Concrete Creep Prediction Based on Improved Machine Learning and Game Theory: Modeling and Analysis Methods
Abstract
:1. Introduction
2. Data Processing Analysis
3. Methodology
3.1. Machine Learning Models
3.1.1. Support Vector Machine Models
3.1.2. Random Forest Model
3.1.3. Extreme Gradient Boosted Tree Model (XGBoost)
3.2. Snake Optimization Algorithm
3.2.1. Food Search
3.2.2. Combat Phase
3.2.3. Mating Patterns
3.3. Improved Algorithms
3.3.1. Chaotic Mapping
3.3.2. Average Subtraction Optimization Strategy
3.3.3. Reverse Learning Strategy
3.3.4. Adaptive Distribution Perturbation Approach
4. Results and Discussion
4.1. Model Prediction Results
4.1.1. Optimal Hyperparameter Settings for ML Models
4.1.2. Six Model Prediction Results
4.1.3. Improved Model Performance Analysis
4.2. Feature Importance Analysis Using SHAP
4.2.1. Characteristic Importance Analysis
4.2.2. Single Factor Analysis
4.2.3. Explanation of Local Features
4.3. Exemplification of General Scenarios
4.4. Limitations and Discussion
- Improving the quality of the database can be carried out by collecting more creep data under different experimental conditions, by considering more factors such as the shape of the test block (prism or cylinder) and the mechanical state during the experiment (three-point bending test or axial compression test) that will have an influence on creep.
- Prior to the training of an ML model, the data within the database should be preprocessed to eliminate the impacts of outliers and noise on the model training process. One prevalent approach is to substitute the missing values with the predicted values derived from a specific functional model. However, this method entails certain risks.
5. Conclusions
- Through the optimization of the HSOA and cross-validation, all three optimized models achieved a relatively high level of accuracy. In the test dataset, HSOA-XGBoost demonstrated higher precision, with R2 reaching 0.908, 0.926, and 0.968, respectively. HSOA-XGBoost exhibited a more robust performance. The fitting ability for the creep experimental values is far superior to that of the widely used B4 model.
- The SHAP theory offered a rational explanation of the ML model and provided five input features exerting a considerable influence on the prediction of concrete creep: (1) creep age; (2) loading stress; (3) cement type; (4) water–cement ratio; and (5) compressive strength. The five most impactful input features revealed by the SHAP theory were fundamentally in line with the influencing factors in the creep theory.
- As the ML model considers the balance between bias and variance, the prediction results of the HSOA-XGBoost model in long-term creep are close to the experimental observed values. Meanwhile, the creep law captured by the HSOA-XGBoost model is consistent with the general creep law in the consolidation theory, which verifies the rationality of the ML model. Given the scattered and imperfect data in the NU database, the creep compliance curve is non-smooth. Further supplementation of the database may contribute to more complete predictions. Although the HSOA optimizes the hyperparameters of models such as SVM, RF, and XGBoost in multiple iterations, due to the limitations of the prediction principle of ML models themselves and the limitations of the search principle of the SO algorithm, 100% prediction accuracy does not exist.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zhou, H.; Fan, X.; Liu, Y. Dynamic Serviceability and Safety Reliability Analysis of Aging PC Girder Bridges with Non-Prestressed Reinforcement Considering Concrete Shrinkage, Creep and Stochastic Vehicle Load Flows. Structures 2024, 64, 106515. [Google Scholar] [CrossRef]
- Asamoto, S.; Kato, K.; Maki, T. Effect of Creep Induction at an Early Age on Subsequent Prestress Loss and Structural Response of Prestressed Concrete Beam. Constr. Build. Mater. 2014, 70, 158–164. [Google Scholar] [CrossRef]
- Zhang, S.; Hamed, E. Application of Various Creep Analysis Methods for Estimating the Time-Dependent Behavior of Cracked Concrete Beams. Structures 2020, 25, 127–137. [Google Scholar] [CrossRef]
- Zhou, H.; Fan, X.; Liu, Y.; Lu, D. Time-Variant Reliability Analysis of Simply Supported PC Girder Bridges Considering Shrinkage, Creep, Resistance Degradation and Vehicle Load Flows. Structures 2023, 56, 104885. [Google Scholar] [CrossRef]
- Xie, F.; Chang, T.; Zhang, C.; Zhang, F.; Kuang, G.; Zhang, Y. Medium and Short-Term Effective Prestress Losses Considering Multiple Factors: Laboratory and on-Site Beam Experiments. Structures 2024, 68, 107166. [Google Scholar] [CrossRef]
- Yang, Q.; Yao, D.; Yan, J.; Liu, M.; Fan, F.; Fu, Z. Analysis of Time-Varying Mechanical Properties of Prestressed Concrete Containment during the Tensioning Process and Service Considering the Influence of Creep. Int. J. Press. Vessel. Pip. 2023, 204, 104962. [Google Scholar] [CrossRef]
- Denarié, E.; Cécot, C.; Huet, C. Characterization of Creep and Crack Growth Interactions in the Fracture Behavior of Concrete. Cem. Concr. Res. 2006, 36, 571–575. [Google Scholar] [CrossRef]
- Di Luzio, G.; Cusatis, G. Solidification-Microprestress-Microplane (SMM) Theory for Concrete at Early Age: Theory, Validation and Application. Int. J. Solids Struct. 2013, 50, 957–975. [Google Scholar] [CrossRef]
- Mahesh, S.; Anoop, M.B.; Sasmal, S. Creep and Fracture of UHSC—A Microindentation Study. Constr. Build. Mater. 2024, 427, 136173. [Google Scholar] [CrossRef]
- Dummer, A.; Neuner, M.; Hofstetter, G. An Extended Gradient-Enhanced Damage-Plasticity Model for Concrete Considering Nonlinear Creep and Failure Due to Creep. Int. J. Solids Struct. 2022, 243, 111541. [Google Scholar] [CrossRef]
- Tong, T.; Hua, G.; Liu, Z.; Liu, X.; Xu, T. Localizing Gradient Damage Model Coupled to Extended Microprestress-Solidification Theory for Long-Term Nonlinear Time-Dependent Behaviors of Concrete Structures. Mech. Mater. 2021, 154, 103713. [Google Scholar] [CrossRef]
- Guo, W.; Wei, Y. Investigation of Compressive Creep of Calcium-Silicate-Hydrates (C-S-H) in Hardened Cement Paste through Micropillar Testing. Cem. Concr. Res. 2024, 177, 107427. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, P.; Liu, T.; Tu, B. Influence of Mineral Powder Content and Loading Age on Creep Behavior of Concrete Members under Axial Compression. Results Eng. 2023, 19, 101304. [Google Scholar] [CrossRef]
- Frech-Baronet, J.; Sorelli, L.; Charron, J.P. New Evidences on the Effect of the Internal Relative Humidity on the Creep and Relaxation Behaviour of a Cement Paste by Micro-Indentation Techniques. Cem. Concr. Res. 2017, 91, 39–51. [Google Scholar] [CrossRef]
- Hu, Z.; Wyrzykowski, M.; Griffa, M.; Scrivener, K.; Lura, P. Young’s Modulus and Creep of Calcium-Silicate-Hydrate Compacts Measured by Microindentation. Cem. Concr. Res. 2020, 134, 106104. [Google Scholar] [CrossRef]
- Frech-Baronet, J.; Sorelli, L.; Chen, Z. A Closer Look at the Temperature Effect on Basic Creep of Cement Pastes by Microindentation. Constr. Build. Mater. 2020, 258, 119455. [Google Scholar] [CrossRef]
- Tamtsia, B.T.; Beaudoin, J.J.; Marchand, J. The Early Age Short-Term Creep of Hardening Cement Paste: Load-Induced Hydration Effects. Cem. Concr. Compos. 2004, 26, 481–489. [Google Scholar] [CrossRef]
- Wyrzykowski, M.; Scrivener, K.; Lura, P. Basic Creep of Cement Paste at Early Age—the Role of Cement Hydration. Cem. Concr. Res. 2019, 116, 191–201. [Google Scholar] [CrossRef]
- Ladaoui, W.; Vidal, T.; Sellier, A.; Bourbon, X. Effect of a Temperature Change from 20 to 50 °C on the Basic Creep of HPC and HPFRC. Mater. Struct. /Mater. Constr. 2011, 44, 1629–1639. [Google Scholar] [CrossRef]
- Gan, Y.; Rodriguez, C.R.; Schlangen, E.; van Breugel, K.; Šavija, B. Assessing Strain Rate Sensitivity of Cement Paste at the Micro-Scale through Micro-Cantilever Testing. Cem. Concr. Compos. 2021, 121, 104084. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Wu, S.T. Rate-type creep law of aging concrete based on maxwell chain. Mater. Struct. 1974, 7, 45–60. [Google Scholar] [CrossRef]
- Do, Q.H.; Bishnoi, S.; Scrivener, K.L. Microstructural Modeling of Early-Age Creep in Hydrating Cement Paste. J. Eng. Mech. 2016, 142, 04016086. [Google Scholar] [CrossRef]
- Tošić, N.; de la Fuente, A.; Marinković, S. Creep of Recycled Aggregate Concrete: Experimental Database and Creep Prediction Model According to the Fib Model Code 2010. Constr. Build. Mater. 2019, 195, 590–599. [Google Scholar] [CrossRef]
- Cao, J.; Tu, N.; Liu, T.; Han, Z.; Tu, B.; Zhou, Y. Prediction Models for Creep and Creep Recovery of Fly Ash Concrete. Constr. Build. Mater. 2024, 428, 136398. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Jirasek, M.; Hubler, M.H.; Carol, I. RILEM Draft Recommendation: TC-242-MDC Multi-Decade Creep and Shrinkage of Concrete: Material Model and Structural Analysis*: Model B4 for Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-Strength Concretes with Multi-Decade Applicability. Mater. Struct. /Mater. Constr. 2015, 48, 753–770. [Google Scholar] [CrossRef]
- Chabane, A.; Belebchouche, C.; Bensebti, S.E.; Czarnecki, S.; Boukezzoula, A. Comparison of the Accuracy of Regulation Models for Self-Compacting Concrete Creep Evaluation. J. Build. Eng. 2022, 59, 105069. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Lu, T.; Wu, K.; Li, H.; Deng, W.; Shi, J. Frost Durability Prediction of Rubber Concrete Based on Improved Machine Learning Models. Constr. Build. Mater. 2024, 429, 136201. [Google Scholar] [CrossRef]
- Liu, W.; Liu, G.; Zhu, X. Applicability of Machine Learning Algorithms in Predicting Chloride Diffusion in Concrete: Modeling, Evaluation, and Feature Analysis. Case Stud. Constr. Mater. 2024, 21, e03573. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, H.; Que, Z.; Liu, T.; Zou, D. Enhancing Marine Anti-Washout Concrete: Optimal Silica Fume Usage for Improved Compressive Strength and Abrasion Resistance. Constr. Build. Mater. 2024, 428, 136262. [Google Scholar] [CrossRef]
- Naeej, M.; Bali, M.; Naeej, M.R.; Amiri, J.V. Prediction of Lateral Confinement Coefficient in Reinforced Concrete Columns Using M5′ Machine Learning Method. KSCE J. Civ. Civil. Eng. 2013, 17, 1714–1719. [Google Scholar] [CrossRef]
- Miao, X.; Zhu, J.X.; Zhu, W.B.; Wang, Y.; Peng, L.; Dong, H.-L.; Xu, L.Y. Intelligent Prediction of Comprehensive Mechanical Properties of Recycled Aggregate Concrete with Supplementary Cementitious Materials Using Hybrid Machine Learning Algorithms. Case Stud. Constr. Mater. 2024, 21, e03708. [Google Scholar] [CrossRef]
- Sánchez, V.D.A. Advanced Support Vector Machines and Kernel Methods. Neurocomputing 2003, 55, 5–20. [Google Scholar] [CrossRef]
- Gold, C.; Sollich, P. Model Selection for Support Vector Machine Classification. Neurocomputing 2003, 55, 221–249. [Google Scholar] [CrossRef]
- Baudat, G.; Anouar, F. Feature Vector Selection and Projection Using Kernels. Neurocomputing 2003, 55, 21–38. [Google Scholar] [CrossRef]
- Biau, G.; Fr, G.B. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Breiman, L. Bagging Predictors; Kluwer Academic Publishers: New York, NY, USA, 1996; Volume 24. [Google Scholar]
- Ali, Z.A.; Abduljabbar, Z.H.; Taher, H.A.; Sallow, A.B.; Almufti, S.M. EXtreme Gradient Boosting Algorithm with Machine Learning: A Review. Acad. J. Nawroz Univ. 2023, 12, 320–334. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Knowl. Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Chen, H.; Covert, I.C.; Lundberg, S.M.; Lee, S.-I. Algorithms to Estimate Shapley Value Feature Attributions. Nat. Mach. Intell. 2023, 5, 590–601. [Google Scholar] [CrossRef]
- Rozemberczki, B.; Watson, L.; Bayer, P.; Yang, H.-T.; Kiss, O.; Nilsson, S.; Sarkar, R. The Shapley Value in Machine Learning. arXiv 2022, arXiv:2202.05594. [Google Scholar]
- Wang, Z.; Liu, H.; Amin, M.N.; Khan, K.; Qadir, M.T.; Khan, S.A. Optimizing Machine Learning Techniques and SHapley Additive ExPlanations (SHAP) Analysis for the Compressive Property of Self-Compacting Concrete. Mater. Today Commun. 2024, 39, 108804. [Google Scholar] [CrossRef]
- Karim, R.; Islam, M.H.; Datta, S.D.; Kashem, A. Synergistic Effects of Supplementary Cementitious Materials and Compressive Strength Prediction of Concrete Using Machine Learning Algorithms with SHAP and PDP Analyses. Case Stud. Constr. Mater. 2024, 20, e02828. [Google Scholar] [CrossRef]
- Abdulalim Alabdullah, A.; Iqbal, M.; Zahid, M.; Khan, K.; Nasir Amin, M.; Jalal, F.E. Prediction of Rapid Chloride Penetration Resistance of Metakaolin Based High Strength Concrete Using Light GBM and XGBoost Models by Incorporating SHAP Analysis. Constr. Build. Mater. 2022, 345, 128296. [Google Scholar] [CrossRef]
- Nazar, S.; Yang, J.; Wang, X.E.; Khan, K.; Amin, M.N.; Javed, M.F.; Althoey, F.; Ali, M. Estimation of Strength, Rheological Parameters, and Impact of Raw Constituents of Alkali-Activated Mortar Using Machine Learning and SHapely Additive ExPlanations (SHAP). Constr. Build. Mater. 2023, 377, 131014. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Li, G.-H. Comprehensive database on concrete creep and shrinkage. ACI Mater. J. 2008, 105, 635–637. [Google Scholar]
- Hubler, M.H.; Wendner, R.; Bažant, Z.P. Comprehensive Database for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording. ACI Mater. J. 2015, 112, 547. [Google Scholar] [CrossRef]
- Padierna, L.C.; Carpio, M.; Rojas-Domínguez, A.; Puga, H.; Fraire, H. A Novel Formulation of Orthogonal Polynomial Kernel Functions for SVM Classifiers: The Gegenbauer Family. Pattern Recognit. 2018, 84, 211–225. [Google Scholar] [CrossRef]
- Li, Y.S.; Peiyi, P.H. SVM classification: Its contents and challenges. Appl. Math.-A J. Chin. Univ. 2003, 18, 332–342. [Google Scholar]
- Gupta, D.L.; Malviya, A.K.; Singh, S. Performance Analysis of Classification Tree Learning Algorithms. Int. J. Comput. Appl. 2012, 55, 1–6. [Google Scholar]
- Zhou, Q.; Zhou, H.; Li, T. Cost-Sensitive Feature Selection Using Random Forest: Selecting Low-Cost Subsets of Informative Features. Knowl. Based Syst. 2016, 95, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.F.; Iqbal, M.; Zhang, D.; Zhao, X.L.; Zhao, Q. Bond Strength Prediction of FRP Bars to Seawater Sea Sand Concrete Based on Ensemble Learning Models. Eng. Struct. 2024, 302, 117382. [Google Scholar] [CrossRef]
- Cai, R.; Han, T.; Liao, W.; Huang, J.; Li, D.; Kumar, A.; Ma, H. Prediction of Surface Chloride Concentration of Marine Concrete Using Ensemble Machine Learning. Cem. Concr. Res. 2020, 136, 106164. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, B.; Hu, X.; Deng, Y.; Wan, H.; Jin, H. Enhancing Requirements-to-Code Traceability with GA-XWCoDe: Integrating XGBoost, Node2Vec, and Genetic Algorithms for Improving Model Performance and Stability. J. King Saud. Univ. Comput. Inf. Sci. 2024, 36, 102197. [Google Scholar] [CrossRef]
- Lin, L.; Li, S.; Wang, K.; Guo, B.; Yang, H.; Zhong, W.; Liao, P.; Wang, P. A New FCM-XGBoost System for Predicting Pavement Condition Index. Expert. Syst. Appl. 2024, 249, 123696. [Google Scholar] [CrossRef]
- Brown, R.; Chua, L.O. Clarifying chaos ii: Bernoulli chaos, zero lyapunov exponents and strange attractors. Int. J. Bifurc. Chaos 1998, 8, 1–32. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Subtraction-Average-Based Optimizer: A New Swarm-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Qiu, Y. Lens Learning Sparrow Search Algorithm. Math. Probl. Eng. 2021, 2021, 9935090. [Google Scholar] [CrossRef]
- Zhang, W.; Sheng, L.; Chunhui, R. Mixed Strategy Improved Sparrow Search Algorithm. J. Comput. Eng. Appl. 2021, 57, 74. [Google Scholar] [CrossRef]
- Ji, X.C.; Chen, R.S.; Lu, C.X.; Zhou, J.; Zhang, M.Q.; Zhang, T.; Yu, H.L.; Yin, Y.L.; Shi, P.J.; Zhang, W. Recent Advances in Machine Learning for Defects Detection and Prediction in Laser Cladding Process. Next Mater. 2025, 7, 100404. [Google Scholar] [CrossRef]
- Veza, I.; Deniz Karaoglan, A.; Akpinar, S.; Spraggon, M.; Idris, M. Machine Learning of Weighted Superposition Attraction Algorithm for Optimization Diesel Engine Performance and Emission Fueled with Butanol-Diesel Biofuel. Ain Shams Eng. J. 2024, in press. [CrossRef]
- Sun, D.; Ding, Y.; Wen, H.; Zhang, F.; Zhang, J.; Gu, Q.; Zhang, J. SHAP-PDP Hybrid Interpretation of Decision-Making Mechanism of Machine Learning-Based Landslide Susceptibility Mapping: A Case Study at Wushan District, China. Egypt. J. Remote Sens. Space Sci. 2024, 27, 508–523. [Google Scholar] [CrossRef]
Variable | Min | Max | Mean | SD | Type |
---|---|---|---|---|---|
w/c | 0.236 | 0.8 | 0.4351 | 0.1145 | Input |
a/c | 1.22 | 8.32 | 4.418 | 1.031 | Input |
C (kg/m3) | 247 | 725 | 410.158 | 86.4 | Input |
fc28 (MPa) | 118.9 | 10.8 | 53.07 | 23.13 | Input |
h mm) | 76 | 1800 | 510.819 | 275.19 | Input |
V/S | 13 | 129 | 31.58 | 10.97 | Input |
T (°C) | 19 | 130 | 35.478 | 23.346 | Input |
RH_Test (%) | 20 | 101 | 76.75 | 20.5 | Input |
Sigma (MPa) | 0.69 | 46.3 | 16.56 | 9.93 | Input |
sigma/fct0 | 0.031 | 0.84 | 0.335 | 0.1167 | Input |
t (days) | 1.421 × 10−14 | 6979 | 200.27 | 454.38 | Input |
Cem | 1 | 3 | / | / | Input |
t′ (days) | 0.66 | 90 | 30.62 | 18.78 | Input |
JCreep (μm/m/MPa) | −16.7 | 590.42 | 70.79 | 45.62 | Output |
HSOA-SVM | HSOA-RF | HSOA-XGBoost | |||
---|---|---|---|---|---|
Number of iterations | 60 | Number of iterations | 60 | Number of iterations | 60 |
Population size | 40 | Population size | 40 | Population size | 40 |
c | 1.0 | N_estimators | 18 | Max_depth | 7 |
Kernel function coefficient | 1/K | Min_leaf_nodes | 8 | Learning rate | 0.47 |
Decision_function_shape | 0.9 | Max_depth | 3.2 | Min_child_weight | 0.8 |
Penalty | 0.4 | Max_features | 7 | 0.85 | |
/ | / | / | / | 0.9 |
ML | R2 | MAE | MAPE | RMSE | ||||
---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | |
SVM | 0.812 | 0.826 | 5.76 | 5.08 | 7.43 | 6.78 | 9.87 | 8.98 |
RF | 0.825 | 0.845 | 5.67 | 5.13 | 7.31 | 6.42 | 9.65 | 8.55 |
XGBoost | 0.877 | 0.849 | 5.35 | 5.36 | 7.23 | 6.25 | 9.45 | 8.54 |
HSOA-SVM | 0.901 | 0.908 | 1.78 | 1.96 | 2.23 | 3.57 | 5.09 | 5.16 |
HSOA-RF | 0.924 | 0.926 | 1.43 | 1.66 | 2.05 | 2.79 | 4.17 | 4.08 |
HSOA-XGBoost | 0.945 | 0.968 | 1.26 | 1.45 | 2.24 | 2.33 | 4.01 | 3.88 |
w/c | a/c | C (kg/m3) | fc28 (MPa) | H (mm) | V/S | T (°C) | RH_Test (%) | Sigma (MPa) | sigma/fct0 | cem | t′ (Days) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.31 | 4.44 | 405 | 88 | 600 | 24 | 21 | 101 | 17.68 | 0.20 | SL | 28 |
S2 | 0.55 | 5.39 | 336 | 33 | 800 | 44 | 20 | 65 | 7.36 | 0.402 | RS | 7 |
S3 | 0.41 | 5.59 | 332 | 41 | 1400 | 47 | 20 | 65 | 9.4 | 0.32 | R | 14 |
S4 | 0.48 | 5.86 | 325 | 54 | 600 | 33 | 54 | 40 | 5.52 | 0.117 | SL | 7 |
B4 Models [25]: | |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, H.; Liu, C.; Min, K. Concrete Creep Prediction Based on Improved Machine Learning and Game Theory: Modeling and Analysis Methods. Buildings 2024, 14, 3627. https://doi.org/10.3390/buildings14113627
Li W, Li H, Liu C, Min K. Concrete Creep Prediction Based on Improved Machine Learning and Game Theory: Modeling and Analysis Methods. Buildings. 2024; 14(11):3627. https://doi.org/10.3390/buildings14113627
Chicago/Turabian StyleLi, Wenchao, Houmin Li, Cai Liu, and Kai Min. 2024. "Concrete Creep Prediction Based on Improved Machine Learning and Game Theory: Modeling and Analysis Methods" Buildings 14, no. 11: 3627. https://doi.org/10.3390/buildings14113627
APA StyleLi, W., Li, H., Liu, C., & Min, K. (2024). Concrete Creep Prediction Based on Improved Machine Learning and Game Theory: Modeling and Analysis Methods. Buildings, 14(11), 3627. https://doi.org/10.3390/buildings14113627