Autonomous Mobile Robots Inclusive Building Design for Facilities Management: Comprehensive PRISMA Review
Abstract
:1. Introduction
2. Literature Background
2.1. Historical Background of FM
2.2. Shifts in FM Industry
2.3. Autonomous Mobile Robots (AMRs)
2.4. Brief Overview of AMR in FM
2.5. Lag in AMR Implementation Within FM
3. Methodology
3.1. Phase 1: Identification
3.2. Phase 2: Screening
3.3. Phase 3: Inclusion
4. Results
4.1. General Observations
4.2. Challenges in Adopting AMRs
5. Discussions
5.1. Key Findings
5.1.1. Diverse Operational Context
5.1.2. Poorly Designed Indoor Environments
5.1.3. Varying Building Occupants
5.1.4. Multi-Faceted FM Functionalities
5.1.5. Building Exterior Considerations
5.1.6. Unique and Combined Challenges in FM
5.2. Research Contributions
5.2.1. Academic Contributions
5.2.2. Industrial Contributions
5.3. Research Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saad, S.; Haris, M.; Ammad, S.; Rasheed, K. AI-assisted Building Design. In AI in Material Science; CRC Press: Boca Raton, FL, USA, 2024; pp. 143–168. [Google Scholar]
- Rane, N. Integrating leading-edge artificial intelligence (AI), internet of things (IOT), and big data technologies for smart and sustainable architecture, engineering and construction (AEC) industry: Challenges and future directions. Eng. Constr. (AEC) Ind. Chall. Future Dir. 2023. [Google Scholar] [CrossRef]
- Melenbrink, N.; Werfel, J.; Menges, A. On-site autonomous construction robots: Towards unsupervised building. Autom. Constr. 2020, 119, 103312. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Gieryn, T.F. What buildings do. Theory Soc. 2002, 31, 35–74. [Google Scholar] [CrossRef]
- Atta, N.; Talamo, C. Digital transformation in facility management (FM). IoT and big data for service innovation. In Digital Transformation of the Design, Construction and Management Processes of the Built Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 267–278. [Google Scholar]
- Kobal Grum, D. Interactions between human behaviour and the built environment in terms of facility management. Facilities 2018, 36, 2–12. [Google Scholar] [CrossRef]
- Shen, W.; Hao, Q.; Mak, H.; Neelamkavil, J.; Xie, H.; Dickinson, J.; Thomas, R.; Pardasani, A.; Xue, H. Systems integration and collaboration in architecture, engineering, construction, and facilities management: A review. Adv. Eng. Inform. 2010, 24, 196–207. [Google Scholar] [CrossRef]
- Spring, M.; Hughes, A.; Mason, K.; McCaffrey, P. Creating the competitive edge: A new relationship between operations management and industrial policy. J. Oper. Manag. 2017, 49, 6–19. [Google Scholar] [CrossRef]
- Rondeau, E.P.; Brown, R.K.; Lapides, P.D. Facility Management; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Amaratunga, D.; Baldry, D.; Sarshar, M. Assessment of facilities management performance–what next? Facilities 2000, 18, 66–75. [Google Scholar] [CrossRef]
- Nazali Mohd Noor, M.; Pitt, M. A critical review on innovation in facilities management service delivery. Facilities 2009, 27, 211–228. [Google Scholar] [CrossRef]
- Wijekoon, K.A.D.N.C. Optimising the Adoption of Building Information Modeliing (BIM) in Facilities Mnagement (FM): A Model for Value Enhancement; Liverpool John Moores University: Liverpool, UK, 2019. [Google Scholar]
- Adegoriola, M.I. An Integrated Framework for Heritage Building Maintenance Management: The Facility Management Perspective. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2023. [Google Scholar]
- Roper, K.; Payant, R. The Facility Management Handbook; Amacom: ′s-Hertogenbosch, The Netherlands, 2014. [Google Scholar]
- Altohami, A.B.A.; Haron, N.A.; Ales@Alias, A.H.; Law, T.H. Investigating approaches of integrating BIM, IoT, and facility management for renovating existing buildings: A review. Sustainability 2021, 13, 3930. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Ge, J.; He, S.X. Digitisation in facilities management: A literature review and future research directions. Autom. Constr. 2018, 92, 312–326. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Pantisoontorn, A.; Vu, T.-L.; Chen, T.-H. Optimal production and predictive maintenance decisions for deteriorated products under advance-cash-credit payments. Int. J. Prod. Econ. 2024, 269, 109132. [Google Scholar] [CrossRef]
- Sahba, R.; Radfar, R.; Rajabzadeh Ghatari, A.; Pour Ebrahimi, A. Development of Industry 4.0 predictive maintenance architecture for broadcasting chain. Adv. Eng. Inform. 2021, 49, 101324. [Google Scholar] [CrossRef]
- Stenström, C.; Norrbin, P.; Aditya, P.; Kumar, U. Preventive and corrective maintenance—Cost comparison and cost–benefit analysis. Struct. Infrastruct. Eng. 2015, 12, 603–617. [Google Scholar] [CrossRef]
- Lee, S.; Doctor, F.; Anisi, M.H.; Goud, S.; Wang, X.; Ruthven, S. AI Driven Streamlining of Appliance Load Monitoring in Facilities Management. In Proceedings of the 2024 19th Annual System of Systems Engineering Conference (SoSE), Tacoma, WA, USA, 23–26 June 2024; pp. 130–133. [Google Scholar]
- Cao, Y.; Song, X.; Wang, T. Development of an energy-aware intelligent facility management system for campus facilities. Procedia Eng. 2015, 118, 449–456. [Google Scholar] [CrossRef]
- Sanzana, M.R.; Maul, T.; Wong, J.Y.; Abdulrazic, M.O.M.; Yip, C.-C. Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Autom. Constr. 2022, 141, 104445. [Google Scholar] [CrossRef]
- Mannino, A.; Dejaco, M.C.; Re Cecconi, F. Building information modelling and internet of things integration for facility management—Literature review and future needs. Appl. Sci. 2021, 11, 3062. [Google Scholar] [CrossRef]
- Floreano, D.; Mondada, F. Evolutionary neurocontrollers for autonomous mobile robots. Neural Netw. 1998, 11, 1461–1478. [Google Scholar] [CrossRef]
- Cognominal, M.; Patronymic, K.; Wańkowicz, A. Evolving Field of Autonomous Mobile Robotics: Technological Advances and Applications. Fusion Multidiscip. Res. Int. J. 2021, 2, 189–200. [Google Scholar]
- Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [Google Scholar] [CrossRef]
- Chen, L.-B.; Huang, X.-R.; Chen, W.-H. Design and implementation of an artificial intelligence of things-based autonomous mobile robot system for pitaya harvesting. IEEE Sens. J. 2023, 23, 13220–13235. [Google Scholar] [CrossRef]
- Chakraborty, S.; Elangovan, D.; Govindarajan, P.L.; ELnaggar, M.F.; Alrashed, M.M.; Kamel, S. A comprehensive review of path planning for agricultural ground robots. Sustainability 2022, 14, 9156. [Google Scholar] [CrossRef]
- Collins, G.R. Improving human–robot interactions in hospitality settings. Int. Hosp. Rev. 2020, 34, 61–79. [Google Scholar] [CrossRef]
- Kunchev, V.; Jain, L.; Ivancevic, V.; Finn, A. Path planning and obstacle avoidance for autonomous mobile robots: A review. In Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems: 10th International Conference, KES 2006, Bournemouth, UK, 9–11 October 2006; Proceedings, Part II 10. pp. 537–544. [Google Scholar]
- Sutter, B.; Lelevé, A.; Pham, M.T.; Gouin, O.; Jupille, N.; Kuhn, M.; Lulé, P.; Michaud, P.; Rémy, P. A semi-autonomous mobile robot for bridge inspection. Autom. Constr. 2018, 91, 111–119. [Google Scholar] [CrossRef]
- Loganathan, A.; Ahmad, N.S. A systematic review on recent advances in autonomous mobile robot navigation. Eng. Sci. Technol. Int. J. 2023, 40, 101343. [Google Scholar] [CrossRef]
- Holland, J.; Kingston, L.; McCarthy, C.; Armstrong, E.; O’Dwyer, P.; Merz, F.; McConnell, M. Service robots in the healthcare sector. Robotics 2021, 10, 47. [Google Scholar] [CrossRef]
- Maki, O.; Alshaikhli, M.; Gunduz, M.; Naji, K.K.; Abdulwahed, M. Development of digitalization road map for healthcare facility management. IEEE Access 2022, 10, 14450–14462. [Google Scholar] [CrossRef]
- Chen, J.; Lu, W.; Ghansah, F.; Peng, Z. Defect digital twinning: A technical framework to integrate robotics, AI and BIM for facility management and renovation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; p. 022041. [Google Scholar]
- Friederich, J.; Francis, D.P.; Lazarova-Molnar, S.; Mohamed, N. A framework for data-driven digital twins of smart manufacturing systems. Comput. Ind. 2022, 136, 103586. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Paré, G.; Tate, M.; Johnstone, D.; Kitsiou, S. Contextualizing the twin concepts of systematicity and transparency in information systems literature reviews. Eur. J. Inf. Syst. 2016, 25, 493–508. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Siddaway, A.P.; Wood, A.M.; Hedges, L.V. How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. [Google Scholar] [CrossRef]
- Hutton, B.; Catala-Lopez, F.; Moher, D. The PRISMA statement extension for systematic reviews incorporating network meta-analysis: PRISMA-NMA. Med. Clínica 2016, 147, 262–266. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W-65–W-94. [Google Scholar] [CrossRef]
- Niloy, M.A.; Shama, A.; Chakrabortty, R.K.; Ryan, M.J.; Badal, F.R.; Tasneem, Z.; Ahamed, M.H.; Moyeen, S.I.; Das, S.K.; Ali, M.F. Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access 2021, 9, 35338–35370. [Google Scholar] [CrossRef]
- Goodwin, D. The Evolution of Autonomous Mobile Robots. Available online: https://control.com/technical-articles/the-evolution-of-autonomous-mobile-robots/ (accessed on 11 November 2024).
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Yaman, M. Different facade types and building integration in energy efficient building design strategies. Int. J. Built Environ. Sustain. 2021, 8, 49–61. [Google Scholar] [CrossRef]
- Soroka, A.J.; Qiu, R.; Noyvirt, A.; Ji, Z. Challenges for service robots operating in non-industrial environments. In Proceedings of the IEEE 10th International Conference on Industrial Informatics, Beijing, China, 25–27 July 2012; pp. 1152–1157. [Google Scholar]
- Ali, A.K.; Lee, O.J.; Song, H. Robot-based facade spatial assembly optimization. J. Build. Eng. 2021, 33, 101556. [Google Scholar] [CrossRef]
- Yoo, S.; Joo, I.; Hong, J.; Park, C.; Kim, J.; Kim, H.S.; Seo, T. Unmanned high-rise façade cleaning robot implemented on a gondola: Field test on 000-building in Korea. IEEE Access 2019, 7, 30174–30184. [Google Scholar] [CrossRef]
- Tay, L.; Ooi, J.T. Facilities management: A “Jack of all trades”? Facilities 2001, 19, 357–363. [Google Scholar] [CrossRef]
- Tammo, M.; Nelson, M. A critical review of the concept of facilities management in community-based contexts. In Proceedings of the 28th Annual ARCOM Conference, Edinburgh, UK, 3–5 September 2012; pp. 1379–1388. [Google Scholar]
- Modu, M.A.; Sapri, M.; Abd Muin, Z. Towards facilities management practice within a different environment. J. Infrastruct. Facil. Asset Manag. 2021, 3. [Google Scholar] [CrossRef]
- Joon, A.; Kowalczyk, W. Design of autonomous mobile robot for cleaning in the environment with obstacles. Appl. Sci. 2021, 11, 8076. [Google Scholar] [CrossRef]
- Wang, C.; Meng, L.; She, S.; Mitchell, I.M.; Li, T.; Tung, F.; Wan, W.; Meng, M.Q.-H.; de Silva, C.W. Autonomous mobile robot navigation in uneven and unstructured indoor environments. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 109–116. [Google Scholar]
- Wijayathunga, L.; Rassau, A.; Chai, D. Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review. Appl. Sci. 2023, 13, 9877. [Google Scholar] [CrossRef]
- Atta, N.; Talamo, C. Facility Management Services in Smart Cities: Trends and Perspectives. In New Metropolitan Perspectives: Knowledge Dynamics, Innovation-Driven Policies Towards the Territories’ Attractiveness Volume 1; Springer: Cham, Switzerland, 2020; pp. 220–230. [Google Scholar]
- Araszkiewicz, K. Digital technologies in Facility Management–the state of practice and research challenges. Procedia Eng. 2017, 196, 1034–1042. [Google Scholar] [CrossRef]
- Kelly, G.; Serginson, M.; Lockley, S.; Dawood, N.; Kassem, M. BIM for facility management: A review and a case study investigating the value and challenges. In Proceedings of the 13th International Conference on Construction Applications of Virtual Reality, London, UK, 30–31 October 2013. [Google Scholar]
- Chotipanich, S. Positioning facility management. Facilities 2004, 22, 364–372. [Google Scholar] [CrossRef]
- Alexander, K. A strategy for facilities management. Facilities 1994, 12, 6–10. [Google Scholar] [CrossRef]
- Lavy, S. Facility management practices in higher education buildings: A case study. J. Facil. Manag. 2008, 6, 303–315. [Google Scholar] [CrossRef]
- Mangano, G.; De Marco, A. The role of maintenance and facility management in logistics: A literature review. Facilities 2014, 32, 241–255. [Google Scholar] [CrossRef]
- Nutt, B. Four competing futures for facility management. Facilities 2000, 18, 124–132. [Google Scholar] [CrossRef]
- Nicał, A.K.; Wodyński, W. Enhancing facility management through BIM 6D. Procedia Eng. 2016, 164, 299–306. [Google Scholar] [CrossRef]
- Potkany, M.; Vetrakova, M.; Babiakova, M. Facility management and its importance in the analysis of building life cycle. Procedia Econ. Financ. 2015, 26, 202–208. [Google Scholar] [CrossRef]
- Xu, J.; Lu, W.; Xue, F.; Chen, K. ‘Cognitive facility management’: Definition, system architecture, and example scenario. Autom. Constr. 2019, 107, 102922. [Google Scholar] [CrossRef]
- Shiem-Shin Then, D. An integrated resource management view of facilities management. Facilities 1999, 17, 462–469. [Google Scholar] [CrossRef]
- Aziz, N.D.; Nawawi, A.H.; Ariff, N.R.M. Building information modelling (BIM) in facilities management: Opportunities to be considered by facility managers. Procedia-Soc. Behav. Sci. 2016, 234, 353–362. [Google Scholar] [CrossRef]
- Finch, E.; Zhang, X. Facilities management. In Design and Management of Sustainable Built Environments; Springer: London, UK, 2013; pp. 305–326. [Google Scholar]
- Shohet, I.M.; Lavy, S. Healthcare facilities management: State of the art review. Facilities 2004, 22, 210–220. [Google Scholar] [CrossRef]
- Fraser, K. Facilities management: The strategic selection of a maintenance system. J. Facil. Manag. 2014, 12, 18–37. [Google Scholar] [CrossRef]
- Jones, O. Facility management: Future opportunities, scope and impact. Facilities 2000, 18, 133–137. [Google Scholar] [CrossRef]
- Nousiainen, M.; Junnila, S. End-user requirements for green facility management. J. Facil. Manag. 2008, 6, 266–278. [Google Scholar] [CrossRef]
- Pärn, E.A.; Edwards, D.J.; Sing, M.C. The building information modelling trajectory in facilities management: A review. Autom. Constr. 2017, 75, 45–55. [Google Scholar] [CrossRef]
- Drion, B.; Melissen, F.; Wood, R. Facilities management: Lost, or regained? Facilities 2012, 30, 254–261. [Google Scholar] [CrossRef]
- Opoku, A.; Lee, J.Y. The future of facilities management: Managing facilities for sustainable development. Sustainability 2022, 14, 1705. [Google Scholar] [CrossRef]
- Anker Jensen, P. The facilities management value map: A conceptual framework. Facilities 2010, 28, 175–188. [Google Scholar] [CrossRef]
- Arayici, Y.; Onyenobi, T.; Egbu, C. Building information modelling (BIM) for facilities management (FM): The MediaCity case study approach. Int. J. 3-D Inf. Model. (IJ3DIM) 2012, 1, 55–73. [Google Scholar] [CrossRef]
- Yalcinkaya, M.; Singh, V. Building information modeling (BIM) for facilities management–literature review and future needs. In Proceedings of the Product Lifecycle Management for a Global Market: 11th IFIP WG 5.1 International Conference, PLM 2014, Yokohama, Japan, 7–9 July 2014; Revised Selected Papers 11. pp. 1–10. [Google Scholar]
- Hoots, M. Customer relationship management for facility managers. J. Facil. Manag. 2005, 3, 346–361. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wei, J.; Han, Y. Status quo and future directions of facility management: A bibliometric–qualitative analysis. Int. J. Strateg. Prop. Manag. 2019, 23, 354–365. [Google Scholar] [CrossRef]
- Jofré-Briceño, C.; Muñoz-La Rivera, F.; Atencio, E.; Herrera, R.F. Implementation of facility management for port infrastructure through the use of UAVs, photogrammetry and BIM. Sensors 2021, 21, 6686. [Google Scholar] [CrossRef]
- Weller, M.P.; Do, E.Y.-L. Architectural Robotics: A New paradigm for the built Environment. In Proceedings of the Design Sciences and Technology (EuropIA. 11), Montreal, QC, Canada, 19–21 September 2007; pp. 353–362. [Google Scholar]
- Farkas, Z.V.; Nádas, G.; Kolossa, J.; Korondi, P. Robot compatible environment and conditions. Period. Polytech. Civ. Eng. 2021, 65, 784–791. [Google Scholar] [CrossRef]
- Zeng, L.; Guo, S.; Wu, J.; Markert, B. Autonomous mobile construction robots in built environment: A comprehensive review. Dev. Built Environ. 2024, 19, 100484. [Google Scholar] [CrossRef]
- Yeo, M.S.; Samarakoon, S.B.P.; Ng, Q.B.; Ng, Y.J.; Muthugala, M.V.J.; Elara, M.R.; Yeong, R.W. Robot-inclusive false ceiling design guidelines. Buildings 2021, 11, 600. [Google Scholar] [CrossRef]
- Singhal, A. Issues in Autonomous Mobile Robot Navigation; Computer Science Department, University of Rochester: Rochester, NY, USA, 1997; p. 74. [Google Scholar]
- Maaref, H.; Barret, C. Sensor-based fuzzy navigation of an autonomous mobile robot in an indoor environment. Control. Eng. Pract. 2000, 8, 757–768. [Google Scholar] [CrossRef]
- Gómez, E.Z. Map-Building and Planning for Autonomous Navigation of a Mobile Robot; Center for Research and Advanced Studies of the National Polytechnic Institute: Ciudad de México, Mexico, 2015. [Google Scholar]
- Maaref, H.; Barret, C. Sensor-based navigation of a mobile robot in an indoor environment. Robot. Auton. Syst. 2002, 38, 1–18. [Google Scholar] [CrossRef]
- Yasuda, Y.D.; Martins, L.E.G.; Cappabianco, F.A. Autonomous visual navigation for mobile robots: A systematic literature review. ACM Comput. Surv. (CSUR) 2020, 53, 1–34. [Google Scholar] [CrossRef]
- Trulls, E.; Corominas Murtra, A.; Pérez-Ibarz, J.; Ferrer, G.; Vasquez, D.; Mirats-Tur, J.M.; Sanfeliu, A. Autonomous navigation for mobile service robots in urban pedestrian environments. J. Field Robot. 2011, 28, 329–354. [Google Scholar] [CrossRef]
- Morales, Y.; Carballo, A.; Takeuchi, E.; Aburadani, A.; Tsubouchi, T. Autonomous robot navigation in outdoor cluttered pedestrian walkways. J. Field Robot. 2009, 26, 609–635. [Google Scholar] [CrossRef]
- Hachour, O. Path planning of Autonomous Mobile robot. Int. J. Syst. Appl. Eng. Dev. 2008, 2, 178–190. [Google Scholar]
- Halder, S.; Afsari, K. Robots in inspection and monitoring of buildings and infrastructure: A systematic review. Appl. Sci. 2023, 13, 2304. [Google Scholar] [CrossRef]
- Tan, N.; Mohan, R.E.; Watanabe, A. Toward a framework for robot-inclusive environments. Autom. Constr. 2016, 69, 68–78. [Google Scholar] [CrossRef]
- Elara, M.R.; Rojas, N.; Chua, A. Design principles for robot inclusive spaces: A case study with roomba. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5593–5599. [Google Scholar]
- Zallio, M.; Chivǎran, C.; Clarkson, P.J. Exploring Inclusion, Diversity, Equity, and Accessibility in the Built Environment: A Case Study. Buildings 2024, 14, 3018. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Naimavicienė, J.; Krutinis, M.; Plakys, V.; Venskus, D. Model for a complex analysis of intelligent built environment. Autom. Constr. 2010, 19, 326–340. [Google Scholar] [CrossRef]
- Qbilat, M.; Iglesias, A.; Belpaeme, T. A proposal of accessibility guidelines for human-robot interaction. Electronics 2021, 10, 561. [Google Scholar] [CrossRef]
- Becerik-Gerber, B.; Lucas, G.; Aryal, A.; Awada, M.; Bergés, M.; Billington, S.; Boric-Lubecke, O.; Ghahramani, A.; Heydarian, A.; Höelscher, C. The field of human building interaction for convergent research and innovation for intelligent built environments. Sci. Rep. 2022, 12, 22092. [Google Scholar] [CrossRef]
- Johnson, M.J.; Johnson, M.A.; Sefcik, J.S.; Cacchione, P.Z.; Mucchiani, C.; Lau, T.; Yim, M. Task and design requirements for an affordable mobile service robot for elder care in an all-inclusive care for elders assisted-living setting. Int. J. Soc. Robot. 2020, 12, 989–1008. [Google Scholar] [CrossRef]
- Bricout, J.; Greer, J.; Fields, N.; Xu, L.; Tamplain, P.; Doelling, K.; Sharma, B. The “humane in the loop”: Inclusive research design and policy approaches to foster capacity building assistive technologies in the COVID-19 era. Assist. Technol. 2022, 34, 644–652. [Google Scholar] [CrossRef]
- Hahnel, D.; Triebel, R.; Burgard, W.; Thrun, S. Map building with mobile robots in dynamic environments. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; pp. 1557–1563. [Google Scholar]
- Adama, U.J.; Michell, K. Towards Examining the Social Implications of Technology Adoption on the Well-Being of Facilities Management Professionals. J. Afr. Real Estate Res. 2018, 3, 130–149. [Google Scholar] [CrossRef]
- Chew, M.Y.L.; Teo, E.A.L.; Shah, K.W.; Kumar, V.; Hussein, G.F. Evaluating the roadmap of 5G technology implementation for smart building and facilities management in Singapore. Sustainability 2020, 12, 10259. [Google Scholar] [CrossRef]
- Nam, K.; Dutt, C.S.; Chathoth, P.; Daghfous, A.; Khan, M.S. The adoption of artificial intelligence and robotics in the hotel industry: Prospects and challenges. Electron. Mark. 2021, 31, 553–574. [Google Scholar] [CrossRef]
- Islam, R.; Nazifa, T.H.; Mohamed, S.F. Factors influencing facilities management cost performance in building projects. J. Perform. Constr. Facil. 2019, 33, 04019036. [Google Scholar] [CrossRef]
- Jensen, P.A. Design integration of facilities management: A challenge of knowledge transfer. Archit. Eng. Des. Manag. 2009, 5, 124–135. [Google Scholar] [CrossRef]
- Sari, A.A. Understanding Facilities Management Practices to Improve Building Performance: The opportunity and challenge of the facilities management industry over the world. In Proceedings of the MATEC Web of Conferences, Malang, Indonesia, 30–31 August 2018; p. 01018. [Google Scholar]
- Bröchner, J.; Haugen, T.; Lindkvist, C. Shaping tomorrow’s facilities management. Facilities 2019, 37, 366–380. [Google Scholar] [CrossRef]
- Meng, X. Involvement of facilities management specialists in building design: United Kingdom experience. J. Perform. Constr. Facil. 2013, 27, 500–507. [Google Scholar] [CrossRef]
- Campbell, L.Z. An exploration of how research can aid the development of facilities management. Facilities 2017, 35, 356–366. [Google Scholar] [CrossRef]
- Waheed, Z.; Fernie, S. Knowledge based facilities management. Facilities 2009, 27, 258–266. [Google Scholar] [CrossRef]
- Chen, Z. The principles of facilities management and case studies. In Proceedings of the ARCOM and BEAM Centre Early Career Researcher and Doctoral Workshop on Building Asset Management, Glasgow Caledonian University, Glasgow, UK, 20 January 2017. [Google Scholar]
- Rodriguez-Guerra, D.; Sorrosal, G.; Cabanes, I.; Calleja, C. Human-robot interaction review: Challenges and solutions for modern industrial environments. IEEE Access 2021, 9, 108557–108578. [Google Scholar] [CrossRef]
- Mutlu, B.; Forlizzi, J. Robots in organizations: The role of workflow, social, and environmental factors in human-robot interaction. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, Amsterdam, The Netherlands, 12–15 March 2008; pp. 287–294. [Google Scholar]
- Bien, Z.Z.; Lee, H.-E. Effective learning system techniques for human–robot interaction in service environment. Knowl. Based Syst. 2007, 20, 439–456. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, S. Human-Robot Collaboration in Cleaning Applications: Methods, Limitations, and Proposed Solutions. Eig. Rev. Sci. Technol. 2022, 6, 52–74. [Google Scholar]
- Portugal, D.; Pereira, S.; Couceiro, M.S. The role of security in human-robot shared environments: A case study in ROS-based surveillance robots. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August 28–1 September 2017; pp. 981–986. [Google Scholar]
- Das, S.; Chew, M.; Poh, K.L. Multi-criteria decision analysis in building maintainability using analytical hierarchy process. Constr. Manag. Econ. 2010, 28, 1043–1056. [Google Scholar] [CrossRef]
- Kar, A.K.; Choudhary, S.K.; Singh, V.K. How can artificial intelligence impact sustainability: A systematic literature review. J. Clean. Prod. 2022, 376, 134120. [Google Scholar] [CrossRef]
- Lee, J.Y.; Irisboev, I.O.; Ryu, Y.-S. Literature review on digitalization in facilities management and facilities management performance measurement: Contribution of industry 4.0 in the global era. Sustainability 2021, 13, 13432. [Google Scholar] [CrossRef]
No | Keyword(s) | Occurrences | Total Link Strength |
---|---|---|---|
1 | Robotics | 439 | 1598 |
2 | Human | 128 | 954 |
3 | Architectural Design | 76 | 480 |
4 | Procedures | 45 | 391 |
5 | Information management | 421 | 286 |
6 | Automation | 62 | 231 |
7 | Decision-Making | 40 | 178 |
8 | Personnel Training | 15 | 75 |
9 | Navigation | 17 | 63 |
10 | Optimization | 16 | 31 |
Included | Excluded |
---|---|
Timeframe 1994–2024 | Book chapters Report Conference review |
Journal papers Articles Conference papers Complete text online Published in English Published and registers |
Included. | Excluded |
---|---|
Non-technical research articles | Articles that focus on development and optimization of AMR technologies such as advanced algorithms and multi-sensor fusion techniques AMR related to water or underwater studies AMR related to aerospace |
Qualitative research Challenges in adopting AMRs Challenges of FM unique environment AMR adoption case studies |
Article | Citation | Building Exterior | Diverse Operational Context | Varying Building Occupants | Poorly Designed Indoor Environment | Multi-Faceted FM Functionalities |
---|---|---|---|---|---|---|
1 | [50] | √ | ||||
2 | [51] | √ | √ | |||
3 | [52] | √ | √ | |||
4 | [53] | √ | ||||
5 | [54] | √ | √ | √ | ||
6 | [55] | √ | √ | √ | ||
7 | [56] | √ | ||||
8 | [3] | √ | ||||
9 | [57] | √ | ||||
10 | [58] | √ | √ | |||
11 | [59] | √ | ||||
12 | [60] | √ | √ | |||
13 | [61] | √ | ||||
14 | [62] | √ | ||||
15 | [63] | √ | √ | √ | ||
16 | [64] | √ | √ | |||
17 | [65] | √ | √ | |||
18 | [66] | √ | √ | |||
19 | [67] | √ | √ | |||
20 | [68] | √ | ||||
21 | [69] | √ | ||||
22 | [24] | √ | √ | √ | ||
23 | [70] | √ | √ | |||
24 | [71] | √ | ||||
25 | [72] | √ | √ | √ | ||
26 | [73] | √ | √ | |||
27 | [74] | √ | ||||
28 | [75] | √ | ||||
29 | [23] | √ | ||||
30 | [76] | √ | √ | |||
31 | [77] | √ | ||||
32 | [78] | √ | √ | |||
33 | [79] | √ | ||||
34 | [80] | √ | √ | √ | ||
35 | [81] | √ | √ | √ | ||
36 | [82] | √ | ||||
37 | [83] | √ | ||||
38 | [84] | √ | ||||
39 | [85] | √ | ||||
40 | [86] | √ | √ | |||
41 | [87] | √ | ||||
42 | [88] | √ | ||||
43 | [89] | √ | ||||
44 | [90] | √ | ||||
45 | [91] | √ | ||||
46 | [92] | √ | ||||
47 | [93] | √ | √ | |||
48 | [94] | √ | ||||
49 | [95] | √ | ||||
50 | [96] | √ | ||||
51 | [97] | √ | ||||
52 | [98] | √ | ||||
53 | [99] | √ | √ | |||
54 | [100] | √ | √ | √ | ||
55 | [101] | √ | √ | |||
56 | [102] | √ | √ | |||
57 | [103] | √ | ||||
58 | [104] | √ | ||||
59 | [105] | √ | √ | √ | ||
60 | [106] | √ | √ | √ | ||
61 | [107] | √ | √ | |||
62 | [108] | √ | √ | |||
63 | [109] | √ | √ | √ | ||
64 | [110] | √ | ||||
65 | [111] | √ | ||||
66 | [112] | √ | ||||
67 | [113] | √ | √ | |||
68 | [114] | √ | √ | √ | √ | |
69 | [115] | √ | √ | √ | ||
70 | [116] | √ | √ | √ | ||
71 | [117] | √ | √ | √ | ||
72 | [118] | √ | √ | |||
73 | [119] | √ | √ | √ | ||
74 | [120] | √ | √ | |||
75 | [121] | √ | √ | √ | √ | |
76 | [122] | √ | √ | |||
77 | [123] | √ | √ | |||
78 | [124] | √ | √ | |||
79 | [17] | √ | √ | √ | ||
80 | [125] | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Z.Q.; Shah, K.W.; Gupta, M. Autonomous Mobile Robots Inclusive Building Design for Facilities Management: Comprehensive PRISMA Review. Buildings 2024, 14, 3615. https://doi.org/10.3390/buildings14113615
Lim ZQ, Shah KW, Gupta M. Autonomous Mobile Robots Inclusive Building Design for Facilities Management: Comprehensive PRISMA Review. Buildings. 2024; 14(11):3615. https://doi.org/10.3390/buildings14113615
Chicago/Turabian StyleLim, Zhi Qing, Kwok Wei Shah, and Meenakshi Gupta. 2024. "Autonomous Mobile Robots Inclusive Building Design for Facilities Management: Comprehensive PRISMA Review" Buildings 14, no. 11: 3615. https://doi.org/10.3390/buildings14113615
APA StyleLim, Z. Q., Shah, K. W., & Gupta, M. (2024). Autonomous Mobile Robots Inclusive Building Design for Facilities Management: Comprehensive PRISMA Review. Buildings, 14(11), 3615. https://doi.org/10.3390/buildings14113615