Building Information Modeling Applications in Civil Infrastructure: A Bibliometric Analysis from 2020 to 2024
Abstract
:1. Introduction
2. Literature Background
2.1. Review of BIM Implementation Across Different Countries and Time Periods
2.2. Literature on the Integration of BIM with Other Technologies
2.3. Literature on the Application of BIM in Various Architectural Scenarios
3. Methods and Materials
3.1. Research Framework
3.2. Data Extraction and Collection
3.2.1. Databases Accessed
3.2.2. Query Strategy
3.2.3. Include and Exclude Criteria
- Stage 1: The first screening aimed to ensure relevance. Only articles focused on BIM and explicitly addressing its applications in engineering were retained. In this initial screening, 29 articles were deemed irrelevant and discarded, leaving 617 articles for the second screening.
- Stage 2: The second screening focused on ensuring the quality and specificity of the selected literature. Only empirical studies published between 2020 and 2024, including journal articles or conference papers, were chosen. This step eliminated 148 articles, reducing the pool to 469 articles.
- Stage 3: In addition to the primary search mechanism, we manually reviewed the reference lists of selected articles, tracked citations of key papers, and consulted field experts to verify the relevance and importance of the selected literature. To avoid redundancy, 53 duplicate articles were removed. Finally, 416 articles were considered suitable for this study.
4. Results
4.1. Publication Outputs and Trends
- SCP: Number of articles published in a single country. This refers to the number of papers with authors from that country only.
- MCP: Number of articles published by multiple countries. This refers to the number of publications with authors from more than one country.
- Dark blue represents countries with a scientific output of 100 or more publications, primarily concentrated in China, indicating a significant research output in this field;
- Light blue (including two gradients: 51–100 and 1–50 publications) is distributed across North America, Europe, and parts of Asia and South America, indicating moderate research output in these regions;
- Gray represents countries with no scientific output or regions where data are unavailable.
4.2. Analysis of Institutional Output
4.3. Analysis of Influential Authors
4.4. Most Active Journals
4.5. Co-Cited References
4.6. Analysis of Co-Occurring Keywords
5. Discussion
5.1. BIM in Infrastructure Lifecycle Management
5.2. BIM Collaboration in Large-Scale Projects
5.3. BIM for Sustainable Infrastructure Design
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, W.; Zheng, Y.; Huang, L.; Liu, Z. Integration of Building Information Modeling (BIM) and Big Data in China: Recent Application and Future Perspective. Buildings 2023, 13, 2435. [Google Scholar] [CrossRef]
- Zhou, D.; Pei, B.; Li, X.; Jiang, D.; Wen, L. Innovative BIM technology application in the construction management of highway. Sci. Rep. 2024, 14, 15298. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lin, Y.-C.; Cai, H.; Habib, A. From Scans to Parametric BIM: An Enhanced Framework Using Synthetic Data Augmentation and Parametric Modeling for Highway Bridges. J. Comput. Civ. Eng. 2024, 38, 04024008. [Google Scholar] [CrossRef]
- Kwon, T.H.; Park, S.H.; Park, S.I.; Lee, S.-H. Building information modeling-based bridge health monitoring for anomaly detection under complex loading conditions using artificial neural networks. J. Civ. Struct. Health Monit. 2021, 11, 1301–1319. [Google Scholar] [CrossRef]
- Hiltunen, M.; Heikkilä, R.; Niskanen, I.; Immonen, M. Open InfraBIM for remote and autonomous excavation. Autom. Constr. 2023, 156, 105148. [Google Scholar] [CrossRef]
- Girardet, A.; Boton, C. A parametric BIM approach to foster bridge project design and analysis. Autom. Constr. 2021, 126, 103679. [Google Scholar] [CrossRef]
- Li, S.-D.; Xu, Z.-D. Research on IFC instance data based on topology induction network. Archit. Eng. Des. Manag. 2023, 20, 526–558. [Google Scholar] [CrossRef]
- Shin, M.-H.; Kim, H.-Y.; Liao, J.-F. Performance Measurement and Analysis of Building Information Modeling (BIM) Applications in the Railway Infrastructure Construction Phase. Appl. Sci. 2024, 14, 502. [Google Scholar] [CrossRef]
- Farghaly, K.; Soman, R.K.; Zhou, S.A. The evolution of ontology in AEC: A two-decade synthesis, application domains, and future directions. J. Ind. Inf. Integr. 2023, 36, 100519. [Google Scholar] [CrossRef]
- Nsimbe, A.; Di, J. The Impact of Building Information Modeling Technology on Cost Management of Civil Engineering Projects: A Case Study of the Mombasa Port Area Development Project. Buildings 2024, 14, 1175. [Google Scholar] [CrossRef]
- Ren, G.; Li, H.; Liu, S.; Goonetillake, J.; Khudhair, A.; Arthur, S. Aligning BIM and ontology for information retrieve and reasoning in value for money assessment. Autom. Constr. 2021, 124, 103565. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.M. A Scientometric Review and Metasynthesis of Building Information Modelling (BIM) Research in Africa. Buildings 2019, 9, 85. [Google Scholar] [CrossRef]
- Salah, R.; Szép, J.; Ajtayné Károlyfi, K.; Géczy, N. An Investigation of Historic Transportation Infrastructure Preservation and Improvement through Historic Building Information Modeling. Infrastructures 2024, 9, 114. [Google Scholar] [CrossRef]
- Bradley, A.; Li, H.; Lark, R.; Dunn, S. BIM for infrastructure: An overall review and constructor perspective. Autom. Constr. 2016, 71, 139–152. [Google Scholar] [CrossRef]
- Shishehgarkhaneh, M.B.; Moehler, R.C.; Moradinia, S.F. Blockchain in the Construction Industry between 2016 and 2022: A Review, Bibliometric, and Network Analysis. Smart Cities 2023, 6, 819–845. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, K.; Tan, Y. BIM research vs BIM practice: A bibliometric-qualitative analysis from China. Eng. Constr. Archit. Manag. 2021, 29, 3520–3546. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peh, L.C. A Review and Scientometric Analysis of Global Building Information Modeling (BIM) Research in the Architecture, Engineering and Construction (AEC) Industry. Buildings 2019, 9, 210. [Google Scholar] [CrossRef]
- Zhao, X. A scientometric review of global BIM research: Analysis and visualization. Autom. Constr. 2017, 80, 37–47. [Google Scholar] [CrossRef]
- Castañeda, K.; Sánchez, O.; Herrera, R.F.; Gómez-Cabrera, A.; Mejía, G. Building Information Modeling Uses and Complementary Technologies in Road Projects: A Systematic Review. Buildings 2024, 14, 563. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wright, G.; Cheng, J.; Li, X.; Liu, R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS Int. J. Geo-Inf. 2017, 6, 53. [Google Scholar] [CrossRef]
- Cao, Y.; Lan, H.; Li, L. Disaster Risk Assessment for Railways: Challenges and a Sustainable Promising Solution Based on BIM+GIS. Sustainability 2023, 15, 16697. [Google Scholar] [CrossRef]
- Xia, H.S.; Liu, Z.S.; Efremochkina, M.; Liu, X.T.; Lin, C.X. Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration. Sustain. Cities Soc. 2022, 84, 104009. [Google Scholar] [CrossRef]
- Ruiz-Zafra, A.; Benghazi, K.; Noguera, M. IFC+: Towards the integration of IoT into early stages of building design. Autom. Constr. 2022, 136, 104129. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Huang, L.; Onstein, E.; Merschbrock, C. BIM and IoT data fusion: The data process model perspective. Autom. Constr. 2023, 149, 104792. [Google Scholar] [CrossRef]
- Altohami, A.B.A.; Haron, N.A.; Ales@Alias, A.H.; Law, T.H. Investigating Approaches of Integrating BIM, IoT, and Facility Management for Renovating Existing Buildings: A Review. Sustainability 2021, 13, 3930. [Google Scholar] [CrossRef]
- Ślusarczyk, G.; Strug, B. Machine Learning Methods in BIM-Based Applications—A Review. Vietnam. J. Comput. Sci. 2023, 11, 1–22. [Google Scholar] [CrossRef]
- Rachmawati, T.S.N.; Kim, S. Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability 2022, 14, 5708. [Google Scholar] [CrossRef]
- Hakimi, O.; Liu, H.; Abudayyeh, O. Digital twin-enabled smart facility management: A bibliometric review. Front. Eng. Manag. 2023, 11, 32–49. [Google Scholar] [CrossRef]
- Radzi, A.R.; Azmi, N.F.; Kamaruzzaman, S.N.; Rahman, R.A.; Papadonikolaki, E. Relationship between digital twin and building information modeling: A systematic review and future directions. Constr. Innov. 2023, 24, 811–829. [Google Scholar] [CrossRef]
- Shou, W.; Wang, J.; Wang, X.; Chong, H.Y. A Comparative Review of Building Information Modelling Implementation in Building and Infrastructure Industries. Arch. Comput. Methods Eng. 2014, 22, 291–308. [Google Scholar] [CrossRef]
- Costin, A.; Adibfar, A.; Hu, H.J.; Chen, S.S. Building Information Modeling (BIM) for transportation infrastructure—Literature review, applications, challenges, and recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Satyanaga, A.; Aventian, G.D.; Makenova, Y.; Zhakiyeva, A.; Kamaliyeva, Z.; Moon, S.-W.; Kim, J. Building Information Modelling for Application in Geotechnical Engineering. Infrastructures 2023, 8, 103. [Google Scholar] [CrossRef]
- Kivits, R.A.; Furneaux, C. BIM: Enabling sustainability and asset management through knowledge management. Sci. World J. 2013, 2013, 983721. [Google Scholar] [CrossRef] [PubMed]
- Jrade, A.; Jalaei, F.; Zhang, J.J.; Jalilzadeh Eirdmousa, S.; Jalaei, F. Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review. Sustainability 2023, 15, 15049. [Google Scholar] [CrossRef]
- Xue, J.; Hou, X.; Zeng, Y. Review of Image-Based 3D Reconstruction of Building for Automated Construction Progress Monitoring. Appl. Sci. 2021, 11, 7840. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Turmo, J. BIM Visual Programming Tools Applications in Infrastructure Projects: A State-of-the-Art Review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Bouhmoud, H.; Loudyi, D.; Azhar, S. Building information modeling (BIM) for lifecycle carbon emission: Scientometric and scoping literature reviews. Smart Sustain. Built Environ. 2022. [Google Scholar] [CrossRef]
- Ciotta, V.; Asprone, D.; Manfredi, G.; Cosenza, E. Building Information Modelling in Structural Engineering: A Qualitative Literature Review. CivilEng 2021, 2, 765–793. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Donthu, N.; Reinartz, W.; Kumar, S.; Pattnaik, D. A retrospective review of the first 35 years of the International Journal of Research in Marketing. Int. J. Res. Mark. 2021, 38, 232–269. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.M.; Yap, S.F.; Makkar, M. Home sharing in marketing and tourism at a tipping point: What do we know, how do we know, and where should we be heading? J. Bus. Res. 2021, 122, 534–566. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Ding, Z.; Xiong, Z.; Ouyang, Y. A Bibliometric Analysis of Neuroscience Tools Use in Construction Health and Safety Management. Sensors 2023, 23, 9522. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2015, 67, 967–972. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Autom. Constr. 2021, 130, 103838. [Google Scholar] [CrossRef]
- Huang, M.Q.; Ninic, J.; Zhang, Q.B. BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunn. Undergr. Space Technol. 2021, 108, 103677. [Google Scholar] [CrossRef]
- Rahimian, F.P.; Seyedzadeh, S.; Oliver, S.; Rodriguez, S.; Dawood, N. On-demand monitoring of construction projects through a game-like hybrid application of BIM and machine learning. Autom. Constr. 2020, 110, 103012. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Li, X.; Lu, W.S.; Xue, F.; Wu, L.P.F.; Zhao, R.; Lou, J.F.; Xu, J.Y. Blockchain-Enabled IoT-BIM Platform for Supply Chain Management in Modular Construction. J. Constr. Eng. Manag. 2022, 148, 04021195. [Google Scholar] [CrossRef]
- Shahzad, M.; Shafiq, M.T.; Douglas, D.; Kassem, M. Digital Twins in Built Environments: An Investigation of the Characteristics, Applications, and Challenges. Buildings 2022, 12, 120. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.M. Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Arch. Comput. Methods Eng. 2023, 30, 1081–1110. [Google Scholar] [CrossRef]
- Tang, F.L.; Ma, T.; Guan, Y.S.; Zhang, Z.X. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS. Autom. Constr. 2020, 111, 103066. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.W.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Vousdoukas, M.; Hynes, W.; Carluccio, S.; Keou, O.; et al. Digital technologies can enhance climate resilience of critical infrastructure. Clim. Risk Manag. 2022, 35, 100387. [Google Scholar] [CrossRef]
- Belcher, E.J.; Abraham, Y.S. Lifecycle Applications of Building Information Modeling for Transportation Infrastructure Projects. Buildings 2023, 13, 2300. [Google Scholar] [CrossRef]
- Oreto, C.; Biancardo, S.A.; Abbondati, F.; Veropalumbo, R. Leveraging Infrastructure BIM for Life-Cycle-Based Sustainable Road Pavement Management. Materials 2023, 16, 1047. [Google Scholar] [CrossRef]
- Ait-Lamallam, S.; Sebari, I.; Yaagoubi, R.; Doukari, O. IFCInfra4OM: An Ontology to Integrate Operation and Maintenance Information in Highway Information Modelling. ISPRS Int. J. Geo-Inf. 2021, 10, 305. [Google Scholar] [CrossRef]
- Um, J.; Park, J.m.; Park, S.y.; Yilmaz, G. Low-cost mobile augmented reality service for building information modeling. Autom. Constr. 2023, 146, 104662. [Google Scholar] [CrossRef]
- Han, C.; Tang, F.; Ma, T.; Gu, L.; Tong, Z. Construction quality evaluation of asphalt pavement based on BIM and GIS. Autom. Constr. 2022, 141, 104398. [Google Scholar] [CrossRef]
- Pavón, R.M.; Arcos Alvarez, A.A.; Alberti, M.G. BIM-Based Educational and Facility Management of Large University Venues. Appl. Sci. 2020, 10, 7976. [Google Scholar] [CrossRef]
- Salzano, A.; Parisi, C.M.; Acampa, G.; Nicolella, M. Existing assets maintenance management: Optimizing maintenance procedures and costs through BIM tools. Autom. Constr. 2023, 149, 104788. [Google Scholar] [CrossRef]
- Mahmudnia, D.; Arashpour, M.; Yang, R. Blockchain in construction management: Applications, advantages and limitations. Autom. Constr. 2022, 140, 104379. [Google Scholar] [CrossRef]
- Li, Y.-W.; Cao, K. Establishment and application of intelligent city building information model based on BP neural network model. Comput. Commun. 2020, 153, 382–389. [Google Scholar] [CrossRef]
- Gao, C.; Wang, J.; Dong, S.; Liu, Z.; Cui, Z.; Ma, N.; Zhao, X. Application of Digital Twins and Building Information Modeling in the Digitization of Transportation: A Bibliometric Review. Appl. Sci. 2022, 12, 11203. [Google Scholar] [CrossRef]
- Shin, M.-H.; Jung, J.-H.; Kim, H.-Y. Quantitative and Qualitative Analysis of Applying Building Information Modeling (BIM) for Infrastructure Design Process. Buildings 2022, 12, 1476. [Google Scholar] [CrossRef]
- Castañeda, K.; Sánchez, O.; Herrera, R.F.; Pellicer, E.; Porras, H. BIM-based traffic analysis and simulation at road intersection design. Autom. Constr. 2021, 131, 103911. [Google Scholar] [CrossRef]
- Xue, J.; Hou, X.; Zeng, Y. Rough Registration of BIM Element Projection for Construction Progress Tracking. IEEE Access 2022, 10, 8305–8316. [Google Scholar] [CrossRef]
- Sakr, M.; Sadhu, A. Recent progress and future outlook of digital twins in structural health monitoring of civil infrastructure. Smart Mater. Struct. 2024, 33, 033001. [Google Scholar] [CrossRef]
- Hong, Y.; Park, S.; Kim, H.; Kim, H. Synthetic data generation using building information models. Autom. Constr. 2021, 130, 103871. [Google Scholar] [CrossRef]
- Banfi, F. The Evolution of Interactivity, Immersion and Interoperability in HBIM: Digital Model Uses, VR and AR for Built Cultural Heritage. ISPRS Int. J. Geo-Inf. 2021, 10, 685. [Google Scholar] [CrossRef]
- Cepa, J.J.; Pavón, R.M.; Alberti, M.G.; Ciccone, A.; Asprone, D. A Review on the Implementation of the BIM Methodology in the Operation Maintenance and Transport Infrastructure. Appl. Sci. 2023, 13, 3176. [Google Scholar] [CrossRef]
- Xiao, M.; Chao, Z.; Coelho, R.F.; Tian, S. Investigation of Classification and Anomalies Based on Machine Learning Methods Applied to Large Scale Building Information Modeling. Appl. Sci. 2022, 12, 6382. [Google Scholar] [CrossRef]
- Datta, S.D.; Tayeh, B.A.; Hakeem, I.Y.; Abu Aisheh, Y.I. Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review. Sustainability 2023, 15, 12466. [Google Scholar] [CrossRef]
- Soilán, M.; Justo, A.; Sánchez-Rodríguez, A.; Riveiro, B. 3D Point Cloud to BIM: Semi-Automated Framework to Define IFC Alignment Entities from MLS-Acquired LiDAR Data of Highway Roads. Remote Sens. 2020, 12, 2301. [Google Scholar] [CrossRef]
- Nahangi, M.; Guven, G.; Olanrewaju, B.; Saxe, S. Embodied greenhouse gas assessment of a bridge: A comparison of preconstruction Building Information Model and construction records. J. Clean. Prod. 2021, 295, 126388. [Google Scholar] [CrossRef]
- Xie, M.; Qiu, Y.; Liang, Y.; Zhou, Y.; Liu, Z.; Zhang, G. Policies, applications, barriers and future trends of building information modeling technology for building sustainability and informatization in China. Energy Rep. 2022, 8, 7107–7126. [Google Scholar] [CrossRef]
- Malagnino, A.; Montanaro, T.; Lazoi, M.; Sergi, I.; Corallo, A.; Patrono, L. Building Information Modeling and Internet of Things integration for smart and sustainable environments: A review. J. Clean. Prod. 2021, 312, 127716. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, J.S.; Yuan, T.F.; Yoon, Y.S. Building-Information-Modeling Based Approach to Simulate Strategic Location of Shelter in Place and Its Strengthening Method. Materials 2021, 14, 3456. [Google Scholar] [CrossRef] [PubMed]
- Vignali, V.; Acerra, E.M.; Lantieri, C.; Di Vincenzo, F.; Piacentini, G.; Pancaldi, S. Building information Modelling (BIM) application for an existing road infrastructure. Autom. Constr. 2021, 128, 103752. [Google Scholar] [CrossRef]
- Huang, B.; Lei, J.; Ren, F.; Chen, Y.; Zhao, Q.; Li, S.; Lin, Y. Contribution and obstacle analysis of applying BIM in promoting green buildings. J. Clean. Prod. 2021, 278, 123946. [Google Scholar] [CrossRef]
- Mehmood, S.; Fan, J.; Dokota, I.S.; Nazir, S.; Nazir, Z. How to Manage Supply Chains Successfully in Transport Infrastructure Projects. Sustainability 2024, 16, 730. [Google Scholar] [CrossRef]
Database | Search Query |
---|---|
Web of Science (n = 646) | TS = (“BIM” OR “Building Information Model *”) AND TS = (“civil infrastructure” OR “infrastructure” OR “civil engineering”) AND TS = (“building *” OR “bridge *” OR “road *” OR “tunnel *” OR “dam *” OR “highway *” OR “railway *” OR “airport *” OR “port *” OR “pipeline *” OR “water supply” OR “sewerage” OR “power grid” OR “telecommunication”) |
Country | TC | Average Article Citations |
---|---|---|
China | 1552 | 14.60 |
Australia | 764 | 30.60 |
United Kingdom | 727 | 31.60 |
Spain | 495 | 13.00 |
USA | 413 | 13.30 |
Korea | 350 | 11.70 |
Italy | 347 | 15.80 |
Germany | 178 | 4.70 |
Canada | 152 | 12.70 |
Netherlands | 123 | 24.60 |
Affiliation | Articles |
---|---|
Shenzhen University (China) | 19 |
Southeast University (China) | 19 |
Universidad Politecnica DE Madrid (Spain) | 17 |
Tongji University (China) | 14 |
University of Naples Federico II (Italy) | 12 |
RWTH Aachen University (Germany) | 11 |
Monash University (Australia) | 10 |
Universitat Politecnica DE Valencia (Spain) | 10 |
University of Hong Kong (China) | 10 |
Chinese Academy of Sciences (China) | 9 |
Authors | Articles | Articles Fractionalized |
---|---|---|
Alberti MG | 8 | 1.96 |
Liu Z | 8 | 2.23 |
Biancardo SA | 6 | 1.17 |
Klemt-Albert K | 6 | 1.56 |
Wang J | 6 | 1.19 |
Alvarez AAA | 5 | 1.26 |
Herrera RF | 5 | 1.15 |
Huang MQ | 5 | 1.37 |
Osmani M | 5 | 1.28 |
Pavón R M | 5 | 1.37 |
Author | Local Citations |
---|---|
Alberti MG | 37 |
Ninic J | 24 |
Kaewunruen S | 23 |
Huang MQ | 21 |
Ma T | 21 |
Zhang QB | 21 |
Biancardo SA | 20 |
Sresakoolchai J | 20 |
Tang FL | 19 |
Bazán AM | 18 |
Author | Year | Freq | TC |
---|---|---|---|
Alberti MG | 2020 | 3 | 73 |
Alberti MG | 2021 | 2 | 28 |
Alberti MG | 2022 | 1 | 2 |
Alberti MG | 2023 | 2 | 15 |
Alvarez AAA | 2020 | 2 | 44 |
Alvarez AAA | 2021 | 2 | 28 |
Alvarez AAA | 2022 | 1 | 2 |
Biancardo SA | 2021 | 1 | 47 |
Biancardo SA | 2022 | 2 | 11 |
Biancardo SA | 2023 | 3 | 23 |
Sources | Articles |
---|---|
Automation in Construction | 51 |
Sustainability | 40 |
Applied Sciences-Basel | 36 |
Buildings | 36 |
Bautechnik | 20 |
Advanced Engineering Informatics | 14 |
Engineering Construction and Architectural Management | 14 |
Tunnelling and Underground Space Technology | 13 |
Journal of Construction Engineering and Management | 12 |
Advances in Civil Engineering | 9 |
Sources | Articles |
---|---|
Automat Constr | 3004 |
Adv Eng Inform | 499 |
Sustainability-Basel | 488 |
J Comput Civil Eng | 381 |
Appl SCI-Basel | 334 |
J Clean Prod | 331 |
J Constr Eng M | 300 |
Procedia Engineer | 235 |
J Build Eng | 229 |
Buildings-Basel | 226 |
Paper | Total Citations | TC per Year | Normalized TC |
---|---|---|---|
Jiang F, 2021, Automat Constr [49] | 168 | 42.00 | 6.36 |
Huang M Q, 2021, Tunn Undergr SP Tech [50] | 165 | 41.25 | 6.24 |
Rahimian F P, 2020, Automat Constr [51] | 159 | 31.80 | 6.43 |
Sepasgozar SME, 2021, Buildings-Basel [52] | 141 | 35.25 | 5.34 |
Li X, 2022, J Constr Eng M [53] | 112 | 37.33 | 7.16 |
Xia H S, 2022, Sustain Cities Soc [22] | 103 | 34.33 | 6.58 |
Shahzad M, 2022, Buildings-Basel [54] | 100 | 33.33 | 6.39 |
Pan Y, 2023, Arch Comput Method E [55] | 86 | 43.00 | 13.68 |
Tang F L, 2020, Automat Constr [56] | 84 | 16.80 | 3.40 |
Argyroudis S A, 2022, Clim Risk Manag [57] | 76 | 25.33 | 4.86 |
Category | Application Scenario | Method | Function |
---|---|---|---|
BIM in Infrastructure Lifecycle Management | Resolving contract disputes, payment transparency, information security | Blockchain Technology (BCT) | Reduces information asymmetry and the risk of human tampering |
BIM in Infrastructure Lifecycle Management | Bridges, tunnels, roads, and airports | Digital Twin | Reduces capital expenditure and operating costs, enhances operational efficiency and asset management |
BIM in Infrastructure Lifecycle Management | Full-process quality assessment of asphalt pavement construction | GIS | Enables real-time monitoring and full-process quality assessment of road construction, addressing inefficiencies and delays in traditional quality assessment methods |
BIM in Infrastructure Lifecycle Management | Smart city development | BP Neural Network | Integrates information on urban buildings and infrastructure |
BIM in Infrastructure Lifecycle Management | Bridge quality inspection | Artificial Neural Network (ANN) Model | Detects anomalies in bridges under complex load conditions |
BIM Collaboration in Large-scale Projects | Monitoring construction progress on-site | Image Detection and Deep Learning | Tracks construction progress |
BIM Collaboration in Large-scale Projects | Transportation infrastructure projects | Supply Chain Management | Enhances coordination among project stakeholders, helps identify and mitigate potential risks |
BIM Collaboration in Large-scale Projects | Environmental monitoring during construction | Pre-construction BIM-based GHG Assessment | Records energy consumption at construction sites |
BIM Collaboration in Large-scale Projects | Restoration of cultural heritage buildings | VR/AR | Enhances the interactivity and immersion of models |
BIM Collaboration in Large-scale Projects | Understanding civil infrastructure scenarios | Deep Learning | Suitable for object recognition and segmentation in infrastructure scenarios like buildings and bridges |
BIM for Sustainable Infrastructure Design | Bridge engineering | BIM and GIS integration, Relational Database (RDB) | Facilitates digital bridge management |
BIM for Sustainable Infrastructure Design | Large-scale city modeling | Integration of Point Cloud, BIM, and GIS | Generates high-quality 3D models |
BIM for Sustainable Infrastructure Design | Road engineering | Point Cloud | Enables semi-automated road alignment model generation |
BIM for Sustainable Infrastructure Design | Interoperability of different building software | IFC Instance Data Deconstruction | Enhances interoperability and flexibility of BIM data, simplifying data manipulation and analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Ding, Z. Building Information Modeling Applications in Civil Infrastructure: A Bibliometric Analysis from 2020 to 2024. Buildings 2024, 14, 3431. https://doi.org/10.3390/buildings14113431
Li Y, Li Y, Ding Z. Building Information Modeling Applications in Civil Infrastructure: A Bibliometric Analysis from 2020 to 2024. Buildings. 2024; 14(11):3431. https://doi.org/10.3390/buildings14113431
Chicago/Turabian StyleLi, Yaning, Yongchang Li, and Zhikun Ding. 2024. "Building Information Modeling Applications in Civil Infrastructure: A Bibliometric Analysis from 2020 to 2024" Buildings 14, no. 11: 3431. https://doi.org/10.3390/buildings14113431
APA StyleLi, Y., Li, Y., & Ding, Z. (2024). Building Information Modeling Applications in Civil Infrastructure: A Bibliometric Analysis from 2020 to 2024. Buildings, 14(11), 3431. https://doi.org/10.3390/buildings14113431