Eng. 2023, 65, 105741. [Google Scholar] [CrossRef]
- Golham, M.A.; Al-Ahmed, A.H.A. Behavior of GFRP reinforced concrete slabs with openings strengthened by CFRP strips. Results Eng. 2023, 18, 101033. [Google Scholar] [CrossRef]
- Vafaei, D.; Ma, X.; Hassanli, R.; Duan, J.; Zhuge, Y. Experimental study on cyclic flexural behaviour of GFRP-reinforced seawater sea-sand concrete slabs with synthetic fibres. Ocean Eng. 2023, 273, 114014. [Google Scholar] [CrossRef]
- Mohamed, N.; Farghaly, A.S.; Benmokrane, B.; Neale, K.W. Experimental Investigation of Concrete Shear Walls Reinforced with Glass Fiber–Reinforced Bars under Lateral Cyclic Loading. J. Compos. Constr. 2013, 18, A4014001. [Google Scholar] [CrossRef]
- Hassanein, A.; Mohamed, N.; Sabry Farghaly, A.; Benmokrane, B. Effect of boundary element confinement configuration on the performance of GFRP-Reinforced concrete shear walls. Eng. Struct. 2020, 225, 111262. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Yekrangnia, M.; Vatani Oskouei, A. Effect of spiral transverse bars on structural behavior of concrete shear walls reinforced with GFRP bars. J. Build. Eng. 2022, 55, 104706. [Google Scholar] [CrossRef]
- Abdallah, A.E.; El-Salakawy, E.F. Seismic performance of GFRP-RC circular columns with different aspect ratios and concrete strengths. Eng. Struct. 2022, 257, 114092. [Google Scholar] [CrossRef]
- Raza, A.; Manalo, A.C.; Rafique, U.; AlAjarmeh, O.S.; Khan, Q.u.Z. Concentrically loaded recycled aggregate geopolymer concrete columns reinforced with GFRP bars and spirals. Compos. Struct. 2021, 268, 113968. [Google Scholar] [CrossRef]
- Selmy, Y.M.; El-Salakawy, E.F. Numerical investigation on the seismic behaviour of GFRP-reinforced concrete rectangular columns. Eng. Struct. 2022, 262, 114355. [Google Scholar] [CrossRef]
- Afifi, M.Z.; Mohamed, H.M.; Chaallal, O.; Benmokrane, B. Confinement model for circular concrete columns reinforced with GFRP bars and GFRP spirals. J. Can. Soc. Civ. Eng. 2015, 2, 1284–1293. [Google Scholar] [CrossRef]
- Elchalakani, M.; Karrech, A.; Dong, M.; Mohamed Ali, M.S.; Yang, B. Experiments and Finite Element Analysis of GFRP Reinforced Geopolymer Concrete Rectangular Columns Subjected to Concentric and Eccentric Axial Loading. Structures 2018, 14, 273–289. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, J.; Sheikh, M.N.; Yu, T.; Hadi, M.N.S. Analytical load-moment (P-M) interaction diagrams of GFRP bar reinforced circular geopolymer concrete columns. Structures 2021, 34, 2445–2454. [Google Scholar] [CrossRef]
- Dong, M.; Lokuge, W.; Elchalakani, M.; Karrech, A. Modelling glass fibre-reinforced polymer reinforced geopolymer concrete columns. Structures 2019, 20, 813–821. [Google Scholar] [CrossRef]
- Hasan, H.A.; Karim, H.; Goaiz, H.A.; Cabe, A.M.; Sheikh, M.N.; Hadi, M.N.S. Performance evaluation of normal- and high-strength concrete column specimens reinforced longitudinally with different ratios of GFRP bars. Structures 2022, 47, 1428–1440. [Google Scholar] [CrossRef]
- Prajapati, G.N.; Farghaly, A.S.; Benmokrane, B. Performance of concrete columns longitudinally reinforced with steel and GFRP bars and confined with GFRP spirals and cross ties under reversed cyclic loading. Eng. Struct. 2022, 270, 114863. [Google Scholar] [CrossRef]
- Maranan, G.B.; Manalo, A.C.; Benmokrane, B.; Karunasena, W.; Mendis, P. Behavior of Concentrically Loaded Geopolymer-Concrete Circular Columns Reinforced Longitudinally and Transversely with GFRP Bars. Eng. Struct. 2016, 117, 422–436. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Amin, F.M. Strength curve data for slender geopolymer concrete columns with GFRP, steel and hybrid reinforcement. Data Brief 2021, 39, 107589. [Google Scholar] [CrossRef] [PubMed]
- Hadhood, A.; Mohamed, H.M.; Ghrib, F.; Benmokrane, B. Efficiency of glass-fiber reinforced-polymer (GFRP) discrete hoops and bars in concrete columns under combined axial and flexural loads. Compos. B Eng. 2019, 114, 223–236. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, K.; Zhang, Q. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand. J. Build. Eng. 2022, 51, 104294. [Google Scholar] [CrossRef]
- Zhou, A.; Chow, C.L.; Lau, D. Structural behavior of GFRP reinforced concrete columns under the influence of chloride at casting and service stages. Compos. B Eng. 2018, 136, 1–9. [Google Scholar] [CrossRef]
- Salah-eldin, A.; Mohamed, H.M.; Benmokrane, B. Effect of GFRP Reinforcement Ratio on the Strength and Effective Stiffness of High-Strength Concrete Columns: Experimental and Analytical Study. J. Compos. Constr. 2020, 24, 04020055. [Google Scholar] [CrossRef]
- Hassanli, R.; Youssf, O.; Mills, J.E. Seismic performance of precast posttensioned segmental FRP-confined and unconfined crumb rubber concrete columns. J. Compos. Constr. 2017, 21, 04017006. [Google Scholar] [CrossRef]
- Hou, C.; Ma, G.; Hwang, H.-J.; Li, S.; Kang, S.-M. Seismic retrofit of intact and damaged RC columns using prefabricated steel cage-reinforced UHPC jackets and NSM GFRP bars. Eng. Struct. 2024, 317, 118665. [Google Scholar] [CrossRef]
- Martins, D.; Proença, M.; Correia, J.R.; Gonilha, J.; Arruda, M.; Silvestre, N. Development of a novel beam-to-column connection system for pultruded GFRP tubular profiles. Compos. Struct. 2017, 171, 263–276. [Google Scholar] [CrossRef]
- Miralami, M.; Esfahani, M.R.; Tavakkolizadeh, M. Strengthening of circular RC column-foundation connections with GFRP/SMA bars and CFRP wraps. Compos. B Eng. 2019, 172, 161–172. [Google Scholar] [CrossRef]
- Scopus. Elsevier. 13 September 2024. Available online: https://www.scopus.com/search/form.uri?display=basic&zone=header&origin=#basic (accessed on 9 September 2024).
- AlAjarmeh, O.S.; Manalo, A.C.; Benmokrane, B.; Karunasena, K.; Ferdous, W.; Mendis, P. Hollow concrete columns: Review of structural behavior and new designs using GFRP reinforcement. Eng. Struct. 2020, 203, 109829. [Google Scholar] [CrossRef]
- Bank, L.C. Composites for Construction; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Haeger, A.; Schoen, G.; Lissek, F.; Meinhard, D.; Kaufeld, M.; Schneider, G.; Schuhmacher, S.; Knoblauch, V. Non-destructive Detection of Drilling-induced Delamination in CFRP and its Effect on Mechanical Properties. Procedia Eng. 2016, 149, 130–142. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Ferrante, L.; Valente, M.; Valente, T.; Lampani, L.; Gaudenzi, P.; Cioffi, S.; Iannace, S.; Sorrentino, L. Drop-weight impact behaviour of woven hybrid basalt–carbon/epoxy composites. Compos. B Eng. 2014, 59, 204–220. [Google Scholar] [CrossRef]
- Spagnuolo, S.; Rinaldi, Z.; Donnini, J.; Nanni, A. Physical, mechanical and durability properties of GFRP bars with modified acrylic resin (modar) matrix. Compos. Struct. 2021, 262, 113557. [Google Scholar] [CrossRef]
- ASTM D7957; Standard Specification for Solid Round Glass Fiber Reinforced Polymer Bars for Concrete Reinforcement. ASTM: West Conshohocken, PA, USA, 2017.
- AC454. Fiber-Reinforced Polymer (FRP) Bars for Internal Reinforcement of Concrete Members; International Code Counclil (ICC): Washington, DC, USA, 2014. [Google Scholar]
- Arslan, M.E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 2016, 114, 383–391. [Google Scholar] [CrossRef]
- Sagban Saadoon, A.; Mohammed Abbas, A.; Atalla Almayah, A. Revision Study of Green Concrete. Basrah J. Eng. Sci. 2019, 19, 33–38. [Google Scholar] [CrossRef]
- Abbood, I.S.; Odaa, S.A.; Hasan, K.F.; Jasim, M.A. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures—A review. Mater. Today Proc. 2021, 43, 1003–1008. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Sharma, S.K. Monitoring structural behaviour of concrete beams reinforced with steel and GFRP bars using acoustic emission and digital image correlation techniques. Struct. Infrastruct. Eng. 2022, 18, 167–182. [Google Scholar] [CrossRef]
- Morampudi, P.; Namala, K.K.; Gajjela, Y.K.; Barath, M.; Prudhvi, G. Review on glass fiber reinforced polymer composites. Mater. Today Proc. 2020, 43, 314–319. [Google Scholar] [CrossRef]
- Elchalakani, M.; Dong, M.; Karrech, A.; Sadakkathulla, M.; Ali, M.; Huo, J.-S. Circular Concrete Columns and Beams Reinforced with GFRP Bars and Spirals under Axial, Eccentric, and Flexural Loading. J. Compos. Constr. 2020, 24, 04020008. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Iwashita, K.; Sasaki, T.; Hamaguchi, Y. Tensile fatigue behaviour of FRP and hybrid FRP sheets. Compos. B Eng. 2010, 41, 396–402. [Google Scholar] [CrossRef]
- CSA. Design and Construction of Building Structures with Fibre-Reinforced Polymers, CSA (Canadian Standards Association) S806-12; CSA: Mississauga, ON, Canada, 2012. [Google Scholar]
- ACI. Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary (ACI 440.11-22); ACI (American Concrete Institute): Farmington Hills, MI, USA, 2022. [Google Scholar]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled glass fiber reinforced polymer additions to Portland cement concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical Properties of High-performance Concrete Reinforced with Basalt Fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Lamanna, A.J.; Bank, L.C.; Scott, D.W. Flexural Strengthening of Reinforced Concrete Beams by Mechanically Attaching Fiber-Reinforced Polymer Strips. J. Compos. Constr. 2004, 8, 203–210. [Google Scholar] [CrossRef]
- Sharafeddin, F.; Alavi, A.; Talei, Z. Flexural strength of glass and polyethylene fiber combined with three different composites. J. Dent. (Shiraz) 2013, 14, 13–19. [Google Scholar] [PubMed]
- Shaw, I.; Andrawes, B. Repair of damaged end regions of PC beams using externally bonded FRP shear reinforcement. Constr. Build. Mater. 2017, 148, 184–194. [Google Scholar] [CrossRef]
- Xiong, G.J.; Yang, J.Z.; Ji, Z.B. Behavior of Reinforced Concrete Beams Strengthened with Externally Bonded Hybrid Carbon Fiber–Glass Fiber Sheets. J. Compos. Constr. 2004, 8, 275–278. [Google Scholar] [CrossRef]
- Hawileh, R.A.; Rasheed, H.A.; Abdalla, J.A.; Al-Tamimi, A.K. Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems. Mater. Des. 2014, 53, 972–982. [Google Scholar] [CrossRef]
- Baggio, D.; Soudki, K.; Noël, M. Strengthening of shear critical RC beams with various FRP systems. Constr. Build. Mater. 2014, 66, 634–644. [Google Scholar] [CrossRef]
- Ritchie, P.A.; Thomas, D.A.; Lu, L.W.; Connelly, G.M. External Reinforcement of Concrete Beams Using Fiber Reinforced Plastics. Struct. J. 1991, 88, 490–500. [Google Scholar] [CrossRef]
- Attari, N.; Amziane, S.; Chemrouk, M. Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Constr. Build. Mater. 2012, 37, 746–757. [Google Scholar] [CrossRef]
- Li, C.; Xiang, Y.; Cai, C. Performance of a seismic-resilient precast segmental column with UHPC segments and CFRP tendon. Eng. Struct. 2023, 282, 115833. [Google Scholar] [CrossRef]
- Koutas, L.; Triantafillou, T.C. Use of Anchors in Shear Strengthening of Reinforced Concrete T-Beams with FRP. J. Compos. Constr. 2013, 17, 101–107. [Google Scholar] [CrossRef]
- Haddad, R.H.; Al-Rousan, R.Z.; Al-Sedyiri, B.K. Repair of shear-deficient and sulfate-damaged reinforced concrete beams using FRP composites. Eng. Struct. 2013, 56, 228–238. [Google Scholar] [CrossRef]
- Dong, J.; Wang, Q.; Guan, Z. Structural behaviour of RC beams with external flexural and flexural–shear strengthening by FRP sheets. Compos. B Eng. 2013, 44, 604–612. [Google Scholar] [CrossRef]
- Withers, G.J.; Yu, Y.; Khabashesku, V.N.; Cercone, L.; Hadjiev, V.G.; Souza, J.M.; Davis, D.C. Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos. B Eng. 2015, 72, 175–182. [Google Scholar] [CrossRef]
- Abdurohman, K.; Satrio, T.; Muzayadah, N.L.; Teten. A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites. J. Phys. Conf. Ser. 2018, 1130, 012018. [Google Scholar] [CrossRef]
- Torabizadeh, M.A. Tensile, compressive and shear properties of unidirectional glass/epoxy composites subjected to mechanical loading and low temperature services. Indian J. Eng. Mater. Sci. 2013, 20, 299–309. [Google Scholar]
- Godara, A.; Raabe, D. Influence of fiber orientation on global mechanical behavior and mesoscale strain localization in a short glass-fiber-reinforced epoxy polymer composite during tensile deformation investigated using digital image correlation. Compos. Sci. Technol. 2007, 67, 2417–2427. [Google Scholar] [CrossRef]
- Sudheer, M.; Hemanth, K.; Raju, K.; Bhat, T. Enhanced Mechanical and Wear Performance of Epoxy/glass Composites with PTW/Graphite Hybrid Fillers. Procedia Mater. Sci. 2014, 6, 975–987. [Google Scholar] [CrossRef]
- Berardi, U.; Dembsey, N. Thermal and Fire Characteristics of FRP Composites for Architectural Applications. Polymers 2015, 7, 2276–2289. [Google Scholar] [CrossRef]
- Bellakehal, H.; Zaidi, A.; Masmoudi, R.; Bouhicha, M. Behavior of FRP Bars-Reinforced Concrete Slabs under Temperature and Sustained Load Effects. Polymers 2014, 6, 873–889. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Ueta, G.; Okabe, S.; Utsumi, T.; Nukaga, J. Electric conductivity characteristics of FRP and epoxy insulators for GIS under DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2320–2328. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Yu, B. Rational Approach for Evaluating Fire Resistance of FRP-Strengthened Concrete Beams. J. Compos. Constr. 2016, 20, 04016041. [Google Scholar] [CrossRef]
- Berardi, U.; Meacham, B.J.; Dembsey, N.A.; You, Y.-G. Fire Performance Assessment of a Fiber Reinforced Polymer Wall Panel Used in a Single Family Dwelling. Fire Technol. 2014, 50, 1607–1617. [Google Scholar] [CrossRef]
- Petersen, M.R.; Chen, A.; Roll, M.; Jung, S.J.; Yossef, M. Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler. Compos. B Eng. 2015, 78, 109–121. [Google Scholar] [CrossRef]
- Barluenga, G.; Hernández-Olivares, F. Cracking control of concretes modified with short AR-glass fibers at early age. Experimental results on standard concrete and SCC. Cem. Concr. Res. 2007, 37, 1624–1638. [Google Scholar] [CrossRef]
- Khalil, A.; Hawileh, R.; Attom, M. Investigating the Durability of Bent and Straight Glass Fiber Reinforced Polymer (GFRP) Rebars in Harsh Marine Environments: Pilot Study. In Proceedings of the 9th International Conference on Civil Structural and Transportation Engineering (ICCSTE 2024), Toronto, ON, Canada, 13–15 June 2024. [Google Scholar] [CrossRef]
- Khorramian, K.; Sadeghian, P.; Oudah, F. Slenderness limit for glass fiber-reinforced polymer reinforced concrete columns: Reliability-based approach. ACI Struct. J. 2022, 119, 249–262. [Google Scholar]
- Khalil, A.; Hawileh, R.; Attom, M. Exploring Strength of Straight and Bent GFRP Bars: Refinements to CSA S807:19 Annex E. Available online: https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=51740628 (accessed on 9 September 2024).
- Jiang, X.; Kolstein, H.; Bijlaard, F.; Qiang, X. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics. Compos. Part A Appl. Sci. Manuf. 2014, 57, 49–58. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Xian, G. Hygrothermal effects on high V(F) pultruded unidirectional carbon/epoxy composites: Moisture uptake. Compos. B Eng. 2009, 40, 41–49. [Google Scholar] [CrossRef]
- Daly, H.; Brahim, H.; Hfaied, N.; Harchay, M.; Boukhili, R. Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polym. Compos. 2007, 28, 355–364. [Google Scholar] [CrossRef]
- Karbhari, V. E-glass/vinylester composites in aqueous environments: Effects on short-beam shear strength. J. Compos. Constr. 2004, 8, 148–156. [Google Scholar] [CrossRef]
- Robert, M.; Roy, R.; Benmokrane, B. Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym. Compos. 2010, 31, 604–611. [Google Scholar] [CrossRef]
- Earl, J.; Shenoi, R. Hygrothermal ageing effects on FRP laminate and structural foam materials. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1237–1247. [Google Scholar] [CrossRef]
- Nogueira, P.; Ramírez, C.; Torres, A.; Abad, M.J.; Cano, J.; Lopez, J.; Lopez-Bueno, I.; Barral, L. Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J. Appl. Polym. Sci. 2001, 80, 71–80. [Google Scholar] [CrossRef]
- Bank, L.; Gentry, T.; Barkatt, A. Accelerated test methods to determine the longterm behavior of FRP composite structures—Environmental-effects. J. Reinf. Plast. Comp. 1995, 14, 559–587. [Google Scholar] [CrossRef]
- Shao, Y.; Kouadi, S. Durability of fiberglass composite sheet piles in water. J. Compos. Constr. 2002, 6, 280–287. [Google Scholar] [CrossRef]
- GangaRao, H.V.S.; Vijay, P.V. Inland Hydraulic Structures Feasibility Review of Frp Materials for Structural Applications; West Virginia University: Morgantown, WV, USA, 2010. [Google Scholar]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Rostasy, F. On durability of FRP in aggressive environments. In Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 14–16 October 1997; pp. 107–114. [Google Scholar]
- Khennane, A.; Melchers, R.E. Durability of Glass Polymer Composites Subject to Stress Corrosion. J. Compos. Constr. 2003, 7, 109–117. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fibre reinforced plastic. Compos. B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Araújo, E.M.; Araújo, K.D.; Pereira, O.D.; Ribeiro, P.C.; de Melo, T.J.A. Fiberglass wastes/polyester resin composites: Mechanical properties and water sorption. Polímeros 2006, 16, 332–335. [Google Scholar] [CrossRef]
- Huang, L.; Sun, X.; Yan, L.; Kasal, B. Impact behavior of concrete columns confined by both GFRP tube and steel spiral reinforcement. Constr. Build. Mater. 2017, 131, 438–448. [Google Scholar] [CrossRef]
- Natarajan, V.; GangaRao, H.V.S.; Shekar, V. Fatigue Response of Fabric-reinforced Polymeric Composites. J. Compos. Mater. 2005, 39, 1541–1559. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Sun, X.; Shi, M.; Liu, J. Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires. Compos. Struct. 2017, 178, 311–319. [Google Scholar] [CrossRef]
- Shan, Y.; Liao, K. Environmental fatigue behavior and life prediction of unidirectional glass-carbon/epoxy hybrid composites. Int. J. Fatigue 2002, 24, 847–859. [Google Scholar] [CrossRef]
- El-Gamal, S.; Alshareedah, O. Behavior of Axially Loaded Low Strength Concrete Columns Reinforced with GFRP Bars and Spirals. Eng. Struct. 2020, 216, 110732. [Google Scholar] [CrossRef]
- AlAjarmeh, O.S.; Manalo, A.C.; Benmokrane, B.; Karunasena, W.; Mendis, P. Effect of Spiral Spacing and Concrete Strength on Behavior of GFRP-Reinforced Hollow Concrete Columns. J. Compos. Constr. 2019, 24, 04019054. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Afifi, M.Z.; Benmokrane, B. Proposed slenderness limit for glass fiber-reinforced polymer-reinforced concrete columns based on experiments and buckling analysis. ACI Struct. J. 2020, 117, 241–254. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Benmokrane, B. Inelastic Second-Order Analysis for Slender GFRP-Reinforced Concrete Columns: Experimental Investigations and Theoretical Study. J. Compos. Constr. 2020, 24, 04020016. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Benmokrane, B. Proposed flexural stiffness of slender concrete columns reinforced with glass fiber-reinforced polymer bars. ACI Struct. J. 2021, 118, 227–240. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Benmokrane, B.; Afifi, M.Z. Effect of critical test parameters on behavior of glass fiber-reinforced polymer-reinforced concrete slender columns under eccentric load. ACI Struct. J. 2020, 117, 127–141. [Google Scholar] [CrossRef]
- Afifi, M.Z.; Mohamed, H.M.; Benmokrane, B. Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals. J. Compos. Constr. 2014, 18, 04013017. [Google Scholar] [CrossRef]
- Ahmad, A.; Bahrami, A.; Alajarmeh, O.; Chairman, N.; Yaqub, M. Investigation of Circular Hollow Concrete Columns Reinforced with GFRP Bars and Spirals. Buildings 2023, 13, 1056. [Google Scholar] [CrossRef]
- Almomani, Y.; Tarawneh, A.; Alawadi, R.; Taqieddin, Z.N.; Jweihan, Y.S.; Saleh, E. Predictive Models of Behavior and Capacity of FRP Reinforced Concrete Columns. J. Appl. Eng. Sci. 2023, 21, 1–14. [Google Scholar] [CrossRef]
- Almomani, Y.; Tarawneh, A.; Alawadi, R.; Taqieddin, Z.N.; Taha, S.; Abu Sheikh, N.; Momani, Z. Confinement model for circular concrete columns transversely reinforced with GFRP spirals and hoops. Results Eng. 2023, 17, 100918. [Google Scholar] [CrossRef]
- Arafa, A.; Shoeib, A.; Dandrawy, S. Behavior of Hybrid Steel/GFRP Reinforced Columns under Lateral Cyclic Loading: A Numerical Study. Sohag Eng. J. 2021, 1, 110–121. [Google Scholar] [CrossRef]
- Arora, H.C.; Kumar, S.; Kontoni, D.P.N.; Kumar, A.; Sharma, M.; Kapoor, N.R.; Kumar, K. Axial Capacity of FRP-Reinforced Concrete Columns: Computational Intelligence-Based Prognosis for Sustainable Structures. Buildings 2022, 12, 2137. [Google Scholar] [CrossRef]
- Barua, S.; El-Salakawy, E. Performance of GFRP-Reinforced Concrete Circular Short Columns under Concentric, Eccentric, and Flexural Loads. J. Compos. Constr. 2020, 24, 04020044. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Interpretable Machine Learning Algorithms to Predict the Axial Capacity of FRP-Reinforced Concrete Columns. Materials 2022, 15, 2742. [Google Scholar] [CrossRef] [PubMed]
- Elmesalami, N.; Abed, F.; El Refai, A. Concrete Columns Reinforced with GFRP and BFRP Bars under Concentric and Eccentric Loads: Experimental Testing and Analytical Investigation. J. Compos. Constr. 2021, 25, 04021003. [Google Scholar] [CrossRef]
- Elshamandy, M.G.; Farghaly, A.S.; Benmokrane, B. Experimental behavior of glass fiber-reinforced polymer-reinforced concrete columns under lateral cyclic load. ACI Struct. J. 2018, 115, 337–349. [Google Scholar] [CrossRef]
- Guérin, M.; Mohamed, H.M.; Benmokrane, B.; Nanni, A.; Shield, C.K. Eccentric Behavior of Full-Scale Reinforced Concrete Columns with Glass Fiber-Reinforced Polymer Bars and Ties. ACI Struct. J. 2018, 115, 489. [Google Scholar] [CrossRef]
- Guérin, M.; Mohamed, H.M.; Benmokrane, B.; Shield, C.K.; Nanni, A. Effect of Glass Fiber-Reinforced Polymer Reinforcement Ratio on Axial-Flexural Strength of Reinforced Concrete Columns. ACI Struct. J. 2018, 115, 1049. [Google Scholar] [CrossRef]
- HadHood, A.; Mohamed, H.M.; Benmokrane, B. Behavior of circular frp-reinforced concrete columns under eccentric loading. In Proceedings of the 2016 Annual Conference of the Canadian Society for Civil Engineering, London, ON, Canada, 1–4 June 2016. [Google Scholar]
- Hadhood, A.; Mohamed, H.M.; Benmokrane, B. Flexural Stiffness of GFRP and CFRP RC Circular Members under Eccentric Loads Based on Experimental and Curvature Analysis. ACI Struct. J. 2018, 115, 1185–1198. [Google Scholar] [CrossRef]
- Hadi, M.N.S.; Karim, H.; Sheikh, M.N. Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions. J. Compos. Constr. 2016, 20, 04016009. [Google Scholar] [CrossRef]
- Hales, T.A.; Pantelides, C.P.; Reaveley, L.D. Experimental Evaluation of Slender High-Strength Concrete Columns with GFRP and Hybrid Reinforcement. J. Compos. Constr. 2016, 20, 04016050. [Google Scholar] [CrossRef]
- Hasan, H.A.; Karim, H.; Neaz Sheikh, M.; Hadi, M.N.S. Moment-curvature Behavior of Glass Fiber-reinforced Polymer Bar-reinforced Normal-strength Concrete and High-strength Concrete Columns. ACI Struct. J. 2019, 116, 65–75. [Google Scholar] [CrossRef]
- Isleem, H.F.; Tayeh, B.A.; Abid, M.; Iqbal, M.; Mohamed, A.M.; El Sherbiny, M.G. Finite Element and Artificial Neural Network Modeling of FRP-RC Columns Under Axial Compression Loading. Front. Mater. 2022, 9, 888909. [Google Scholar] [CrossRef]
- Kharal, Z.; Sheikh, S.A. Seismic Behavior of Square and Circular Concrete Columns with GFRP Reinforcement. J. Compos. Constr. 2020, 24, 04019059. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Afifi, M.Z.; Benmokrane, B. Performance Evaluation of Concrete Columns Reinforced Longitudinally with FRP Bars and Confined with FRP Hoops and Spirals under Axial Load. J. Bridge Eng. 2014, 19, 04014020. [Google Scholar] [CrossRef]
- Mohamed, H.M.; Ali, A.H.; Hadhood, A.; Mousa, S.; Abdelazim, W.; Benmokrane, B. Testing, Design, and Field Implementation of GFRP RC Soft-eyes for Tunnel Construction. Tunn. Undergr. Space Technol. 2020, 106, 103626. [Google Scholar] [CrossRef]
- Patil, G.M.; Prakash, S.S. Effect of Macrosynthetic and Hybrid Fibers on the Behavior of Square Concrete Columns Reinforced with GFRP Rebars under Axial Compression. J. Compos. Constr. 2021, 25, 04021053. [Google Scholar] [CrossRef]
- Pham, T.M.; Chen, W.; Elchalakani, M.; Do, T.V.; Hao, H. Sensitivity of lateral impact response of RC columns reinforced with GFRP bars and stirrups to concrete strength and reinforcement ratio. Eng. Struct. 2021, 242, 112512. [Google Scholar] [CrossRef]
- Prachasaree, W.; Piriyakootorn, S.; Sangsrijun, A.; Limkatanyu, S. Behavior and Performance of GFRP Reinforced Concrete Columns with Various Types of Stirrups. Int. J. Polym. Sci. 2015, 2015, 237231. [Google Scholar] [CrossRef]
- Raza, A.; Ali, B.; Usman Aslam, H.M. Axial performance of hybrid fiber reinforced concrete columns having GFRP longitudinal bars and spirals. J. Build. Eng. 2020, 35, 102017. [Google Scholar] [CrossRef]
- Tobbi, H.; Farghaly, A.S.; Benmokrane, B. Behavior of Concentrically Loaded Fiber-Reinforced Polymer Reinforced Concrete Columns with Varying Reinforcement Types and Ratios. Struct. J. 2014, 111, 375–386. [Google Scholar] [CrossRef]
- Tu, J.; Gao, K.; He, L.; Li, X. Experimental study on the axial compression performance of GFRP-reinforced concrete square columns. Adv. Struct. Eng. 2018, 22, 1554–1565. [Google Scholar] [CrossRef]
- Ye, Y.Y.; Zhuge, Y.; Smith, S.T.; Zeng, J.J.; Bai, Y.L. Behavior of GFRP-RC columns under axial compression: Assessment of existing models and a new axial load-strain model. J. Build. Eng. 2022, 47, 103782. [Google Scholar] [CrossRef]
- Abdelazim, W.; Mohamed, H.M.; Benmokrane, B.; Nolan, S. Strength of Bridge High-Strength Concrete Slender Compression Members Reinforced with GFRP Bars and Spirals: Experiments and Second-Order Analysis. J. Bridge Eng. 2020, 25, 04020066. [Google Scholar] [CrossRef]
- Anwar, M.K.; Shah, S.A.R.; Azab, M.; Shah, I.; Chauhan, M.K.S.; Iqbal, F. Structural Performance of GFRP Bars based High-Strength RC Columns: An Application of Advanced Decision-Making Mechanism for Experimental Profile Data. Buildings 2022, 12, 611. [Google Scholar] [CrossRef]
- Hadhood, A.; Mohamed, H.M.; Benmokrane, B. Experimental Study of Circular High-Strength Concrete Columns Reinforced with GFRP Bars and Spirals under Concentric and Eccentric Loading. J. Compos. Constr. 2016, 3, 04016078. [Google Scholar] [CrossRef]
- Hadhood, A.; Mohamed, H.M.; Benmokrane, B. Assessing Stress-Block Parameters in Designing Circular High-Strength Concrete Members Reinforced with FRP Bars. J. Struct. Eng. 2018, 144, 04018182. [Google Scholar] [CrossRef]
- Ali, L.; Nawaz, A.; Bai, Y.; Raza, A.; Anwar, M.K.; Raheel Shah, S.A.; Raza, S.S. Numerical simulations of GFRP-Reinforced columns having polypropylene and polyvinyl alcohol fibers. Complexity 2020, 2020, 8841795. [Google Scholar] [CrossRef]
- Ahmad, J.; Ali, S.; Yu, T.; Sheikh, M.N.; Hadi, M.N.S. Analytical investigation on the load-moment interaction behavior of the FRP reinforced geopolymer concrete filled FRP tube circular columns. J. Build. Eng. 2021, 42, 102818. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N.S. Axial Load-bending Moment (P-M) Interactions of Geopolymer Concrete Columns Reinforced with and without Steel Fiber. ACI Struct. J. 2020, 117, 133–144. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Luhar, S.; Arel, H.Ş.; Luhar, I. Performance evaluation of Ultrahigh performance fibre reinforced concrete—A review. Constr. Build. Mater. 2020, 232, 117152. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, L.; Chi, Y.; Yu, M.; Huang, L. Compressive behavior of circular GFRP tube-confined UHPC-filled steel-encased stub columns. Compos. Struct. 2023, 309, 116730. [Google Scholar] [CrossRef]
- Ma, K.; Cao, X.; Song, J.; Meng, X.; Qiao, L. Axial compressive behavior of concrete-filled steel tubes with GFRP-confined UHPC cores. J. Constr. Steel Res. 2023, 200, 107632. [Google Scholar] [CrossRef]
- Zeng, J.J.; Chen, S.P.; Di Peng, K.; Dai, J.G. Novel FRP micro-bar reinforced UHPC permanent formwork for circular columns: Concept and compressive behavior. Compos. Struct. 2022, 285, 115268. [Google Scholar] [CrossRef]
- Zeng, J.; Long, T. Compressive behavior of FRP grid-reinforced UHPC tubular columns. Polymers 2022, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Khayat, K.H. Development of stay-in-place formwork using FRP reinforced UHPC elements. In First International Interactive Symposium on UHPC; Iowa State University Digital Press: Ames, IA, USA, 2016. [Google Scholar]
- Paultre, P.; Eid, R.; Langlois, Y.; Lévesque, Y. Behavior of Steel Fiber-Reinforced High-Strength Concrete Columns under Uniaxial Compression. J. Struct. Eng. 2010, 136, 1225–1235. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.u.Z. Experimental and numerical behavior of hybrid-fiber-reinforced concrete compression members under concentric loading. SN Appl. Sci. 2020, 2, 1–19. [Google Scholar] [CrossRef]
- Khan, Q.Z.; Ahmad, A.; Raza, A.; Tahir, M.F.; Mehboob, S.S. Proposed Equation of Elastic Modulus of Hybrid Fibers Reinforced Concrete Cylinders. Tech. J. 2019, 24, 9–20. [Google Scholar]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, W.; Hao, H.; Chen, Z.; Pham, T.M.; Tran, T.T.; Elchalakani, M. Flexural behaviour of ambient cured geopolymer concrete beams reinforced with BFRP bars under static and impact loads. Compos. Struct. 2021, 261, 113282. [Google Scholar] [CrossRef]
- Karthik, A.; Sudalaimani, K.; Vijaya Kumar, C.T. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Constr. Build. Mater. 2017, 149, 338–349. [Google Scholar] [CrossRef]
- Bostanci, S.C.; Limbachiya, M.; Kew, H. Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties. Constr. Build. Mater. 2016, 128, 324–340. [Google Scholar] [CrossRef]
- Hadi, M.N.S.; Ali, S.; Sheikh, M.N. Experimental Study of GFRP-Reinforced Geopolymer Concrete Columns under Different Loading Conditions. J. Compos. Constr. 2021, 25, 04021052. [Google Scholar] [CrossRef]
- Abdallah, M.; Hajiloo, H.; Braimah, A. Circular concrete columns confined with GFRP tubes under repeated and sequential impact loads. Eng. Struct. 2023, 280, 115725. [Google Scholar] [CrossRef]
- Raza, A.; Hechmi El Ouni, M.; Ali, L.; Awais, M.; Ali, B.; Ahmad, Z.; Ben Kahla, N. Structural evaluation of recycled aggregate concrete circular columns having FRP rebars and synthetic fibers. Eng. Struct. 2022, 250, 113392. [Google Scholar] [CrossRef]
- Raval, R.; Dave, U. Behavior of GFRP Wrapped RC Columns of Different Shapes. Procedia Eng. 2013, 51, 240–249. [Google Scholar] [CrossRef]
- Wytroval, T.; Tuchscherer, R. Design of Slender Concrete Columns. STRUCTURE Mag. 2013, 10–13. [Google Scholar]
- ACI. Building Code Requirements for Structural Concrete (ACI 318-19); no. 4.; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- ACI. Building Code Requirements for Structural Concrete (ACI 318.11-22); American Concrete Institute: Farmington Hills, MI, USA, 2022. [Google Scholar]
- Mirmiran, A.; Yuan, W.; Chen, X. Design for Slenderness in Concrete Columns Internally Reinforced with Fiber-Reinforced Polymer Bars. ACI Struct. J. 2001, 98, 116–125. [Google Scholar]
- Zadeh, H.J.; Nanni, A. Design of RC Columns Using Glass FRP Reinforcement. J. Compos. Constr. 2013, 17, 294–304. [Google Scholar] [CrossRef]
- Zadeh, H.J.; Nanni, A. Flexural Stiffness and Second Order Effects in Fiber-Reinforced Polymer Reinforced Concrete Frames. ACI Struct. J. 2017, 114, 533–544. [Google Scholar] [CrossRef]
- De Luca, A.; Matta, F.; Nanni, A. Behavior of Full-Scale Glass Fiber-Reinforced Polymer Reinforced Concrete Columns under Axial Load. ACI Struct. J. 2010, 107, 589. [Google Scholar]
- Chaallal, O.; Benmokrane, B. Physical and mechanical performance of an innovative glass-fibre-reinforced plastic rod. Can. J. Civ. Eng. 1993, 20, 254–268. [Google Scholar] [CrossRef]
- Mallick, P. Fiber Reinforced Composites Materials, Manufacturing, and Design; Taylor & Francis Group: New York, NY, USA, 1988. [Google Scholar]
- Deitz, D.; Harik, I.; Gesund, H. Physical properties of glass fiber reinforced polymer rebars in compression. J. Compos. Constr. 2003, 7, 263–266. [Google Scholar] [CrossRef]
- Wu, W. Thermomechanical Properties of Fiber Reinforced Plastic (FRP) Bars. Ph.D. Thesis, West Virginia University, Morgantown, WV, USA, 1992. [Google Scholar]
- Sharma, U.K.; Bhargava, P.; Kaushik, S.K. Behavior of Confined High Strength Concrete Columns under Axial Compression. J. Adv. Concr. Technol. 2005, 3, 267–281. [Google Scholar] [CrossRef]
- Li, P.; Chen, Y.; Yuan, F. Stress-strain behavior of ECC-GFRP spiral confined concrete cylinders. J. Build. Eng. 2023, 63, 105473. [Google Scholar] [CrossRef]
- Afifi, M.Z.; Mohamed, H.M.; Benmokrane, B. Theoretical stress-strain model for circular concrete columns confined by GFRP spirals and hoops. Eng. Struct. 2015, 102, 202–213. [Google Scholar] [CrossRef]
- Khalil, A.; Elkafrawy, M.; Hawileh, R.; AlHamaydeh, M.; Abuzaid, W. Numerical Investigation of Flexural Behavior of Reinforced Concrete (RC) T-Beams Strengthened with Pre-Stressed Iron-Based (FeMnSiCrNi) Shape Memory Alloy Bars. J. Compos. Sci. 2023, 7, 258. [Google Scholar] [CrossRef]
- Elkafrawy, M.; Alashkar, A.; Hawileh, R.; AlHamaydeh, M. FEA investigation of elastic buckling for functionally graded material (FGM) thin plates with different hole shapes under uniaxial loading. Buildings 2022, 12, 802. [Google Scholar] [CrossRef]
- Alashkar, A.; Elkafrawy, M.; Hawileh, R.; AlHamaydeh, M. Elastic Buckling Behaviour of Skew Functionally Graded Material (FGM) Thin Plates with Circular Openings. 2024. Available online: https://www.mdpi.com/2075-5309/14/3/572 (accessed on 9 September 2024).
- Awera, Y.; Abed, F. Axial Capacity of Circular Concrete Columns Reinforced with GFRP Bars and Spirals using FEA. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, C. Finite Element Analysis of Axial Compression Behavior of GFRP Tube-Reinforced Hollow High-strength Concrete Short Column. J. Shenyang Jianzhu Univ. (Nat. Sci.) 2003, 39, 394–401. [Google Scholar]
- Gora, A.M.; Jaganathan, J.; Anwar, M.P.; Alengaram, U.J. Finite element analysis of rectangular reinforced concrete columns wrapped with FRP composites. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 072005. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, X.; Wang, Z.; Zhang, C.; Wei, Y. Finite element simulations of eccentric compression performance for GFRP confined reinforced concrete long columns. In Proceedings of the 4th International Symposium on Power Electronics and Control Engineering (ISPECE 2021), Nanchang, China, 29 November 2021; p. 96. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.u.Z.; Ahmad, A. Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings. Eng. Struct. 2021, 227, 111461. [Google Scholar] [CrossRef]
- Selmy, Y.M.; Abdallah, A.E.; El-Salakawy, E.F. Non-linear Finite Element Analysis of GFRP-RC Circular Columns Subjected to Simulated Earthquake Loading. In Canadian Society of Civil Engineering Annual Conference; Springer: Cham, Switzerland, 2023; pp. 623–633. [Google Scholar]
- Reges, P.D.N.; Pitangueira, R.L.d.S.; Silva, L.L.d. RC-INSANE—An interactive environment for nonlinear analysis of reinforced concrete structures. Rev. IBRACON Estrut. Mater. 2022, 15, e15304. [Google Scholar] [CrossRef]
- Duarte, A.P.C.; Rosa, I.C.; Arruda, M.R.T.; Firmo, J.P.; Correia, J.R. Three-Dimensional Finite-Element Modeling of the Thermomechanical Response of GFRP-Reinforced Concrete Slab Strips Subjected to Fire. J. Compos. Constr. 2022, 26, 04022044. [Google Scholar] [CrossRef]
- Alam, M.S.; Hussein, A. Finite element modelling of shear critical glass fibre-reinforced polymer (GFRP) reinforced concrete beams. Int. J. Model. Simul. 2021, 41, 11–23. [Google Scholar] [CrossRef]
- Veljkovic, A.; Carvelli, V.; Rezazadeh, M. Modelling the bond in GFRP bar reinforced concrete thin structural members. Structures 2020, 24, 13–26. [Google Scholar] [CrossRef]
- Yang, S.H.; Woo, K.S.; Kim, J.J.; Ahn, J.S. Finite Element Analysis of RC Beams by the Discrete Model and CBIS Model Using LS-DYNA. Adv. Civ. Eng. 2021, 2021, 8857491. [Google Scholar] [CrossRef]
- Saleh, Z.; Sheikh, M.N.; Remennikov, A.; Basu, A. Numerical Analysis of Behavior of Glass Fiber-Reinforced Polymer Bar-Reinforced Concrete Beams under Impact Loads. ACI Struct. J. 2019, 116, 151–160. [Google Scholar] [CrossRef]
- Adem Yimer, M.; Dey, T. Dynamic response of concrete beams reinforced with GFRP and steel bars under impact loading. Eng. Fail. Anal. 2024, 161, 108329. [Google Scholar] [CrossRef]
- Li, H.; Yang, D.; Hu, T. Data-Driven Model for Predicting the Compressive Strengths of GFRP-Confined Reinforced Concrete Columns. Buildings 2023, 13, 1309. [Google Scholar] [CrossRef]
- Nguyen, T.-H.; Tran, N.-L.; Phan, V.-T.; Nguyen, D.-D. Improving axial load-carrying capacity prediction of concrete columns reinforced with longitudinal FRP bars using hybrid GA-ANN model. Asian J. Civ. Eng. 2023, 24, 3071–3081. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, M.N.; Akbar, M.; Salih, R.; Khan, M.A.; Bisheh, H.; Rabczuk, T. Prediction of shear behavior of glass FRP bars-reinforced ultra-highperformance concrete I-shaped beams using machine learning. Int. J. Mech. Mater. Des. 2024, 20, 269–290. [Google Scholar] [CrossRef]
- Shu, P.; Xue, C.; Zhang, G.; Deng, T. Study on design optimization of GFRP tubular column composite structure based on machine learning method. PLoS ONE 2024, 19, e0301865. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Li, Y.; Xue, W. Transfer learning-based confinement strength prediction of concrete confined by FRP transverse reinforcements. Eng. Struct. 2024, 310, 118116. [Google Scholar] [CrossRef]
- Khorramian, K.; Sadeghian, P.; Oudah, F. Second-Order Analysis of Slender Gfrp Reinforced Concrete Columns Using Artificial Neural Network. In Canadian Society of Civil Engineering Annual Conference; Springer Nature: Singapore, 2023; pp. 381–390. [Google Scholar]
- Chen, P.; Wang, H.; Cao, S.; Lv, X. Prediction of Mechanical Behaviours of FRP-Confined Circular Concrete Columns Using Artificial Neural Network and Support Vector Regression: Modelling and Performance Evaluation. Materials 2022, 15, 4971. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.-H.; Zhang, W.-P.; Zhou, Y.; Liu, Y. Confinement strength prediction of corroded rectangular concrete columns using BP neural networks and support vector regression. Structures 2024, 67, 107021. [Google Scholar] [CrossRef]
- Sun, L.; Wei, M.; Zhang, N. Experimental study on the behavior of GFRP reinforced concrete columns under eccentric axial load. Constr. Build. Mater. 2017, 152, 214–225. [Google Scholar] [CrossRef]
- Sun, L.; Yang, Z.; Jin, Q.; Yan, W. Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns. Int. J. Struct. Stab. Dyn. 2020, 20, 2040004. [Google Scholar] [CrossRef]
- Sajedi, S.F.; Saffarian, I.; Pourbaba, M.; Yeon, J.H. Structural Behavior of Circular Concrete Columns Reinforced with Longitudinal GFRP Rebars under Axial Load. Buildings 2024, 14, 988. [Google Scholar] [CrossRef]
- AlAjarmeh, O.S.; Manalo, A.C.; Benmokrane, B.; Karunasena, W.; Ferdous, W.; Mendis, P. A New Design-Oriented Model of Glass Fiber-Reinforced Polymer-Reinforced Hollow Concrete Columns. ACI Struct. J. 2020, 117, 141–156. [Google Scholar] [CrossRef]
- Kaeseberg, S.; Holschemacher, K. COMPREHENSIVE DESIGN-ORIENTED MODEL FOR FRP-CONFINED CIRCULAR RC COLUMNS. Proc. Int. Struct. Eng. Constr. 2022, 9, 1. [Google Scholar] [CrossRef]
- Karimipour, A.; Mohebbi Najm Abad, J.; Fasihihour, N. Predicting the load-carrying capacity of GFRP-reinforced concrete columns using ANN and evolutionary strategy. Compos. Struct. 2021, 275, 114470. [Google Scholar] [CrossRef]
- Alsuhaibani, E.; Alturki, M.; Alogla, S.M.; Alawad, O.; Alkharisi, M.K.; Bayoumi, E.; Aldukail, A. Compressive and Bonding Performance of GFRP-Reinforced Concrete Columns. Buildings 2024, 14, 1071. [Google Scholar] [CrossRef]
- CSA. Canadian Highway Bridge Design Code, Canadian Standard Association (CAN/CSA S6-14); CSA: Mississauga, ON, Canada, 2014. [Google Scholar]
- AASHTO. AASHTO LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings, 2nd ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018. [Google Scholar]
- AlHamaydeh, M.H.; Abdalla, J.A.; Abdalla, S.H.; Al-Rahmani, A.H.; Mostafa, A.A.; Albahttiti, M.T. Inelastic Seismic Demands For Reinforced Concrete Frames in Dubai. In Proceedings of the 14th European Earthquake Engineering Conference, Ohrid, North Macedonia, 30 August–3 September 2010; pp. 1204–1211. [Google Scholar]
- AlHamaydeh, M.; Hussain, S. Innovative Design of a Seismically-Isolated Building with Supplemental Damping. In Proceedings of the 14th European Earthquake Engineering Conference (14EEEC), Ohrid, North Macedonia, 30 August–3 September 2010. [Google Scholar]
- AlHamaydeh, M.; Galal, K.; Yehia, S. Impact of Lateral Force-Resisting System and Design/Construction Practices on Seismic Performance and Cost of Tall Buildings in Dubai, UAE. Earthq. Eng. Eng. Vib. 2013, 12, 385–397. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Yehia, S.; Aly, N.; Douba, A.; Hamzeh, L. Design Alternatives for Lateral Force-Resisting Systems of Tall Buildings in Dubai, UAE. Int. J. Civ. Environ. Eng. 2012, 6, 185–188. [Google Scholar]
- AlHamaydeh, M.; Abdullah, S.; Hamid, A.; Mustapha, A. Seismic Design Factors for RC Special Moment Resisting Frames in Dubai, UAE. Earthq. Eng. Eng. Vib. 2011, 10, 495–506. [Google Scholar] [CrossRef]
- AlHamaydeh, M.; Aly, N.; Galal, K. Seismic Response and Life-Cycle Cost of Reinforced Concrete Special Structural Wall Buildings in Dubai, UAE. Struct. Concr. 2018, 19, 771–782. [Google Scholar] [CrossRef]
- Aly, N.; AlHamaydeh, M.; Galal, K. Quantification of the Impact of Detailing on the Performance and Cost of RC Shear Wall Buildings in Regions with High Uncertainty in Seismicity Hazards. J. Earthq. Eng. 2018, 24, 421–446. [Google Scholar] [CrossRef]
- Hussain, S.; AlHamaydeh, M.; Aly, N. Jakarta’s First Seismic-Isolated Building—A 25 Story Tower. In Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- AlHamaydeh, M.; Hussain, S.; Tasbihgoo, F. Design of a High-Rise Building Utilizing Supplemental Damping. In Proceedings of the 14th European Earthquake Engineering Conference (14EEEC), Ohrid, North Macedonia, 30 August–3 September 2010. [Google Scholar]
- AlHamaydeh, M.; Aly, N.; Galal, K. Impact of Seismicity on Performance and Cost of RC Shear Wall Buildings in Dubai, United Arab Emirates. J. Perform. Constr. Facil. 2017, 31, 04017083. [Google Scholar] [CrossRef]
- Assaleh, K.; AlHamaydeh, M.; Choudhary, I. Modeling nonlinear behavior of Buckling-Restrained Braces via different artificial intelligence methods. Appl. Soft Comput. J. 2015, 37, 923–938. [Google Scholar] [CrossRef]
- Almasabha, G.; Alshboul, O.; Shehadeh, A.; Almuflih, A.S. Machine Learning Algorithm for Shear Strength Prediction of Short Links for Steel Buildings. Buildings 2022, 12, 775. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.; Chen, S.; Zheng, J.; Büyüköztürk, O.; Sun, H. Deep long short-term memory networks for nonlinear structural seismic response prediction. Comput. Struct. 2019, 220, 55–68. [Google Scholar] [CrossRef]
Glass Type | A | AR | C | D | E | S | S-2 | R |
---|---|---|---|---|---|---|---|---|
Density (g/cm3) | 2.44 | 2.70 | 2.54 | 2.12 | 2.56 | 2.48 | 2.46 | 2.54 |
Tensile Strength (GPa) | 3.13 | 3.24 | 3.31 | 2.42 | 2.45 | 4.58 | 4.89 | 4.14 |
Modulus of Elasticity (GPa) | 68.90 | 73.10 | 68.90 | 51.70 | 72.30 | 66.20 | 86.90 | 85.50 |
Elongation Break (%) | 4.80 | 4.40 | 4.80 | 4.60 | 4.80 | 5.40 | 5.70 | 4.80 |
Refractive Index | 1.54 | 1.56 | 1.55 | 1.47 | 1.56 | 1.53 | 1.52 | 1.55 |
Specific Heat Capacity (J/gC) | 0.80 | - | 0.79 | 0.73 | 0.81 | 0.74 | 0.74 | 0.73 |
Linear Temperature Expansion Coefficient () | 9.00 | 6.50 | 6.30 | 2.50 | 5.00 | 5.40 | 1.60 | 3.30 |
Thermal Expansion Coefficient | 73.00 | 65.00 | 63.00 | 25.00 | 54.00 | - | 16.00 | 33.00 |
Dielectric Constant | 6.20 | 8.10 | 6.90 | 3.80 | 6.20 | 5.22 | 5.30 | 6.40 |
Structure | Tensile Strength (GPa) | Elastic Modulus (GPa) | Reference |
---|---|---|---|
GFRP rebar | 0.48–1.60 | 35.00–51.00 | [91] |
GFRP sheet | 3.24 | 72.40 | [105] |
GFRP sheet | 1.70 | 71.00 | [41] |
GFRP sheet | - | 72.50 | [106] |
GFRP sheet | - | 73.00 | [107] |
GFRP sheet | 0.79 | 34.10 | [100] |
GFRP fiber | 0.27 | 9.73 | [108] |
GFRP fiber | 0.26 | 8.66 | [109] |
GFRP fiber | 0.78 | 28.65 | [110] |
GFRP Woven | 0.35 | 43.70 | [111] |
GFRP Woven | 0.28 | 4.89 | [112] |
Property | Steel | GFRP |
---|---|---|
Strength | High | Very High |
Weight | Low | Very High |
Corrosion resistance | Medium | High |
Fire resistance | High | Medium |
Handling | Medium | Very High |
Maintenance | Medium | Very High |
Toughness | High | High |
Type of Concrete | Publication |
---|---|
Conventional Normal Strength Concrete (NSC) | No. of publications = 44 [49,56,58,62,63,64,67,69,76,88,123,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177] |
High Strength Concrete (HSC) | No. of publications = 19 [36,56,63,67,70,76,123,144,145,152,155,157,165,166,167,172,178,179,180,181] |
Ultra-High-Performance Concrete (UHPC) | No. of publications = 0 |
Fiber-Reinforced Concrete (FRC) | No. of publications = 4 [162,171,174,182] |
Recycled Coarse Aggregate Concrete (RCAC) | No. of publications = 2 [57,162] |
Geopolymer Concrete (GPC) | No. of publications = 9 [57,60,61,62,65,66,164,183,184] |
Research | No. of Columns Tested * | Longitudinal Reinforcement | Transverse Reinforcement | Load Contribution of GFRP Rebar | Contribution of GFRP Bars to the Capacity of a Column |
---|---|---|---|---|---|
[150] | 12 | Steel, GFRP bars | GFRP spirals | 5.0–10.0% | - |
[208] | 5 | Steel, GFRP bars | Steel, GFRP spirals | Less than 5.0% | - |
[49] | 10 | GFRP bars | GFRP spirals | 13.0–15.0% | - |
[63] | 12 | Steel, GFRP bars | Steel helices | 10.0–40.0% | Contribution of GFRP bars was 50% of that of steel bars in the axial load-carrying capacity of the column. |
[65] | 8 | GFRP bars | GFRP spirals and hoops | 6.5–12.0% | - |
[176] | 8 | GFRP bars | GFRP spirals and hoops | 3.0–7.0% | - |
Publication | Shape | Longitudinal Reinforcement Ratio * | Transverse Reinforcement Rebar Diameter * | Transverse Reinforcement Configuration | Transverse Reinforcement Spacing | Ductility Index | Maximum Axial Load | Confinement Efficiency | Failure Mode |
---|---|---|---|---|---|---|---|---|---|
[150] | Circular | 2.20% | 6.4 mm | Spirals | 35 mm | 2.85 | 2951 kN | 1.76 | Ductile behavior in the post-peak stage |
1.10, 1.70, 3.20% | 9.5 mm | 40 mm | 1.13–4.75 | 2804–3019 kN | 1.35–1.93 | Less ductile behavior | |||
80 mm | |||||||||
120 mm | |||||||||
2.20% | 12.7 mm | 145 mm | 1.19 | 2865 kN | 1.29 | Failed in a brittle and explosive manner | |||
[208] | Square | 1.00% | 12.7 mm | Ties | 76, 305, 406 mm | - | 2417–3425 kN | - | Concrete core was crushed |
[88] | Circular | 0.55, 0.73, 0.86, 0.92% | 7.2 mm | Spirals | 40, 80, 120 mm | Ductility improved by 10% and 38% with the increase in reinforcement ratio. | 1376 kN | - | Ductile behavior enhanced with an increase in transverse reinforcement ratio |
[49] | Circular Hollow | 2.50% | 9.5 mm (#3) | Spirals | 80 mm | 1.80–4.80 | 330–2380 kN | 1.80–4.80 | Ductile behavior in the post-peak stage |
3.80% | Spirals | 80 mm | 2.30–6.90 | 420–2500 kN | 2.30–6.90 | ||||
[63] | Circular | 2.40% | 6 mm | Steel helices | 40 mm | 5.66 | 1203 kN | - | Ductility of GFRP-reinforced columns was higher than the hybrid counterparts |
3.20% | 5.96 | 1464 kN | - | ||||||
4.30% | 5.94 | 1396 kN | - | ||||||
[65] | Circular | 2.43% | - | - | - | - | 1772 kN | - | Failed suddenly, buckling of GFRP bars. Showed no post-peak behavior |
9.5 mm (#3) | Hoops | 50 mm | 2.08 | 1872 kN | 1.84 | More of a ductile behavior | |||
100 mm | 1.32 | 1981 kN | 1.74 | ||||||
200 mm | - | 1988 kN | - | At peak load, the crushing of concrete and buckling of GFRP bars occurred | |||||
Spirals | 50 mm | 2.99 | 2160 kN | 2.13 | Failed suddenly, buckling of GFRP bars. Showed no post-peak behavior | ||||
100 mm | 1.79 | 1208–2063 kN | 1.67 | More of a ductile behavior | |||||
[173] | Square | 1.42, 2.05% | Steel 10 mm | Spirals | 50 mm and 250 mm in the middle zone | - | 250–390 kN | 1.64–2.09 | Concrete core was crushed, and longitudinal reinforcements buckled |
Circle | 1.91, 2.63% | - | 250–370 kN | 1.89–2.43 | |||||
Square | 1.42, 2.05% | Ties | - | 270–375 kN | 1.64–2.10 | ||||
[64] | Square | 1.48, 2.14% | No. 4 | Spirals and cross-ties | 100 mm | 7.56 (deformability index for GFRP columns) | 196–251 kN | - | GFRP-reinforced columns experienced a more gradual failure than hybrid columns |
120 mm | 4.60 (deformability index for GFRP columns) | - | |||||||
150 mm | 5.17 (deformability index for GFRP columns) | - | |||||||
Steel 1.48, 2.14% | 100 mm | 9.89 (displacement ductility index for hybrid columns) | 192–250 kN | - | Hybrid RC columns dissipated more energy and exhibited superior ductility than GFRP-reinforced columns | ||||
120 mm | 6.22 (displacement ductility index for hybrid columns) | - | |||||||
150 mm | 4.01 (displacement ductility index for hybrid columns) | - | |||||||
[175] | Square | GFRP 8 No. 6 12 No. 5 4 No. 4 + 3 No. 5 8 No. 4 | GFRP No. 4 | Square spirals with c-shaped or closed ties | 120, 80 mm | Acceptable ductile behavior for columns with steel rebars and FRP spirals | 3900–5159 kN | Acceptable ductile behavior for columns with steel rebars and FRP spirals | Confinement efficiency is higher for columns with closed than c-shaped ties |
CFRP 2 × 8 No. 4 | CFRP No. 3 | 67 mm | |||||||
Steel 4 M15 + 4 M10 12 M10 | GFRP No. 4 | 120, 80 mm | |||||||
CFRP No. 3 | 60, 80, 120 mm | ||||||||
[176] | Square | 0.8, 1.1, 1.5% | 10, 12, 14 mm | Hoops | 30, 50, 80 mm | Ductility of the column increased with the reinforcement ratio | 937–982 kN | Columns with large stirrup spacing failed in a brittle and explosive manner Columns with small stirrups failed in a ductile manner. | The confinement efficiency was increased by reducing the stirrup spacing |
Spirals | 928–954 kN |
Research | Specimen Description | Volumetric Ratio | Failure Pattern |
---|---|---|---|
[150] | Circular concrete columns with GFRP bars and spirals subjected to concentric load | 0.70% | Small spiral diameter and 0.7% volumetric ratio specimen failed in a brittle manner. |
1.00, 1.50% | Specimens with a volumetric ratio smaller than 1.5% failed explosively. | ||
2.70% | A high volumetric ratio with closer spacing controlled the longitudinal rebar buckling. | ||
[215] | Circular concrete columns with GFRP bars and spirals subjected to concentric load | 0.70, 1.00, 1.50, 2.70, 3.00% | Post-peak curve limited for low volumetric ratios; enhanced post-peak behavior for higher volumetric ratios |
[214] | ECC-GFRP spiral confined concrete cylinder subjected to axial compression and lateral cyclic tests | 2.00% | Cracks were more pronounced for highly confined specimens with large volumetric ratios, i.e., 6.30%, than poorly confined specimens. |
4.00% | |||
6.30% | |||
[175] | Square concrete columns reinforced with steel, CFRP and GFRP bars, and CFRP and GFRP spirals subjected to concentric load | 0.96 to 6.08% | The spacing of transverse reinforcement governed the buckling of longitudinal bars. |
Research | Loading Protocol | Column Type | Reinforcement Ratio ρl | Reinforcement Material | Load Parameters | Peak Load Pmax | Failure of Specimens |
---|---|---|---|---|---|---|---|
[158] | Concentric axial compression | Solid rectangular | 2.48% | GFRP-reinforced columns with steel ties | e = 0 mm | 1046 kN | All GFRP columns failed in compression due to concrete crushing. Load carrying capacity of the column increased with eccentricity |
Eccentric axial compression | e = 40 mm | 585 kN | |||||
e = 80 mm | 364 kN | ||||||
[159] | Quasi-static lateral cyclic | Solid square | 0.63% | All GFRP-reinforced columns | e = 0 mm | 166–167 kN | All GFRP columns failed in compression due to concrete crushing. |
0.95% | 160–214 kN | ||||||
2.14% | 282 KN | ||||||
[49] | Concentric axial compression | Hollow circular | 2.50% | All GFRP-reinforced columns | e = 0 mm | 2380 kN | Typical axial compression failure |
Eccentric axial compression | e = 25 mm | 1950 kN | A more ductile failure mode was observed with an increase in eccentricity | ||||
e = 50 mm | 1550 kN | ||||||
e = 100 mm | 770 kN | ||||||
e = 200 mm | 330 kN | ||||||
Concentric axial compression | 3.80% | e = 0 mm | 2500 kN | Typical axial compression failure | |||
Eccentric axial compression | e = 25 mm | 2000 kN | A more ductile failure mode was observed with an increase in eccentricity | ||||
e = 50 mm | 1550 kN | ||||||
e = 100 mm | 930 kN | ||||||
e = 200 mm | 420 kN | ||||||
[180] | Concentric axial compression | Solid circular | 2.18% | All GFRP-reinforced columns | e = 0 mm | 4709 kN | Typical axial compression failure for columns subject to concentric and low eccentric loading. Flexural tension failure for columns subject to high eccentric loading. |
Eccentric axial compression | e = 25 mm | 3309 kN | |||||
e = 50 mm | 2380 kN | ||||||
e = 100 mm | 1112 kN | ||||||
e = 200 mm | 497 kN | ||||||
Concentric axial compression | 3.27% | e = 0 mm | 4716 kN | ||||
Eccentric axial compression | e = 25 mm | 3380 kN | |||||
e = 50 mm | 2339 kN | ||||||
e = 100 mm | 1135 kN | ||||||
e = 200 mm | 513 kN | ||||||
[67] | Concentric axial compression | Solid circular | 2.20% | All GFRP-reinforced columns | e = 0 mm | 2564 kN | Typical axial compression failure |
Eccentric axial compression | e = 25 mm | 2060 kN | Failure was less brittle and more ductile with the increase in eccentricity. | ||||
e = 50 mm | 1511 kN | ||||||
e = 100 mm | 776 kN | ||||||
e = 200 mm | 366 kN | ||||||
[164] | Concentric axial compression | Solid circular | 2.30% | All GFRP-reinforced columns | e = 0 mm | 1425–2041 kN | An increase in the initial eccentricity decreased the axial load capacity and ductility of GFRP-reinforced columns. |
Eccentric axial compression | e = 25 mm | 781–1003 kN | |||||
e = 50 mm | 494–592 kN | ||||||
Flexural | e = ∞ mm | 268–452 kN | |||||
[63] | Concentric axial compression | Solid circular | 2.40, 2.70, 3.20, 4.30% | GFRP-reinforced columns with steel helices | e = 0 mm | 600–857 kN (NSC) | Typical axial compression failure |
e = 0 mm | 1630–1828 kN (HSC) | ||||||
[65] | Concentric axial compression | Solid circular | 2.43% | All GFRP-reinforced columns | e = 0 mm | 1208–2160 kN | Typical axial compression failure |
[173] | Concentric axial compression | Solid square and circular | 1.42, 1.91, 2.05, 2.63% | GFRP longitudinal reinforcement and steel spiral and ties | e = 0 mm | 240–390 kN | Typical axial compression failure |
[64] | Quasi-static lateral cyclic | Solid square | 1.48, 2.14% | All GFRP-reinforced columns with spirals and ties | Load value = 20% of column capacity + 2 drift cycles @ rate of 0.03Hz | 196–251 kN | Crushing of longitudinal GFRP bars |
Steel-reinforced columns with GFRP spirals and ties | 192–250 kN | Failure was more rapid in steel-reinforced columns than in GFRP-reinforced columns. Longitudinal steel rebar buckling and rupture | |||||
[172] | Lateral Impact | Solid square | 0.64, 1.23, 2.02, 2.89% | All GFRP-reinforced columns | A pendulum impactor weighing 300 kg dropped at different release angles of 3°, 10°, 20°, 30°, and 40° | 725 kN (NSC) 700–1171 kN (HSC) | Failure modes were governed by the impact angles, their velocities, and longitudinal reinforcement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkafrawy, M.; Gowrishankar, P.; Aswad, N.G.; Alashkar, A.; Khalil, A.; AlHamaydeh, M.; Hawileh, R. GFRP-Reinforced Concrete Columns: State-of-the-Art, Behavior, and Research Needs. Buildings 2024, 14, 3131. https://doi.org/10.3390/buildings14103131
Elkafrawy M, Gowrishankar P, Aswad NG, Alashkar A, Khalil A, AlHamaydeh M, Hawileh R. GFRP-Reinforced Concrete Columns: State-of-the-Art, Behavior, and Research Needs. Buildings. 2024; 14(10):3131. https://doi.org/10.3390/buildings14103131
Chicago/Turabian StyleElkafrawy, Mohamed, Prathibha Gowrishankar, Nour Ghazal Aswad, Adnan Alashkar, Ahmed Khalil, Mohammad AlHamaydeh, and Rami Hawileh. 2024. "GFRP-Reinforced Concrete Columns: State-of-the-Art, Behavior, and Research Needs" Buildings 14, no. 10: 3131. https://doi.org/10.3390/buildings14103131
APA StyleElkafrawy, M., Gowrishankar, P., Aswad, N. G., Alashkar, A., Khalil, A., AlHamaydeh, M., & Hawileh, R. (2024). GFRP-Reinforced Concrete Columns: State-of-the-Art, Behavior, and Research Needs. Buildings, 14(10), 3131. https://doi.org/10.3390/buildings14103131