Assessing the Moisture Resilience of Wood Frame Wall Assemblies
Abstract
:1. Introduction
2. Climate Data and Hygrothermal Simulation
2.1. Climate Data
2.2. Hygrothermal Simulation
2.3. Performance Indicator—Mould Growth Index
3. Definition of Moisture Resilience
3.1. Characteristics of Relative Humidity in the Wall Assembly
3.2. Moisture Resilience and Corresponding Relative Humidity Behaviours
3.3. Quantification of Aspects of Moisture Resilience
4. Moisture Resilience of Different Wood Frame Wall Assemblies Under Different Climate Conditions
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pörtner, H.-O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Attia, S.; Levinson, R.; Ndongo, E.; Holzer, P.; Kazanci, O.B.; Homaei, S.; Zhang, C.; Olesen, B.W.; Qi, D.; Hamdy, M.; et al. Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy Build. 2021, 239, 110869. [Google Scholar] [CrossRef]
- Burton, H.V.; Deierlein, G.; Lallemant, D.; Lin, T. Framework for Incorporating Probabilistic Building Performance in the Assessment of Community Seismic Resilience. J. Struct. Eng. 2016, 142, C4015007. [Google Scholar] [CrossRef]
- Jazebi, S.; de Leon, F.; Nelson, A. Review of Wildfire Management Techniques—Part I: Causes, Prevention, Detection, Suppression, and Data Analytics. IEEE Trans. Power Deliv. 2020, 35, 430–439. [Google Scholar] [CrossRef]
- Matz, C.J.; Egyed, M.; Xi, G.; Racine, J.; Pavlovic, R.; Rittmaster, R.; Henderson, S.B.; Stieb, D.M. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 2020, 725, 138506. [Google Scholar] [CrossRef] [PubMed]
- Perera, A.T.D.; Zhao, B.; Wang, Z.; Soga, K.; Hong, T. Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface. Appl. Energy 2023, 335, 120744. [Google Scholar] [CrossRef]
- Yang, W.; Sparrow, S.N.; Ashtine, M.; Wallom, D.C.H.; Morstyn, T. Resilient by design: Preventing wildfires and blackouts with microgrids. Appl. Energy 2022, 313, 118793. [Google Scholar] [CrossRef]
- Dsouza, A.; Zhong, L. Optimizing Mechanical Ventilation Systems for Wildfire Smoke Resilience in British Columbia. In International Conference on Building Energy and Environment, Montreal, QC, Canada, 25–29 July 2022; Springer Nature: Singapore, 2023; pp. 2589–2597. [Google Scholar] [CrossRef]
- Ji, L.; Shu, C.; Laouadi, A.; Lacasse, M.; Wang, L. Quantifying improvement of building and zone level thermal resilience by cooling retrofits against summertime heat events. Build. Environ. 2023, 229, 109914. [Google Scholar] [CrossRef]
- Siu, C.Y.; O’Brien, W.; Touchie, M.; Armstrong, M.; Laouadi, A.; Gaur, A.; Jandaghian, Z.; Macdonald, I. Evaluating thermal resilience of building designs using building performance simulation—A review of existing practices. Build. Environ. 2023, 234, 110124. [Google Scholar] [CrossRef]
- Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Abdelhady, A.U.; Subgranon, A.; Nofal, O.M. Editorial: Recent advances in risk and community resilience analysis against windstorms, Front. Built Environ. 2023, 9, 1204119. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). A Practical Guide to Climate-Resilient Buildings & Communities; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021. [Google Scholar]
- Mansouri, A.; Wei, W.; Alessandrini, J.-M.; Mandin, C.; Blondeau, P. Impact of Climate Change on Indoor Air Quality: A Review. Int. J. Environ. Res. Public Health 2022, 19, 15616. [Google Scholar] [CrossRef] [PubMed]
- CSA S478:19; Durability in Buildings. CSA Group-National Standards Council of Canada: Ottawa, ON, Canada, 2019.
- Lacasse, M.A.; Gaur, A.; Moore, T.V. Durability and Climate Change—Implications for Service Life Prediction and the Maintainability of Buildings. Buildings 2020, 10, 53. [Google Scholar] [CrossRef]
- Defo, M.; Lacasse, M.; Laouadi, A. A comparison of hygrothermal simulation results derived from four simulation tools. J. Build. Phys. 2022, 45, 432–456. [Google Scholar] [CrossRef]
- Xiao, Z.; Lacasse, M.A.; Dragomirescu, E.; Defo, M. Projected changes of wind-driven rain and moisture load in wall assemblies across Canada. J. Wind Eng. Ind. Aerodyn. 2023, 238, 105446. [Google Scholar] [CrossRef]
- Wang, L.; Ge, H. Stochastic modelling of hygrothermal performance of highly insulated wood framed walls. Build. Environ. 2018, 146, 12–28. [Google Scholar] [CrossRef]
- Defo, M.; Wang, L.; Lacasse, M.; Moore, T.V. Evaluation of moisture performance of tall wood building envelope under climate change in different Canadian climatic regions. Forests 2023, 14, 718. [Google Scholar] [CrossRef]
- Vandemeulebroucke, I.; Caluwaerts, S.; Van Den Bossche, N. Decision framework to select moisture reference years for hygrothermal simulations. Build. Environ. 2022, 218, 109080. [Google Scholar] [CrossRef]
- Astrid, T.; Staf, R.; Hans, J. Hygrothermal assessment of timber frame walls using a convolutional neural network. Build. Environ. 2021, 193, 107652. [Google Scholar]
- Aggarwal, C.; Wang, L.; Ge, H.; Defo, M.; Lacasse, M. Long-term hygrothermal performance assessment of wood-frame walls considering climate uncertainties using partial least squares (PLS) regression. Energy Build. 2024, 307, 113953. [Google Scholar] [CrossRef]
- Kumaran, K.; Lackey, J.; Normandin, N.; Van Reenen, D.; Tariku, F. Summary report from task 3 of MEWS project at the Institute for Research in Construction—Hygrothermal properties of several building materials. In Report IRC-RR-110; Institute for Research in Construction, National Research Council Canada: Ottawa, ON, Canada, 2002. [Google Scholar]
- Kumaran, M.K. A Thermal and moisture property database for common building and insulation materials. ASHRAE Trans. 2006, 112, 1–13. [Google Scholar]
- TenWolde, A. ASHRAE standard 160 P-Criteria for moisture control design analysis in buildings. ASHRAE Trans. 2021, 114 Pt 1, 167–171. [Google Scholar] [CrossRef]
- Ojanen, T.; Viitanen, H.; Peuhkuri, R.; Lähdesmäki, K.; Vinha, J.; Salminen, K. Mold growth modeling of building structures using sensitivity classes of materials. In Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Buildings XI, Buildings XI Conference, Clearwater Beach, FL, USA, 5–9 November 2010. [Google Scholar]
Mechanism | Failure | Condition for Process |
---|---|---|
Fungal decay | Loss of material; strength; appearance | Sustained moisture content (MC) > 26%; temperature 0–40 °C; oxygen > 0.25%; pH < 2.2 or >9.6 |
Mould growth | Appearance; potential health impacts | Sustained high relative humidity (>80%); temperature 0–40 °C; oxygen > 0.25%; pH < 2.2 or >9.6 |
Subterranean termites | Loss of material; strength | Access from ground; sustained moisture and oxygen; temperature ≥ 5 °C |
Drying-induced shrinkage perpendicular to grain | Splitting or checking; damage to other components; floor misalignment; nail popping | High initial moisture content used in a dry environment; seasonal moisture content changes; inappropriate fastening that restricts drying; shrinkage movement of members; accumulated thicknesses perpendicular to grain (beams, stringers, plates) |
Components/Material | e (mm) | Density (kg/m3) | kt (W/mk) | CE (J/kg K) | Porosity (m3/m3) | vper (s) | vperm (ng/m2sPa) | A (kg/m2s0.5) | DL (m2/s) |
---|---|---|---|---|---|---|---|---|---|
Red matt clay | 90.0 | 1900 | 0.500 | 800 | 0.21 | 1.5 × 10−12 | 16.2 | 0.0268 | 5.01 × 10−8 |
Vinyl | 1.10 | 1500 | 0.160 | 1260 | 0.00 | 1.0 × 10−16 | 0.1 | - | 1.00 × 10−16 |
Stucco | 10 | 1960 | 0.407 | 840 | 0.235 | 2.7 × 10−13 | 14.1 | 0.0123 | 6.34 × 10−15 |
Weather-Resistive Barrier | 0.24 | 909 | 0.159 | 1256 | 0.97 | 9.7 × 10−14 | 404.2 | 0.00093 | 3.72 × 10−12 |
OSB | 11.0 | 600 | 0.094 | 1880 | 0.96 | 2.5 × 10−13 | 22.6 | 0.0022 | 2.11 × 10−11 |
Gypsum | 13.0 | 700 | 0.150 | 870 | 0.40 | 5.8 × 10−11 | 4430.0 | 0.001 | 6.35 × 10−11 |
Mineral fibre | 140.0 | 37 | 0.032 | 670 | 0.66 | 1.3 × 10−10 | 928.6 | - | 1.00 × 10−18 |
Sensitivity Class | k1 | |||||
---|---|---|---|---|---|---|
(If M < 1) | (If M ≥ 1) | W | A | B | C | |
Very sensitive | 1 | 2 | 0 | 1 | 7 | 2 |
Sensitive | 0.578 | 0.386 | 1 | 0.3 | 6 | 1 |
Medium-resistant | 0.072 | 0.097 | 1 | 0 | 5 | 1.5 |
Resistant | 0.033 | 0.014 | 1 | 0 | 3 | 1 |
Categories | Time Spans and Intervals | Brick 5 ACH | Vinyl 50 ACH | Vinyl 200 ACH |
---|---|---|---|---|
Standard Deviation (Response) | 384 h (16 Days) | 2.36 | 3.29 | 5.73 |
288 h (12 Days) | 2.21 | 2.95 | 5.47 | |
192 h (8 Days) | 2 | 2.48 | 5.1 | |
Mean Value (Absorption) | 384 h (16 Days) | 86 | 81.1 | 71.3 |
288 h (12 Days) | 86 | 81.1 | 71.3 | |
192 h (8 Days) | 86 | 81.1 | 71.3 | |
Differences (Recovery) | 384 h (16 Days) | −3.74 | −5.52 | −7.42 |
288 h (12 Days) | −3.46 | −4.92 | −7.09 | |
192 h (8 Days) | −3.14 | −4.19 | −6.59 |
Wall Types | Resilience | 31-Year Averaged Mould Growth Index | |||
---|---|---|---|---|---|
Response | Absorption | Recovery | Overall Ranking | ||
Brick 5 ACH | 3 | 3 | 3 | 3 | 4.54 |
Vinyl 50 ACH | 2 | 2 | 2 | 2 | 0.02 |
Vinyl 200 ACH | 1 | 1 | 1 | 1 | 0.001 |
Wall Assemblies | Cities and Climate Scenarios | Standard Deviation: Response (Ranking) | Mean Value: Absorption (Ranking) | Differences: Recovery (Ranking) | 31-Year Averaged Mould Growth Index |
---|---|---|---|---|---|
Brick 5 ACH | Calgary F7 (R8) * | 2.39 (2) | 81.8 (1) | −3.43 (2) | 3.38 |
Halifax F0 (R11) | 2.96 (1) | 88.7 (3) | −4.4 (1) | 4.38 | |
Toronto F4 (R3) | 1.72 (3) | 87.8 (2) | −2.41 (3) | 4.4 | |
Vinyl 50 ACH | Saskatoon F0 (R13) | 2.37 (3) | 71.2 (1) | −4.11 (3) | 0.0268 |
Montreal F4 (R10) | 3.24 (2) | 76.4 (2) | −4.73 (2) | 0.0652 | |
Vancouver F7 (R7) | 3.4 (1) | 84.1 (3) | −6.03 (1) | 4.92 | |
Vinyl 200 ACH | Winnipeg F0 (R6) | 4.03 (2) | 71.9 (1) | −5.29 (2) | 0.0006 |
Moncton F4 (R3) | 5.53 (1) | 77.1 (2) | −6.82 (1) | 0.0158 | |
St. John’s F7 (R6) | 3.72 (3) | 85.7 (3) | −5 (3) | 0.863 | |
Stucco 2 ACH | Calgary F7 (R3) | 1.78 (1) | 86.6 (1) | −3.48 (1) | 3.5 |
Toronto F4 (R2) | 1.43 (2) | 92.3 (2) | −2.99 (2) | 4.32 | |
Halifax F0 (R1) | 0.745 (3) | 97.1 (3) | −1.34 (3) | 4.76 |
Cities and Climate Scenarios | Wall Assemblies | Standard Deviation: Response (Ranking) | Mean Value: Absorption (Ranking) | Differences: Recovery (Ranking) | 31-Year Averaged Mould Growth Index |
---|---|---|---|---|---|
Calgary F7 (R3) * | Vinyl 200 ACH | 5.35 (1) | 63.8 (1) | −6.96 (1) | 0.00293 |
Vinyl 50 ACH | 3.42 (2) | 67.2 (2) | −5.54 (2) | 0.0812 | |
Brick 5 ACH | 2.26 (3) | 83.4 (3) | −3.27 (4) | 3.78 | |
Stucco 2 ACH | 1.78 (4) | 86.6 (4) | −3.48 (3) | 3.5 | |
Toronto F4 (R2) | Vinyl 200 ACH | 5.12 (1) | 70.3 (1) | −6.06 (1) | 0.0022 |
Vinyl 50 ACH | 3.22 (2) | 75.9 (2) | −4.98 (2) | 0.182 | |
Brick 5 ACH | 1.7 (3) | 87.5 (3) | −2.35 (4) | 4.2 | |
Stucco 2 ACH | 1.43 (4) | 92.3 (4) | −2.99 (3) | 4.32 | |
Halifax F0 (R1) | Vinyl 200 ACH | 5.2 (1) | 80.9 (1) | −6.95 (1) | 0.213 |
Brick 5 ACH | 3.03 (2) | 88.5 (2) | −4.38 (2) | 4.34 | |
Stucco 2 ACH | 0.745 (4) | 97 (3) | −1.34 (4) | 4.76 | |
Vinyl 50 ACH | 0.759 (3) | 97.2 (4) | −1.41 (3) | 4.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Wang, L.; Ge, H.; Lacasse, M.A.; Defo, M. Assessing the Moisture Resilience of Wood Frame Wall Assemblies. Buildings 2024, 14, 3634. https://doi.org/10.3390/buildings14113634
Xiao Z, Wang L, Ge H, Lacasse MA, Defo M. Assessing the Moisture Resilience of Wood Frame Wall Assemblies. Buildings. 2024; 14(11):3634. https://doi.org/10.3390/buildings14113634
Chicago/Turabian StyleXiao, Zhe, Lin Wang, Hua Ge, Michael A. Lacasse, and Maurice Defo. 2024. "Assessing the Moisture Resilience of Wood Frame Wall Assemblies" Buildings 14, no. 11: 3634. https://doi.org/10.3390/buildings14113634
APA StyleXiao, Z., Wang, L., Ge, H., Lacasse, M. A., & Defo, M. (2024). Assessing the Moisture Resilience of Wood Frame Wall Assemblies. Buildings, 14(11), 3634. https://doi.org/10.3390/buildings14113634