Environmental Benefits of Fluorogypsum Reuse in the Production of Construction Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Selection of Plaster Mortar Composition
3.2. Mechanical Properties of Plaster Mortars
- -
- the chemical stability of anhydrite binder is higher than that of gypsum but lower than that of cement. Due to the possibility of modification, anhydrite binder can be adapted to different conditions of application.
- -
- in terms of mechanical properties, anhydrite binder is superior to gypsum materials, which makes it more suitable for use in mortars. However, in terms of strength, it is inferior to Portland cement.
- -
- Utilization of waste (fluorohypsum) as raw material.
- -
- Reduced waste disposal costs and energy consumption compared to cement.
- -
- Lower CO2 emissions compared to Portland cement during production.
3.3. Technological Scheme of Dry Mix Production
3.4. Technical and Economic Indicators of Anhydrite Binder Production
4. Conclusions
5. Future Research Area
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Safari, Z.; Younis, K.H.; Kamal, I. Sustainable Utilization of Waste Pumice Powder in Slag-Based Geopolymer Concretes: Fresh and Mechanical Properties. Sustainability 2024, 16, 9296. [Google Scholar] [CrossRef]
- Kiesnere, G.; Atstaja, D.; Cudecka-Purina, N.; Susniene, R. The Potential of Wood Construction Waste Circularity. Environments 2024, 11, 231. [Google Scholar] [CrossRef]
- Perfilov, V.A.; Oreshkin, D.V.; Semenov, V.S. Environmentally safe mortar and grouting solutions with hollow glass microspheres. Procedia Eng. 2016, 150, 1479–1484. [Google Scholar] [CrossRef]
- Vetoshkin, A.G. Technologies of Environmental Protection from Production and Consumption Waste; Lan: Moscow, Russia, 2016; p. 304. [Google Scholar]
- Lushnikova, N.; Dvorkin, L. Sustainability of gypsum products as a construction material. In Sustainability of Construction Materials; Woodhead Publishing: Cambridge, UK, 2016; pp. 643–681. [Google Scholar]
- Jia, R.; Wang, Q.; Feng, P. A comprehensive overview of fiber-reinforced gypsum-based composites (FRGCs) in the construction field. Compos. Part B Eng. 2021, 205, 108540. [Google Scholar] [CrossRef]
- del Río-Merino, M.; Vidales-Barriguete, A.; Piña-Ramírez, C.; Vitiello, V.; Santa Cruz-Astorqui, J.; Castelluccio, R. A review of the research about gypsum mortars with waste aggregates. J. Build. Eng. 2022, 45, 103338. [Google Scholar] [CrossRef]
- Degirmenci, N. The using of waste phosphogypsum and natural gypsum in adobe stabilization. Constr. Build. Mater. 2008, 22, 1220–1224. [Google Scholar] [CrossRef]
- Silva, L.S.; Amario, M.; Stolz, C.M.; Figueiredo, K.V.; Haddad, A.N. A Comprehensive Review of Stone Dust in Concrete: Mechanical Behavior, Durability, and Environmental Performance. Buildings 2023, 13, 1856. [Google Scholar] [CrossRef]
- Dijkstra, J.J.; Comans, R.N.; Schokker, J.; van der Meulen, M.J. The geological significance of novel anthropogenic materials: Deposits of industrial waste and by-products. Anthropocene 2019, 28, 100229. [Google Scholar] [CrossRef]
- Cervantes Puma, G.C.; Salles, A.; Turk, J.; Ungureanu, V.; Bragança, L. Utilisation of Reused Steel and Slag: Analysing the Circular Economy Benefits through Three Case Studies. Buildings 2024, 14, 979. [Google Scholar] [CrossRef]
- Durczak, K.; Pyzalski, M.; Brylewski, T.; Juszczyk, M.; Leśniak, A.; Libura, M.; Ustinovičius, L.; Vaišnoras, M. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Biswal, D.R.; Mohapatra, B.G.; Beriha, B.; Pradhan, R.; Sutar, H. Strength and Stiffness Evaluation of a Fiber-Reinforced Cement-Stabilized Fly Ash Stone Dust Aggregate Mixture. J. Compos. Sci. 2023, 7, 459. [Google Scholar] [CrossRef]
- Kukin, L.; Okolelova, E.; Kukina, O.; Zolotukhin, S.; Eremin, A.; Volokitin, V. Development of innovative phosphogypsum processing technologies as a factor of import substitution in the rare-earth metal market. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 890, p. 012122. [Google Scholar]
- Bazaldua-Medellin, M.E.; Magallanes-Rivera, R.X.; Garcia, J.I.E. Composite hydraulic binders based on fluorgypsum: Reactions, properties and sustainability. J. Build. Eng. 2022, 53, 104590. [Google Scholar] [CrossRef]
- Fraire-Luna, P.E.; Escalante-Garcia, J.I.; Gorokhovsky, A. Composite systems fluorgypsum-blastfurnance slag-metakaolin, strength and microstructures. Cem. Concr. Res. 2006, 36, 1048–1055. [Google Scholar] [CrossRef]
- Amhadi, T.S.; Assaf, G.J. Improvement of Pavement Subgrade by Adding Cement and Fly Ash to Natural Desert Sand. Infrastructures 2021, 6, 151. [Google Scholar] [CrossRef]
- Peng, H.; Lv, Z.; Zhang, W. Influence of early strength agent on the strength and water resistance of cement-desulfurized building gypsum composite cementitious system. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2174, p. 012056. [Google Scholar]
- Singh, M.; Garg, M. Activation of gypsum anhydrite-slag mixtures. Cem. Concr. Res. 1995, 25, 332–338. [Google Scholar] [CrossRef]
- GOST 4013-82; Gypsum and Gypsum-Anhydrite Stone for Production of Binders. Russian GOST: Kaluga, Russia, 2008.
- Bayatanova, L.; Rakhadilov, B.; Kengesbekov, A.; Kylyshkanov, M.; Abdulina, S.; Adilkanova, M.; Sagdoldina, Z. Production of Anhydrite Binder from Waste Fluorangydrite. ChemEngineering 2023, 7, 28. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Sagdoldina, Z.; Kengesbekov, A.; Kussainov, A.; Abdulina, S. Activation of fluorohydride by various chemical additives for the production of construction materials based on it. Iran. J. Chem. Chem. Eng. 2024, 43, 8321. [Google Scholar]
- GOST 5802-86; Construction Mortars. GOST of the USSR: Kaluga, Russia, 1985.
- GOST 23789-79; Gypsum Binders. GOST of the USSR: Kaluga, Russia, 1985.
- Rakhadilov, B.; Bayandinova, M.; Kussainov, R.; Maulit, A. Electrolyte-plasma surface hardening of hollow steel applicator needles for point injection of liquid mineral fertilizers. AIMS Mater. Sci. 2024, 11, 295–308. [Google Scholar] [CrossRef]
- GOST 25544; Methods for Determination of Shrinkage and Creep Deformations. GOST of the USSR: Kaluga, Russia, 1987.
Component | CaO | SO3 | H2SO4 | CaF2 | Al2O3 | Fe2O3 | HF | SiO2 | Cr2O3 | TiO2 | Na |
---|---|---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | 28–39 | 38–56 | 10–15 | 3 | 0.5 | 0.3 | 0.3 | 0.2 | 0.01 | 0.012 | 0.015 |
Type of Binder | Beginning of Setting (Hours) | End of Setting (Hours) | Processing Time (Hours) |
---|---|---|---|
Gypsum G5 | 1.0–1.5 | 1.5–2 | up to 2 |
G/A = 75/25% | 1.5–2.0 | 2.0–2.5 | 17–20 |
G/A = 50/50% | 2.0–2.5 | 2.5–3.0 | 18–20 |
G/A = 25/75% | 2.5–3.0 | 3.0–4.0 | 19–21 |
anhydrite binder | 2.0–2.5 | 3.5–4.0 | up to 8 |
Binder Composition | Tensile Bond Strength (MPa) | |||||
---|---|---|---|---|---|---|
Mortar with Additive 0.25% Plast Retard _______________ Mortar with Additive 0.05% Tartaric Acid | Mortar with Additive 0.1% Rutacel + 0.25% Plast Retard + 0.02% Esamid NA _______________ Mortar with Additive Rutacel 0.1 + 0.05% Tartaric Acid + 0.02% Esamid NA | Mortar with Additive 0.1% Rutacel + 0.25% Plast Retard + 0.02% Esamid NA + 0.5% Neolith _______________ Mortar with Additive 0.1% Rutacel + 0.05% Tartaric Acid + 0.02% Esamid NA+ 0.5% Neolith | ||||
Aging 7 Days | Excerpt 28 Days | Aging 7 Days | Excerpt 28 Days | Aging 7 Days | Excerpt 28 Days | |
Gypsum G5 | 0.15 0.1 | 0.14 0.14 | 0.47 0.47 | 0.5 0.51 | 0.9 0.9 | 0.91 0.91 |
G/A = 75/25 | 0.10 0.16 | 0.11 0.1 | 0.46 0.46 | 0.51 0.52 | 0.82 0.8 | 0.83 0.83 |
G/A = 50/50 | 0.12 0.12 | 0.13 0.13 | 0.46 0.45 | 0.49 0.48 | 0.85 0.8 | 0.8 0.79 |
G/A = 25/75 | 0.05 0.05 | 0.06 0.06 | 0.41 0.42 | 0.37 0.47 | 0.65 0.6 | 0.63 0.63 |
Name of Technical Indicators | Value of Indicators | ||
---|---|---|---|
Plaster Mix (Manual) | Plastering Machine Mix | ||
Gypsum | Anhydrite | Gypsoanhydrite | |
Bulk density of dry mix, kg/L | 0.76 | 0.95 | 0.81 |
Water–solid ratio, V/T | 0.5–0.55 | 0.41–0.42 | 0.42–0.43 |
Moisture content of the mixture, %, (not more) | 0.5 | 0.4 | 0.4 |
Water-holding capacity of the solution, % | 98.5 | 98.8 | 99.5 |
Setting time, h - commencement - end | 1.0–1.5 1.5–2.0 | 2.0–2.5 3.5–4.0 | 1.5–2.0 2.0–2.5 |
Processability, h | 2 | up to 8 | up to 20 |
Compressive strength, MPa | 4.5–4.9 | 3.5–3.9 | 4.0–4.3 |
Bending strength, MPa | 1.5–2.0 | 1.5–1.9 | 1.5–1.8 |
Bond strength with the base, MPa | 0.4–0.5 | 0.5–0.6 | 0.4–0.5 |
Name | Cost of Mortar Mix Based on Anhydrite and Gypsum–Anhydrite Binder, USD. | Cost of Cement Binder-Based Mortar Mix, USD. | Savings in Manufacturing Cost of Anhydrite and Gypsum–Anhydrite Binder-Based Mixtures Over Cement-Based Mixtures, USD. | |||
---|---|---|---|---|---|---|
USD 1 | 1 m3 | USD 1 | 1 m3 | USD 1 | 1 m3 | |
Plaster mixes | 17.08 | 25.68 | 23.33 | 28.89 | 6.25 | 3.21 |
Flooring mixes | 20.14 | 30.27 | 2.71 | 34.20 | 5.54 | 3.92 |
N. n/n | Name Indicators | Unit Dimension | Mechanized Plastering of Surfaces | Plastering Surfaces by Hand | ||
---|---|---|---|---|---|---|
Walls | Ceilings | Walls | Ceilings | |||
1 | Duration of work | hr. | 9.5 | 11.8 | 22.3 | 26.8 |
2 | Labor intensity per 100 m2 | man-hr. | 51.24 51.26 | 63.76 63.78 | 65.9 66 | 79.46 79.47 |
3 | Machine capacity | mach.-hr. | 6.01 | 7.02 | 0.2 | 0.23 |
4 | Maximum number of workers. | man. | 6 | 6 | 3 | 3 |
5 | Output per 1 man-hr | m2 | 1.95 | 1.57 | 1.52 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhadilov, B.; Kengesbekov, A.; Kylyshkanov, M.; Bayatanova, L.; Amangeldyevna, A.S.; Bayandinova, M. Environmental Benefits of Fluorogypsum Reuse in the Production of Construction Materials. Buildings 2024, 14, 3618. https://doi.org/10.3390/buildings14113618
Rakhadilov B, Kengesbekov A, Kylyshkanov M, Bayatanova L, Amangeldyevna AS, Bayandinova M. Environmental Benefits of Fluorogypsum Reuse in the Production of Construction Materials. Buildings. 2024; 14(11):3618. https://doi.org/10.3390/buildings14113618
Chicago/Turabian StyleRakhadilov, Bauyrzhan, Aidar Kengesbekov, Manarbek Kylyshkanov, Lyaila Bayatanova, Abdulina Saule Amangeldyevna, and Moldir Bayandinova. 2024. "Environmental Benefits of Fluorogypsum Reuse in the Production of Construction Materials" Buildings 14, no. 11: 3618. https://doi.org/10.3390/buildings14113618
APA StyleRakhadilov, B., Kengesbekov, A., Kylyshkanov, M., Bayatanova, L., Amangeldyevna, A. S., & Bayandinova, M. (2024). Environmental Benefits of Fluorogypsum Reuse in the Production of Construction Materials. Buildings, 14(11), 3618. https://doi.org/10.3390/buildings14113618