The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Thermal Comfort
2.3. Urban Morphology
2.3.1. Urban Morphology Perspective Street Spatial Indicators
Parameters | Representative Features | Definition and Calculation Method |
---|---|---|
H/W | Street Scale [18,19] | The ratio of the average height of buildings (H) on both sides to the average width (W) between facades |
Street orientation | The clockwise angle between the north axis and the long axis of the street, ranging from 0° to 180°. | |
Functional diversity indices | Street Functional Diversity [15] | n is the number of POI categories; Pi is the proportion of POI category i within the buffer zone. |
Build-to-line rate | Street Interface Continuity [53] | Bi is the street wall line of road i; Li is the length of street i. |
Distance from GBI | Street Ecological Location [15] | dij is the distance between j (park, lake, etc.) and point i on a street |
View factors (VF): Sky view factor (SVF) Tree view factor (TVF) Building view factor (BVF) | Street Shading [32,54] | n is the number of concentric rings in the fisheye image aliquot; is the percentage of each type of streetscape element in the ring i of the segmentation |
2.3.2. Human-Centered Perspective Street Spatial Indicators
Parameters | Representative Features | Definition and Calculation Method |
---|---|---|
Green View Index (GVI) | Level of greening of streets in three dimensions [29,57] | ngreen is the vegetation element streetscape image pixel value; N is the total pixel value of the streetscape image. |
Sky visibility degree | Sky opening from human perspective [58] | nsky is the sky element streetscape image pixel value; N is the total pixel value of the streetscape image. |
Interface enclosure degree | The spatial scale of the street [59,60] | nbuilding is the building element streetscape image pixel value; N is the total pixel value of the streetscape image. |
Carriageway visibility degree | Motorization level of the street [9,61] | ncar is the carriageway element streetscape image pixel value; N is the total pixel value of the streetscape image. |
Pavement visibility degree | Pedestrianization level of the street [9,61] | nfoot is the pavement element streetscape image pixel value; N is the total pixel value of the streetscape image. |
Street space quality | Human subjective perception of street space [9] | An RF model is built based on the scoring results of a small sample of researchers in the planning field to evaluate the quality of a large sample of streets. |
2.4. Interpretable Machine Learning Algorithms
3. Results
3.1. Thermal Comfort Conditions and Street Spatial Form
3.2. Pearson Correlation Analysis
3.3. Analysis of Overall Characteristics
3.4. Local Characteristic Analysis
4. Discussion
4.1. Street Spatial Form Indicators and Thermal Comfort
4.2. Optimization Strategies
- Spatial Layout: Implement thermal environment control measures in spatial layout planning by developing a spatial structure plan based on heat risk.
- Green Space Systems: Add cluster green spaces and street landscape green belts, improve the permeability of green areas, and enrich the vertical landscape structures within green spaces to form a node-axis green space planning system.
- Ventilation Corridors: Develop a hierarchical spatial planning structure for ventilation corridors to promote optimal airflow within street spaces and ensure effective ventilation.
- Disaster Shelters: Establish a hierarchical disaster shelter system by selecting high-temperature shelter locations based on the “city-community-street” structure, integrating both indoor and outdoor public spaces.
4.3. Limitations
5. Conclusions
- The spatial distribution of subjective and objective thermal comfort is generally consistent, with some local variations. The overall thermal comfort levels exhibit spatial heterogeneity.
- In the univariate analysis, H/W, street orientation, functional diversity indices, build-to-line rate, distance from GBI, TVF, BVF, GVI, and interface enclosure degree were negatively correlated with thermal comfort. In contrast, SVF, sky visibility degree, carriageway visibility degree, and street space quality were positively correlated with thermal comfort. Overall, urban morphology indicators had a stronger correlation with thermal comfort than human-centered perspectives of street spatial perception indicators.
- Of the overall street characteristics, landscape-related indicators had the highest impact on thermal comfort levels in the study area, followed by street form. In localized analyses, the factors influencing thermal comfort varied between streets, and the impact of the same indicator on thermal comfort also differed across different neighborhoods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agnew, D.C. A global timekeeping problem postponed by global warming. Nature 2024, 628, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-I.; Oh, J.-H.; Shin, N.-Y.; An, S.-I.; Yeh, S.-W.; Shin, J.; Kug, J.-S. Deep ocean warming-induced El Niño changes. Nat. Commun. 2024, 15, 6225. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Eisenhauer, N.; Terrer, C.; Eldridge, D.J.; Duan, H.; Guirado, E.; Berdugo, M.; Zhou, L.; Liu, S.; Zhou, X.; et al. Resistance of ecosystem services to global change weakened by increasing number of environmental stressors. Nat. Geosci. 2024, 17, 882–888. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Zhang, K.; Cao, C.; Chu, H.; Zhao, L.; Zhao, J.; Lee, X. Increased heat risk in wet climate induced by urban humid heat. Nature 2023, 617, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; de Schrijver, E.; Sivaraj, S.; Sera, F.; Scovronick, N.; Jiang, L.; Roye, D.; Lavigne, E.; Kysely, J.; Urban, A.; et al. Impact of population aging on future temperature-related mortality at different global warming levels. Nat. Commun. 2024, 15, 1796. [Google Scholar] [CrossRef]
- Huang, W.T.K.; Masselot, P.; Bou-Zeid, E.; Fatichi, S.; Paschalis, A.; Sun, T.; Gasparrini, A.; Manoli, G. Economic valuation of temperature-related mortality attributed to urban heat islands in European cities. Nat. Commun. 2023, 14, 7438. [Google Scholar] [CrossRef]
- Brager, G.S.; de Dear, R.J. Thermal adaptation in the built environment: A literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Moeinaddini, M.; Cools, M.; Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): A new assessment tool combining street design measurements and thermal comfort. Sci. Total Environ. 2021, 795, 14. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Jirón, L.A.; Graw, K.; Gangwisch, M.; Matzarakis, A. Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Clim. 2023, 47, 18. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, F.; Zhang, H.; Dong, J. Mechanisms of non-stationary influence of urban form on the diurnal thermal environment based on machine learning and MGWR analysis. Sustain. Cities Soc. 2024, 101, 105194. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Zhang, Y.; He, J. Measuring solar radiation and spatio-temporal distribution in different street network direction through solar trajectories and street view images. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104058. [Google Scholar] [CrossRef]
- Ananyeva, O.; Emmanuel, R. Street trees and Urban Heat Island in Glasgow: Mitigation through the ‘Avenues Programme’. Urban For. Urban Green. 2023, 86, 128041. [Google Scholar] [CrossRef]
- Huang, H.; Jie, P. Research on the Characteristics of High-Temperature Heat Waves and Outdoor Thermal Comfort: A Typical Space in Chongqing Yuzhong District as an Example. Buildings 2022, 12, 625. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Meng, Y.; Zhou, Y.; Wang, H. Exploring the impact of urban features on the spatial variation of land surface temperature within the diurnal cycle. Sustain. Cities Soc. 2023, 91, 104432. [Google Scholar] [CrossRef]
- Wu, J.; Liu, C.; Wang, H. Analysis of Spatio-temporal patterns and related factors of thermal comfort in subtropical coastal cities based on local climate zones. Build. Environ. 2022, 207, 108568. [Google Scholar] [CrossRef]
- Wu, J.; Chang, H.; Yoon, S. Numerical Study on Microclimate and Outdoor Thermal Comfort of Street Canyon Typology in Extremely Hot Weather—A Case Study of Busan, South Korea. Atmosphere 2022, 13, 307. [Google Scholar] [CrossRef]
- Narimani, N.; Karimi, A.; Brown, R.D. Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecol. Inform. 2022, 69, 101671. [Google Scholar] [CrossRef]
- Chen, X.; Han, M.; He, J.; Ma, H.; Han, M.; Liu, Y.; Wu, X. Integrated effect of aspect ratio and tree spacing on pedestrian thermal comfort of street canyon. Int. J. Biometeorol. 2024. [Google Scholar] [CrossRef]
- Lai, S.; Zhao, Y.; Fan, Y.; Ge, J. Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. J. Build. Eng. 2021, 44, 103370. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosyst. 2011, 14, 617–634. [Google Scholar] [CrossRef]
- Guo, F.; Guo, R.; Zhang, H.; Dong, J.; Zhao, J. A canopy shading-based approach to heat exposure risk mitigation in small squares. Urban Clim. 2023, 49, 101495. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; O’Donnell, J. A comprehensive review of outdoor thermal comfort in urban areas: Effective parameters and approaches. Energy Environ. Sci. 2023, 34, 2204–2227. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H. A path analysis of outdoor comfort in urban public spaces. Build. Environ. 2019, 148, 459–467. [Google Scholar] [CrossRef]
- Han, S.; Ye, Y.; Song, Y.; Yan, S.; Shi, F.; Zhang, Y.; Liu, X.; Du, H.; Song, D. A Systematic Review of Objective Factors Influencing Behavior in Public Open Spaces. Front. Public Health 2022, 10, 898136. [Google Scholar] [CrossRef]
- Lehnert, M.; Geletič, J.; Kopp, J.; Brabec, M.; Jurek, M.; Pánek, J. Comparison between mental mapping and land surface temperature in two Czech cities: A new perspective on indication of locations prone to heat stress. Build. Environ. 2021, 203, 108090. [Google Scholar] [CrossRef]
- Urban, J.; Pikl, M.; Zemek, F.; Novotný, J. Using Google Street View photographs to assess long-term outdoor thermal perception and thermal comfort in the urban environment during heatwaves. Front. Environ. Sci. 2022, 10, 878341. [Google Scholar] [CrossRef]
- Ma, X.; Chau, C.K.; Lai, J.H.K. Critical factors influencing the comfort evaluation for recreational walking in urban street environments. Cities 2021, 116, 103286. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Zhang, Q.; Li, S.; Fu, F.; Li, N. Analyzing the Environment Characteristics of Heat Exposure Spaces from the Humanistic Perspective and Spatial Improvement Approaches in Central Beijing, China. Buildings 2022, 12, 138. [Google Scholar] [CrossRef]
- Sharifi, E.; Sivam, A.; Boland, J. Spatial and Activity Preferences During Heat Stress Conditions in Adelaide: Towards Increased Adaptation Capacity of the Built Environment. Procedia Eng. 2017, 180, 955–965. [Google Scholar] [CrossRef]
- Mohite, S.; Surawar, M. Impact of urban street geometry on outdoor pedestrian thermal comfort during heatwave in Nagpur city. Sustain. Cities Soc. 2024, 108, 18. [Google Scholar] [CrossRef]
- Du, K.; Ning, J.; Yan, L. How long is the sun duration in a street canyon?—Analysis of the view factors of street canyons. Build. Environ. 2020, 172, 106680. [Google Scholar] [CrossRef]
- Li, X.; Ratti, C. Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model. Landsc. Urban Plan. 2019, 191, 103387. [Google Scholar] [CrossRef]
- Wang, J.; Meng, B.; Pei, T.; Du, Y.Y.; Zhang, J.Q.; Chen, S.Y.; Tian, B.; Zhi, G.Q. Mapping the exposure and sensitivity to heat wave events in China’s megacities. Sci. Total Environ. 2021, 755, 142734. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wang, J.; Ye, S.; Wang, R.; Dong, F.; Feng, Y. Real-time indoor thermal comfort prediction in campus buildings driven by deep learning algorithms. J. Build. Eng. 2023, 78, 107603. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Hu, L.; Liu, Y.; Lu, S.; Chen, H.; Tan, Z. Nonlinear Cooling Effect of Street Green Space Morphology: Evidence from a Gradient Boosting Decision Tree and Explainable Machine Learning Approach. Land 2022, 11, 2220. [Google Scholar] [CrossRef]
- Boudreault, J.; Campagna, C.; Chebana, F. Machine and deep learning for modelling heat-health relationships. Sci. Total Environ. 2023, 892, 164660. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- French, S.P.; Barchers, C.; Zhang, W. How Should Urban Planners Be Trained to Handle Big Data? In Seeing Cities Through Big Data: Research, Methods and Applications in Urban Informatics; Thakuriah, P., Tilahun, N., Zellner, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 209–217. [Google Scholar]
- Fei, G. Assessment method of urban heat island high resolution based on WRF. J. Civ. Environ. Eng. 2017, 39, 13–19. [Google Scholar] [CrossRef]
- Guo, F.; Zhao, J.; Zhang, H.; Dong, J.; Zhu, P.; Lau, S.S.Y. Effects of urban form on sea cooling capacity under the heatwave. Sustain. Cities Soc. 2023, 88, 104271. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Thorsson, S.; Rocklöv, J.; Konarska, J.; Lindberg, F.; Holmer, B.; Dousset, B.; Rayner, D. Mean radiant temperature—A predictor of heat related mortality. Urban Clim. 2014, 10, 332–345. [Google Scholar] [CrossRef]
- Chen, L.; Yu, B.L.; Yang, F.; Mayer, H. Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy Build. 2016, 130, 829–842. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Lindberg, F.; Grimmond, C.S.B.; Gabey, A.; Huang, B.; Kent, C.W.; Sun, T.; Theeuwes, N.E.; Järvi, L.; Ward, H.C.; Capel-Timms, I.; et al. Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ. Model. Softw. 2018, 99, 70–87. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the North American Chapter of the Association for Computational Linguistics (NAACL), Minneapolis, MN, USA, 2–7 June 2019. [Google Scholar]
- Zhi, G.; Meng, B.; Wang, J.; Chen, S.; Tian, B.; Ji, H.; Yang, T.; Wang, B.; Liu, J. Spatial Analysis of Urban Residential Sensitivity to Heatwave Events: Case Studies in Five Megacities in China. Remote Sens. 2021, 13, 4086. [Google Scholar] [CrossRef]
- Li, X.; Ratti, C.; Seiferling, I. Quantifying the shade provision of street trees in urban landscape: A case study in Boston, USA, using Google Street View. Landsc. Urban Plan. 2018, 169, 81–91. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K Dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130. [Google Scholar]
- Su, Y.; Wang, X.; Xuan, L.; Wu, T.; Ge, X.; Wang, Z.; Duan, J.; Yang, M. Analysis of the correlation mechanism between geometric parameters and the thermal environment of Xi’an’s summer outdoor commercial pedestrian streets. Int. J. Biometeorol. 2024, 68, 909–925. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Liu, H.-H.; Li, D.; Ho, L.-C. Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons. Landsc. Urban Plan. 2023, 232, 104679. [Google Scholar] [CrossRef]
- Zhimei Dai, C.H. The Improvement of Street Space Quality Measurement Method Based on Streetscape. Planners 2019, 35, 57–63. [Google Scholar]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Hu, Y.; Qian, F.; Yan, H.; Middel, A.; Wu, R.; Zhu, M.; Han, Q.; Zhao, K.; Wang, H.; Shao, F.; et al. Which street is hotter? Street morphology may hold clues -thermal environment mapping based on street view imagery. Build. Environ. 2024, 262, 111838. [Google Scholar] [CrossRef]
- Nazarian, N.; Fan, J.; Sin, T.; Norford, L.; Kleissl, J. Predicting outdoor thermal comfort in urban environments: A 3D numerical model for standard effective temperature. Urban Climate. 2017, 20, 251–267. [Google Scholar] [CrossRef]
- Galal, O.M.; Sailor, D.J.; Mahmoud, H. The impact of urban form on outdoor thermal comfort in hot arid environments during daylight hours, case study: New Aswan. Build. Environ. 2020, 184, 107222. [Google Scholar] [CrossRef]
- Xiong, K.; Yang, Z.J.; Cheng, C.H. Microclimate Environmental Assessment and Impact of Mountain City Pedestrian Streets in Summer. In Proceedings of the 12th Nordic Symposium on Building Physics (NSB 2020), Tallinn, Estonia, 7–9 September 2020. [Google Scholar]
- Sylliris, N.; Papagiannakis, A.; Vartholomaios, A. Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre. Land 2023, 12, 414. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Song, L.L.; Wang, S.H.; Yang, C.; Sheng, X. Application Research of Improved XGBoost in Imbalanced Data Processing. Comput. Sci. 2020, 47, 98–103. [Google Scholar] [CrossRef]
- Li, B.-S.; Li, L.-Z.; Sun, Y.; Zhu, Y.-Q. Intranet Defense Algorithm Based on Pseudo Boosting Decision Tree. Comput. Sci. 2018, 45, 157–162. [Google Scholar] [CrossRef]
- Aydin, H.E.; Iban, M.C. Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations. Nat. Hazards 2023, 116, 2957–2991. [Google Scholar] [CrossRef]
- Booth, G.D.; Niccolucci, M.J.; Schuster, E.G.; Station, I. Identifying Proxy Sets in Multiple Linear-Regression: An Aid to Better Coefficient Interpretation; US Department of Agriculture: Washington, DC, USA, 1994; Volume 470. [Google Scholar]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Xi, T. A Review of Thermal Comfort Evaluation and Improvement in Urban Outdoor Spaces. Buildings 2023, 13, 3050. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Hu, D. Effects of urban morphology on thermal comfort at the micro-scale. Sustain. Cities Soc. 2022, 86, 104150. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Pedestrians’ behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Sci. Total Environ. 2022, 808, 152143. [Google Scholar] [CrossRef]
- Meili, N.; Acero, J.A.; Peleg, N.; Manoli, G.; Burlando, P.; Fatichi, S. Vegetation cover and plant-trait effects on outdoor thermal comfort in a tropical city. Build. Environ. 2021, 195, 107733. [Google Scholar] [CrossRef]
- Dong, J.; Guo, R.; Lin, M.; Guo, F.; Zheng, X. Multi-objective optimization of green roof spatial layout in high-density urban areas—A case study of Xiamen Island, China. Sustain. Cities Soc. 2024, 115, 105827. [Google Scholar] [CrossRef]
- Zhao, X.L.; Li, G.J.; Gao, T.Y. Thermal Comfort Effects and Morphological Characteristics of Typical Street Trees in Summer in Harbin. Landsc. Archit. 2016, 12, 74–80. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, C.; Teng, M.; Lin, Y. Impacts of Tree Canopy Cover on Microclimate and Human Thermal Comfort in a Shallow Street Canyon in Wuhan, China. Atmosphere 2020, 11, 588. [Google Scholar] [CrossRef]
- Bai, M.; Hu, R.; Lian, H.; Zhou, W. Correlation Study of Commercial Street Morphology and Pedestrian Activity in Cold Region Summers under Thermal Comfort Guidance: A Case Study of Sanlitun, Beijing. Buildings 2024, 14, 1751. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Kershaw, T.; Shepherd, P.; Elwy, I. A parametric optimisation study of urban geometry design to assess outdoor thermal comfort. Sustain. Cities Soc. 2021, 75, 103352. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Feng, J.J.; Lu, J.F.; Chen, Y.; Li, W.L.; Lian, P.J.; Zhao, X. A review of the influence of courtyard geometry and orientation on microclimate. Build. Environ. 2023, 236, 20. [Google Scholar] [CrossRef]
- Liu, G.; Lei, J.; Qin, H.; Niu, J.; Chen, J.; Lu, J.; Han, G. Impact of environmental comfort on urban vitality in small and medium-sized cities: A case study of Wuxi County in Chongqing, China. Front. Public Health 2023, 11, 1131630. [Google Scholar] [CrossRef]
Parameters | r | p | ||
---|---|---|---|---|
Urban morphology perspective street spatial perception indicators | H/W | −0.164 | <0.001 | |
Street orientation | −0.086 | <0.001 | ||
Functional diversity indices | −0.274 | <0.001 | ||
Build-to-line rate | −0.160 | <0.001 | ||
Distance from GBI | −0.319 | <0.001 | ||
VF | SVF | 0.222 | <0.001 | |
TVF | −0.108 | <0.001 | ||
BVF | −0.130 | <0.001 | ||
Human-centered perspective street spatial perception indicators | GVI | −0.025 | <0.001 | |
Sky visibility degree | 0.245 | <0.001 | ||
Interface enclosure degree | −0.180 | <0.001 | ||
Carriageway visibility degree | 0.071 | <0.001 | ||
Pavement visibility degree | 0.020 | >0.05 | ||
Street space quality | 0.097 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, F.; Luo, M.; Zhang, C.; Cai, J.; Zhang, X.; Zhang, H.; Dong, J. The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data. Buildings 2024, 14, 3253. https://doi.org/10.3390/buildings14103253
Guo F, Luo M, Zhang C, Cai J, Zhang X, Zhang H, Dong J. The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data. Buildings. 2024; 14(10):3253. https://doi.org/10.3390/buildings14103253
Chicago/Turabian StyleGuo, Fei, Mingxuan Luo, Chenxi Zhang, Jun Cai, Xiang Zhang, Hongchi Zhang, and Jing Dong. 2024. "The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data" Buildings 14, no. 10: 3253. https://doi.org/10.3390/buildings14103253
APA StyleGuo, F., Luo, M., Zhang, C., Cai, J., Zhang, X., Zhang, H., & Dong, J. (2024). The Mechanism of Street Spatial Form on Thermal Comfort from Urban Morphology and Human-Centered Perspectives: A Study Based on Multi-Source Data. Buildings, 14(10), 3253. https://doi.org/10.3390/buildings14103253