Study on the Effect of Heat Transfer Characteristics of Energy Piles
Abstract
:1. Introduction
2. Increase Heat Transfer Efficiency with Fins
3. Establishment and Validation of FEM
3.1. Energy Pile Details
3.2. Ground Conditions
4. Numerical Simulation
4.1. Assumptions and Mathematical Model
- (1)
- The energy piles’ materials were thought to be isotropic, elastic, and incompressible;
- (2)
- the soil layers and piles are modeled as linear thermoelastic materials;
- (3)
- numerical simulations depict quasi-static conditions with negligible inertial effects;
- (4)
- the impact of associated loads on changes in the soil water field is minimal;
- (5)
- the impact of water flow temperature changes on the heat exchanger tubes was disregarded, and the heat transfer in the pile soil was computed using a solid heat transfer model.
4.2. Model Validation
5. Results and Discussion
5.1. Effect of Heat Exchanger Piping Configuration on Energy Pile Heat Transfer
5.2. Effect of Buried Pipe Depth on Heat Transfer in Energy Piles
5.3. Effect of Concrete Thermal Conductivity on Heat Transfer in Energy Piles
6. Discussions
7. Conclusions
- Under the optimum operation of fins, the heat transfer temperature within the concrete and surrounding soil range rises noticeably, and as the tube diameter grows, the temperature increase reduces. When choosing a tube diameter between 20 and 40 mm, the temperature of the concrete area rises by 10.8% to 12.3%, and the temperature of the region surrounding the pile rises by 5.3% to 8.7% after the fins have been running for 336 h.
- The depth of the ground edge has a significant impact on the ground temperature within 8 m from the surface, while the ground temperature in the heterothermal zone (0–8 m) has little bearing on the enhancement of heat transfer through the installation of fins. After 336 h of operation with the fins set, the temperature of the concrete area grew by 15.8% to 24.9% within 20 m of the buried depth, and the temperature of the region surrounding the pile increased by 20.5% to 25.1%.
- When concrete’s thermal conductivity is adjusted between 0.5 and 2.5, the temperature in the heat transfer zone rises as the concrete’s thermal conductivity rises, but the temperature increment falls as the thermal conductivity rises. After putting the fins to run for 336 h, the temperature in the concrete area rises by 5.3% to 18.1%, while the temperature in the area surrounding the pile rises by 4.9% to 12.6%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Acronyms and Symbols
CTE | Coefficient of thermal expansion |
CFG | Cement fly ash gravel |
GHE | Ground heat exchangers |
GSHP | Ground source heat pump |
HDPE | High-density polyethylene |
ILS | Infinite line source |
OCR | Overconsolidation ratio |
PCM | Phase change materials |
PHC | Pre-stressed high-strength concrete |
TRT | Thermal Response Test |
VWSGs | Vibrating wire strain gauges |
C | Heat capacity of a material |
Db | Diameter of borehole [m] |
Ds | Diameter of soil [m] |
E | Elastic modulus [MPa] |
Lb | Drilling length [m] |
R | Energy pile radius [mm] |
Sc | Shape factor |
T | Structural temperature [°C] |
do | External diameter of PE pipe [mm] |
di | Internal diameter of PE pipe [mm] |
λ | Thermal conductivity [W/m/°C] |
c | Specific heat [J/kg K] |
r | Distance to the center origin [mm] |
t | Heat transfer time [h] |
x | Pipe distance [m] |
z | Soil depth [m] |
ρ | Density [kg/m3] |
γ | Unit weight [kN/m3] |
v | Poisson’s Ratio |
α | Thermal expansion coefficient [/°C] |
References
- Arghand, T.; Javed, S.; Trüschel, A.; Dalenbäck, J.-O. A comparative study on borehole heat exchanger size for direct ground coupled cooling systems using active chilled beams and TABS. Energy Build. 2021, 240, 110874. [Google Scholar] [CrossRef]
- Liu, H.; He, F.; Wang, C.; Bouazza, A.; Kong, G.; Sun, Z. Heat transfer performance of energy pile and borehole heat exchanger: A comparative study. J. Build. Eng. 2024, 97, 110721. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, D.; Wang, C.; Bouazza, A.; Kong, G. Thermally induced mechanical interactions of energy pile groups subjected to cyclic nonsymmetrical thermal loading. Comput. Geotech. 2024, 167, 106053. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, D.; Bouazza, A.; Wang, C.; Kong, G. Thermo-mechanical behaviour of energy piles in overconsolidated clay under various mechanical loading levels and thermal cycles. Renew. Energy 2022, 201, 594–607. [Google Scholar] [CrossRef]
- Ghasemi-Fare, O.; Basu, P. Predictive assessment of heat exchange performance of geothermal piles. Renew. Energy 2016, 86, 1178–1196. [Google Scholar] [CrossRef]
- Sutman, M.; Speranza, G.; Ferrari, A.; Larrey-Lassalle, P.; Laloui, L. Long-term performance and life cycle assessment of energy piles in three different climatic conditions. Renew. Energy 2020, 146, 1177–1191. [Google Scholar] [CrossRef]
- Ramkumar, P.; Boddapati, C.; A.S., V.; Thilagapathy, G.; Kajavali, A. Investigation of heat transfer characteristics in heat pipe heat exchanger for space application. Interactions 2024, 245, 146. [Google Scholar] [CrossRef]
- Reshmin, A.I.; Lushchik, V.G.; Makarova, M.S. Intensification of Heat Transfer in Heat Exchangers with Diffuser Channels. Fluid Dyn. 2024, 59, 987–995. [Google Scholar] [CrossRef]
- Pandi, K.; Jaganathan, V.M. Experimental analysis of a heat pipe-assisted flexible heat transfer device. Heat Mass Transf. 2024, 60, 1045–1058. [Google Scholar] [CrossRef]
- Cherati, D.Y.; Ghasemi-Fare, O. Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences. Renew. Sustain. Energy Rev. 2021, 140, 110748. [Google Scholar] [CrossRef]
- Dai, G.; Kong, G.; Deng, H.; Yang, Q. Comprehensive models and analytical solutions for transient heat transfer in PHC energy pile. Comput. Geotech. 2024, 176, 106713. [Google Scholar] [CrossRef]
- Kong, L.-P.; Qiao, L.; Xiao, Y.-Y.; Li, Q.-W. A study on heat transfer characteristics and pile group influence of enhanced heat transfer energy piles. J. Build. Eng. 2019, 24, 100768. [Google Scholar] [CrossRef]
- You, S.; Cheng, X.; Guo, H.; Yao, Z. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy Build. 2014, 79, 23–31. [Google Scholar] [CrossRef]
- You, S.; Cheng, X.; Guo, H.; Yao, Z. Experimental study on structural response of CFG energy piles. Appl. Therm. Eng. 2016, 96, 640–651. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, S.-R.; Go, G.-H.; Park, S. An experimental and numerical approach to derive ground thermal conductivity in spiral coil type ground heat exchanger. J. Energy Inst. 2015, 88, 229–240. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, G.; Liu, S. Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata. Appl. Therm. Eng. 2018, 143, 836–848. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, G.; Liu, S. Temperature effects on the in-situ mechanical response of clayey soils around an energy pile evaluated by CPTU. Eng. Geol. 2020, 276, 105712. [Google Scholar] [CrossRef]
- Go, G.-H.; Lee, S.-R.; Yoon, S.; Kang, H.-B. Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects. Appl. Energy 2014, 125, 165–178. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, G.; Liu, Y.; Zhao, X. Thermal performance analysis and assessment of PCM backfilled precast high-strength concrete energy pile under heating and cooling modes of building. Appl. Therm. Eng. 2022, 216, 119144. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, C.; Bouazza, A.; Kong, G.; Ding, X. An approach for heat transfer thermal analysis of a pre-stressed high-strength concrete (PHC) energy pile. Renew. Energy 2024, 235, 121248. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, C.; Bouazza, A.; Chang, H.; Kong, G. Thermal performance of a full-scale pre-tensioned high strength concrete (PHC) energy pile. J. Energy Storage 2024, 98, 112840. [Google Scholar] [CrossRef]
- Park, H.; Lee, S.R.; Yoon, S.; Choi, J.C. Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation. Appl. Energy 2013, 103, 12–24. [Google Scholar] [CrossRef]
- Abdelaziz, S.L.; Ozudogru, T.Y. Selection of the design temperature change for energy piles. Appl. Therm. Eng. 2016, 107, 1036–1045. [Google Scholar] [CrossRef]
- Caulk, R.; Ghazanfari, E.; McCartney, J.S. Parameterization of a calibrated geothermal energy pile model. Geomech. Energy Environ. 2016, 5, 1–15. [Google Scholar] [CrossRef]
- Faizal, M.; Bouazza, A.; McCartney, J.S. Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients. Renew. Energy 2022, 190, 1066–1077. [Google Scholar] [CrossRef]
- Abdelaziz, S.L.; Olgun, C.G.; Martin, J.R. Counterbalancing ambient interference on thermal conductivity tests for energy piles. Geothermics 2015, 56, 45–59. [Google Scholar] [CrossRef]
- Cecinato, F.; Loveridge, F.A. Influences on the thermal efficiency of energy piles. Energy 2015, 82, 1021–1033. [Google Scholar] [CrossRef]
- Sani, A.K.; Singh, R.M.; de Hollanda Cavalcanti Tsuha, C.; Cavarretta, I. Pipe–pipe thermal interaction in a geothermal energy pile. Geothermics 2019, 81, 209–223. [Google Scholar] [CrossRef]
- Xi, W.; Zhao, Y.; Feng, S.; Fang, J.; Chen, H.; Sun, W. Heat transfer characteristics of energy piles considering temperature-dependent soil thermal conductivity. Comput. Geotech. 2024, 172, 106467. [Google Scholar] [CrossRef]
- Yang, W.; Ju, L.; Zhang, L.; Wang, F. Experimental investigations of the thermo-mechanical behaviour of an energy pile with groundwater seepage. Sustain. Cities Soc. 2022, 77, 103588. [Google Scholar] [CrossRef]
- Ding, X.; Peng, C.; Wang, C.; Kong, G. Heat transfer performance of energy piles in seasonally frozen soil areas. Renew. Energy 2022, 190, 903–918. [Google Scholar] [CrossRef]
- Cao, X.; Kong, G.; Han, C. Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China. Energy 2024, 290, 130317. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, P. Underground solar energy storage via energy piles. Appl. Energy 2020, 261, 114361. [Google Scholar] [CrossRef]
- Zhong, Y.; Narsilio, G.A.; Makasis, N.; Scott, C. Experimental and numerical studies on an energy piled wall: The effect of thermally activated pile spacing. Geomech. Energy Environ. 2022, 29, 100276. [Google Scholar] [CrossRef]
- Liu, H.; Maghoul, P.; Bahari, A.; Kavgic, M. Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada. Renew. Energy 2019, 136, 1266–1280. [Google Scholar] [CrossRef]
- Chang, H.; Wu, Q.; Zhu, W. Model test on thermo-mechanical properties of static drill rooted energy pile under long-term temperature cycles. J. Build. Eng. 2023, 78, 107661. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, J.; Xu, F.; Zhang, R.; Deng, G. Integrated operation of PV assisted ground source heat pump and air source heat pump system: Performance analysis and economic optimization. Energy Convers. Manag. 2022, 269, 116091. [Google Scholar] [CrossRef]
- Li, Y.; Bi, Y.; Lin, Y.; Wang, H.; Sun, R. Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season. Energy 2023, 264, 126394. [Google Scholar] [CrossRef]
- Bulmez, A.; Ciofoaia, V.; Năstase, G.; Dragomir, G.; Brezeanu, A.; Şerban, A. An experimental work on the performance of a solar-assisted ground-coupled heat pump using a horizontal ground heat exchanger. Renew. Energy 2022, 183, 849–865. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Yao, W.; Xia, Y.; Xu, T.; Yang, H.; Xie, H.; Gao, W. The challenge of the ground heat Exchangers: A review of heat transfer efficiency. Energy Convers. Manag. 2024, 302, 118115. [Google Scholar] [CrossRef]
- Alnaqi, A.A.; Al-Rashed, A.A.; Alsarraf, J. Numerical investigation of the geometric parameters effect of helical blades installed on horizontal geo heat exchanger. Geothermics 2025, 125, 103169. [Google Scholar] [CrossRef]
- Saeidi, R.; Karimi, A.; Noorollahi, Y. The novel designs for increasing heat transfer in ground heat exchangers to improve geothermal heat pump efficiency. Geothermics 2024, 116, 102844. [Google Scholar] [CrossRef]
- Choure, B.K.; Alam, T.; Kumar, R. Optimization of heat transfer in PCM based triple tube heat exchanger using multitudinous fins and eccentric tube. J. Energy Storage 2024, 102, 113981. [Google Scholar] [CrossRef]
- Roshani, M.; Hosseini, M.; Ranjbar, A.; Torbatinejad, A. Enhancing geothermal heat pump efficiency with fin creation and microencapsulated PCM: A numerical study. J. Energy Storage 2024, 95, 112664. [Google Scholar] [CrossRef]
- Saeidi, R.; Noorollahi, Y.; Esfahanian, V. Numerical simulation of a novel spiral type ground heat exchanger for enhancing heat transfer performance of geothermal heat pump. Energy Convers. Manag. 2018, 168, 296–307. [Google Scholar] [CrossRef]
- Saeidi, R.; Noorollahi, Y.; Chang, S.; Yousefi, H. A comprehensive study of Fin-Assisted horizontal ground heat exchanger for enhancing the heat transfer performance. Energy Convers. Manag. X 2023, 18, 100359. [Google Scholar] [CrossRef]
- Bouhacina, B.; Saim, R.; Oztop, H.F. Numerical investigation of a novel tube design for the geothermal borehole heat exchanger. Appl. Therm. Eng. 2015, 79, 153–162. [Google Scholar] [CrossRef]
- Xu, L.; Pu, L.; Zhang, S.; Nian, L.; Li, Y. Structure optimization design of ground heat exchanger by topology method to mitigate the geothermal imbalance. Appl. Therm. Eng. 2020, 170, 115023. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, C.; He, G.; Li, D.; Zhang, Z.; Cong, J.; Meng, Z.; Asim, S.; Ashraf, M. 3D topology optimization design of air natural convection heat transfer fins. Nucl. Eng. Des. 2024, 429, 113623. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for design of concrete structures. China Architecture and Building Press: Beijing, China, 2010.
- Moradshahi, A.; Faizal, M.; Bouazza, A.; McCartney, J.S. Cross-sectional thermo-mechanical responses of energy piles. Comput. Geotech. 2021, 138, 104320. [Google Scholar] [CrossRef]
- Han, C.; Yu, X. Analyses of the thermo-hydro-mechanical responses of energy pile subjected to non-isothermal heat exchange condition. Renew. Energy 2020, 157, 150–163. [Google Scholar] [CrossRef]
- Jeong, S.; Lim, H.; Lee, J.K.; Kim, J. Thermally induced mechanical response of energy piles in axially loaded pile groups. Appl. Therm. Eng. 2014, 71, 608–615. [Google Scholar] [CrossRef]
- Singh, R.M.; Bouazza, A.; Wang, B. Near-field ground thermal response to heating of a geothermal energy pile: Observations from a field test. Soils Found. 2015, 55, 1412–1426. [Google Scholar] [CrossRef]
- Lines, S.H.; Williams, D.J. Investigation of groundwater flow and saturated multi-layer soil on the ground temperature response of an energy pile through thermal response and recovery testing. Soils Found. 2019, 59, 1359–1370. [Google Scholar] [CrossRef]
- Ozudogru, T.Y.; Olgun, C.G.; Senol, A. 3D numerical modeling of vertical geothermal heat exchangers. Geothermics 2014, 51, 312–324. [Google Scholar] [CrossRef]
- Sutman, M.; Brettmann, T.; Olgun, C.G. Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles. Geomech. Energy Environ. 2019, 18, 56–68. [Google Scholar] [CrossRef]
- Akrouch, G.A.; Sánchez, M.; Briaud, J.-L. Thermal performance and economic study of an energy piles system under cooling dominated conditions. Renew. Energy 2020, 147, 2736–2747. [Google Scholar] [CrossRef]
- Franco, A.; Moffat, R.; Toledo, M.; Herrera, P. Numerical sensitivity analysis of thermal response tests (TRT) in energy piles. Renew. Energy 2016, 86, 985–992. [Google Scholar] [CrossRef]
- Gashti, E.H.N.; Uotinen, V.M.; Kujala, K. Numerical modelling of thermal regimes in steel energy pile foundations: A case study. Energy Build. 2014, 69, 165–174. [Google Scholar] [CrossRef]
- Ayaz, H.; Faizal, M.; Bouazza, A. Energy, economic, and carbon emission analysis of a residential building with an energy pile system. Renew. Energy 2024, 220, 119712. [Google Scholar] [CrossRef]
- Zarrella, A.; Emmi, G.; Zecchin, R.; De Carli, M. An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energy Build. 2017, 134, 259–270. [Google Scholar] [CrossRef]
- Cui, S.-Q.; Zhou, C.; Liu, J.-Q.; Akinniyi, D.B. Stress effects on thermal conductivity of soils and heat transfer efficiency of energy piles in the saturated and unsaturated soils. Comput. Geotech. 2023, 160, 105549. [Google Scholar] [CrossRef]
Materials | Depth z (m) | Thermal Conductivity λ (W/m/°C) | Specific Heat Cu (MJ/m3/°C) | Unit Weight γ (kN/m3) | Elastic Modulus E (MPa) | Poisson’s Ratio v | Thermal Expansion Coefficient α (/°C) |
---|---|---|---|---|---|---|---|
Clayey soil | |||||||
-Layer 1 | 0–4 | 1.66 | 3.20 | 21.0 | 220 | 0.30 | 1 × 10−6 |
-Layer 2 | 4–8 | 1.57 | 3.25 | 20.3 | 200 | 0.30 | |
-Layer 3 | 8–15 | 1.53 | 3.16 | 20.0 | 220 | 0.30 | |
-Layer 4 | 15–18 | 1.61 | 3.08 | 20.0 | 180 | 0.32 | |
-Layer 5 | 18–23 | 1.56 | 3.21 | 19.6 | 230 | 0.30 | |
-Layer 6 | 23–26 | 1.48 | 3.11 | 20.6 | 230 | 0.30 | |
-Layer 7 | >26 | 1.72 | 3.19 | 20.3 | 280 | 0.25 | |
Concrete | - | 1.74 | 2.50 | 25.0 | 30,900 | 0.20 | 1 × 10−5 |
Material | Depth(m) | Density ρ (kg/m3) | Thermal Conductivity λ (W/m/°C) | Specific Heat c (J/kg·K) |
---|---|---|---|---|
Soil | 2 | 2100 | 1.66 | 1523.8 |
10 | 2000 | 1.53 | 1580 | |
20 | 1960 | 1.56 | 1637.7 | |
Backfill material | 2500 | 1.74 | 1000 | |
Aluminum fins | 2700 | 204 | 896 |
Ref. | Type | Material | L (m) | do (mm) | di (mm) | λ (W/(m·K)) | x (m) |
---|---|---|---|---|---|---|---|
[20] | U-type | high-density polyethylene | 15 | 25 | 22.7 | 1.78 | 0.11 |
[51] | 4U-type | high-density polyethylene | 10 | 25 | - | 0.4 | - |
[16] | U-type | high-density polyethylene | 23 | 25 | 22.7 | 0.42 | 0.255 |
[24] | W-type | high-density polyethylene | 15.2 | 19 | 16 | 0.48 | 0.448 |
[52] | W-type | polyethylene pipe | 23 | 32 | - | - | - |
[53] | U-type | polyethylene pipe | 40.2 | 42.2 | 34.5 | 0.35 | - |
[28] | U-type | high-density polyethylene | - | 32 | 28 | 0.385 | 0.436 |
[25] | 4U-type | high-density polyethylene | 10 | 25 | 20 | - | 0.2 |
[22] | 3U/W-type | polybutylene pipe | 10.2/9.8 | 20 | 16 | - | 0.38 |
[54] | 3U-type | high-density polyethylene | 14.2 | 25 | - | - | 0.175 |
[55] | 3U-type | high-density polyethylene | 13.5 | 40 | - | - | 0.4 |
[26] | U-type | high-density polyethylene | 30.5 | 25 | 20.4 | 1.41 | - |
[6] | U-type | cross-linked polyethylene | 20 | 32 | 26 | 0.41 | 0.3 |
[14] | W-type | high-density polyethylene | 18 | 25 | - | - | - |
[56] | U-type | high-density polyethylene | 20 | 26 | 21.5 | 0.39 | 0.05 |
[57] | U-type | polybutylene pipe | 15.2/9.2 | 25.4 | 19 | - | - |
[58] | U-type | high-density polyethylene | 16 | 25.4 | 0.61 | 0.2 | |
[59] | U-type | high-density polyethylene | 28 | 32 | 26.2 | 0.4 | 0.5 |
[60] | 2U-type | high-density polyethylene | 20 | 25/40 | - | 0.42 | - |
[13] | W-type | high-density polyethylene | 72 | 25 | - | - | - |
[2] | 2U-type | polybutylene pipe | 16 | 25 | 21 | - | - |
[61] | U-type | high-density polyethylene | 10 | 25 | 20 | - | - |
[62] | 2U-type | high-density polyethylene | 20 | 20 | 16 | 0.35 | 0.402 |
[26] | W-type | high-density polyethylene | 30 | 32 | 25.5 | 0.39 | - |
[63] | U-type | high-density polyethylene | 10 | 26 | 22 | 0.42 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, T.; Zhao, K.; Xia, Y.; Duan, Y.; Gao, W.; Kong, G. Study on the Effect of Heat Transfer Characteristics of Energy Piles. Buildings 2024, 14, 3593. https://doi.org/10.3390/buildings14113593
Wang X, Xu T, Zhao K, Xia Y, Duan Y, Gao W, Kong G. Study on the Effect of Heat Transfer Characteristics of Energy Piles. Buildings. 2024; 14(11):3593. https://doi.org/10.3390/buildings14113593
Chicago/Turabian StyleWang, Xiaoyang, Tongyu Xu, Kaiming Zhao, Yueqiu Xia, Yuechen Duan, Weijun Gao, and Gangqiang Kong. 2024. "Study on the Effect of Heat Transfer Characteristics of Energy Piles" Buildings 14, no. 11: 3593. https://doi.org/10.3390/buildings14113593
APA StyleWang, X., Xu, T., Zhao, K., Xia, Y., Duan, Y., Gao, W., & Kong, G. (2024). Study on the Effect of Heat Transfer Characteristics of Energy Piles. Buildings, 14(11), 3593. https://doi.org/10.3390/buildings14113593