Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Aggregates
2.2. Experimental Methods
2.2.1. Medium-Temperature Fatigue Resistance LAS Test
2.2.2. Low-Temperature Crack Resistance BBR Test
2.2.3. Marshall Test
2.2.4. Dynamic Modulus Test
2.2.5. Fatigue Test
2.2.6. High-Temperature Rutting Test
3. Results and Discussion
3.1. Rheological Properties of Asphalt
3.1.1. Medium-Temperature Fatigue Resistance LAS Test
3.1.2. Low-Temperature Crack Resistance BBR Test
3.2. Marshall Test Analysis
3.3. Analysis of Viscoelastic Performance
3.4. Fatigue Test on High-Performance Asphalt Pavement Structures
3.5. High-Temperature Rutting Test on High-Performance Asphalt Mixtures
4. Conclusions
- (1)
- The addition of high-performance asphalt significantly improved the high-temperature stability of the mixtures. In high-performance asphalt mixtures, the dynamic stability also increased. Among different gradations, SMA-13 exhibited the best high-temperature performance, and the 3 + 3 composite structure was the best among the studied composite configurations.
- (2)
- Under the same stress ratio, comparing the fatigue test results of the three composite structures and analyzing them using the single and double logarithmic fatigue life equations, it was found that composite Structure 3 had the best fatigue resistance, followed by Structure 2, while Structure 1 had the worst fatigue resistance.
- (3)
- After adopting high-performance asphalt materials, the dynamic stability values obtained from the rutting test exceeded the requirements for very heavy traffic specified in the regulations, being more than double the value required for heavy traffic. Among different asphalt mixtures, SMA-13 exhibited the best high-temperature performance. Within the same type of asphalt mixture, heavy-load AC-20 and heavy-load SMA-13 demonstrated good high-temperature performance, indicating the excellent performance of heavy-load asphalt materials in heavy-load traffic conditions.
- (4)
- SMA asphalt mixtures showed a convergence trend in the low-frequency and high-temperature region, while AC-20 did not exhibit a clear convergence trend. The dynamic modulus of the SMA-10 mixture was greater than the complex modulus of the SMA-13 mixture, and the dynamic modulus range of the SMA mixtures was relatively wide. Under extreme high-temperature conditions, the dynamic moduli of the SMA and AC mixtures were comparable, but the value of AC-20 was slightly higher, indicating better high-temperature resistance.
- (5)
- Under different strain conditions, the fatigue life of the four mixtures showed a pattern where higher strain levels led to lower fatigue cycles. Under different strain conditions, the fatigue resistance, from highest to lowest, followed this order: heavy-load SMA-13 > heavy-load SMA-10 > heavy-load AC-20 > high-viscosity AC-20.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corte, J.-F. Development and uses of hard-grade asphalt and of high-modulus asphalt mixes in France. Transp. Res. Circ. 2021, 503, 12–31. [Google Scholar]
- Luo, J.; Yang, Y.; Huang, W.; Xie, C.; Chen, J.; Liu, H.; Ren, T.; Huang, X. Physical, rheological, and microsurface characteristics of high-viscosity binder modified with WMA agents. Adv. Mater. Sci. Eng. 2022, 2022, 5098250. [Google Scholar] [CrossRef]
- Wang, T.; Li, M.; Cai, X.; Cheng, Z.; Zhang, D.; Sun, G. Multi-objective design optimization of composite polymerized asphalt emulsions for cold patching of pavement potholes. Mater. Today Commun. 2023, 35, 105751. [Google Scholar] [CrossRef]
- Wang, T.; Weng, Y.; Cai, X.; Li, J.; Xiao, F.; Sun, G.; Zhang, F. Statistical modeling of low-temperature properties and FTIR spectra of crumb rubber modified asphalts considering SARA fractions. J. Clean. Prod. 2022, 374, 134016. [Google Scholar] [CrossRef]
- Li, M.; Zeng, F.; Xu, R.; Cao, D.; Li, J. Study on compatibility and rheological properties of high-viscosity modified asphalt prepared from low-grade asphalt. Materials 2019, 12, 3776. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Wang, J.; Meng, Y.; Zhou, Z. Aging behavior of high-viscosity modified asphalt binder based on infrared spectrum test. Materials 2022, 15, 2778. [Google Scholar] [CrossRef]
- Cai, J.; Song, C.; Zhou, B.; Tian, Y.; Li, R.; Zhang, J.; Pei, J. Investigation on high-viscosity asphalt binder for permeable asphalt concrete with waste materials. J. Clean. Prod. 2019, 228, 40–51. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, S.; He, X.; Jiang, Y. High temperature properties of high viscosity asphalt based on rheological methods. Constr. Build. Mater. 2018, 186, 476–483. [Google Scholar] [CrossRef]
- Geng, L.-T.; Xu, Q.; Ren, R.-B.; Wang, L.-Z.; Yang, X.-L.; Wang, X.-Y. Performance research of high-viscosity asphalt mixture as deck-paving materials for steel bridges. Road Mater. Pavement Des. 2017, 18, 208–220. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, L.; Wang, W.; Shangguan, X. Experimental investigation of the high-temperature rheological and aging resistance properties of activated crumb rubber powder/sbs composite-modified asphalt. Polymers 2022, 14, 1905. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, N.; Lv, S. Experimental study on dynamic modulus of high content rubber asphalt mixture. Buildings 2024, 14, 434. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, Z.; Wang, H.; Sun, W.; Pei, J.; Wang, D. Prediction of dynamic modulus of asphalt mixture using micromechanical method with radial distribution functions. Mater. Struct. 2019, 52, 49. [Google Scholar] [CrossRef]
- Wang, D.; Li, G.; Jiang, L.; Zhang, H.; Zhang, J.; Si, X. Dynamic modulus characteristics and prediction model of semi-flexible materials filled with high-performance cement paste. Front. Mater. 2024, 11, 1365896. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Li, M.; Fei, Y.; Yi, J. Design of high-modulus asphalt concrete for the middle layer of asphalt pavement. Coatings 2024, 14, 185. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Hui, B.; Zhang, H.; Guan, Y.; Guo, F.; Li, Y.; He, Y.; Wang, D. Analysis of modulus properties of high-modulus asphalt mixture and its new evaluation index of rutting resistance. Sustainability 2023, 15, 7574. [Google Scholar] [CrossRef]
- Zeiada, W.; Al-Khateeb, G.; Fattouh, I.; Souliman, M.; Alnaqbi, A. Impact of confinement condition of dynamic modulus test on the performance of flexible pavement structures. Innov. Infrastruct. Solut. 2024, 9, 290. [Google Scholar] [CrossRef]
- He, B.; Huang, Z.; Chen, J.; He, M.; Wang, Y.; Li, J.; Wang, S. Dynamic viscoelastic behavior of epoxy asphalt mixture under four-point bending. Buildings 2024, 14, 3061. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Li, Y.; Fu, Q.; Rui, H. Laboratory evaluation of dynamic characteristics of a new high-modulus asphalt mixture. Sustainability 2022, 14, 11838. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, X.; Wang, X.; Shan, L. Long-term service performance of hard-grade asphalt concrete base pavement based on accelerated loading test of full-scale structure. Sustainability 2022, 14, 9712. [Google Scholar] [CrossRef]
- Wang, T.; Dra, Y.A.S.S.; Cai, X.; Cheng, Z.; Zhang, D.; Lin, Y.; Yu, H. Advanced cold patching materials (CPMs) for asphalt pavement pothole rehabilitation: State of the art. J. Clean. Prod. 2022, 366, 133001. [Google Scholar] [CrossRef]
- JTG E20-2011; Specifications and Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communication Press: Beijing, China, 2011.
- JTJ 052-2000; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communications Press: Beijing, China, 2000.
- Norouzi, A.; Kim, Y.R. Mechanistic evaluation of fatigue cracking in asphalt pavements. Int. J. Pavement Eng. 2017, 18, 530–546. [Google Scholar] [CrossRef]
- Safaei, F.; Castorena, C. Material nonlinearity in asphalt binder fatigue testing and analysis. Mater. Des. 2017, 133, 376–389. [Google Scholar] [CrossRef]
- Underwood, B.S.; Baek, C.; Kim, Y.R. Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis. Transp. Res. Rec. 2012, 2296, 36–45. [Google Scholar] [CrossRef]
- Babadopulos, L.F.D.A.; Ferreira, J.L.S.; Soares, J.B.; Nascimento, L.A.H.D.; Castelo Branco, V.T. Aging-effect incorporation into the fatigue-damage modeling of asphalt mixtures using the S-VECD model. J. Mater. Civ. Eng. 2016, 28, 04016161. [Google Scholar] [CrossRef]
- Safaei, F.; Castorena, C.; Kim, Y.R. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling. Mech. Time-Depend. Mater. 2016, 20, 299–323. [Google Scholar] [CrossRef]
- Nilsson, R.; Oost, I.; Hopman, P. Viscoelastic analysis of full-scale pavements: Validation of VEROAD. Transp. Res. Rec. 1996, 1539, 81–87. [Google Scholar] [CrossRef]
- Boz, I.; Tavassoti-Kheiry, P.; Solaimanian, M. The advantages of using impact resonance test in dynamic modulus master curve construction through the abbreviated test protocol. Mater. Struct. 2017, 50, 176. [Google Scholar] [CrossRef]
- Corrales-Azofeifa, J.; Archilla, A.R.; Miranda-Argüello, F.; Loria-Salazar, L. Effects of moisture damage and anti-stripping agents on hot mix asphalt dynamic modulus. Road Mater. Pavement Des. 2020, 21, 1135–1154. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Hou, Y.; Xiao, J.; Ling, X.; Xing, C. Fractional derivative viscoelastic response of high-viscosity modified asphalt. Constr. Build. Mater. 2022, 350, 128915. [Google Scholar] [CrossRef]
- Zou, X.; Ding, B.; Peng, Z.; Li, H. Damage analysis four-point bending fatigue tests on stone matrix asphalt using dissipated energy approaches. Int. J. Fatigue 2000, 133, 105453. [Google Scholar] [CrossRef]
- Vestena, P.M.; Schuster, S.L.; de Almeida, P.O.B., Jr.; Faccin, C.; Specht, L.P.; da Silva Pereira, D. Dynamic modulus master curve construction of asphalt mixtures: Error analysis in different models and field scenarios. Constr. Build. Mater. 2021, 301, 124343. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Rajabi, M. The fatigue behavior of SBS/nanosilica composite modified asphalt binder and mixture. Constr. Build. Mater. 2019, 229, 116796. [Google Scholar] [CrossRef]
- Sahu, S.; Datta, P. Dynamic stability of laminated composite curved panels with cutouts. J. Eng. Mech. 2003, 129, 1245–1253. [Google Scholar] [CrossRef]
Experimental Indicators | Test Result [21] |
---|---|
Penetration (25 °C, 100 g, 5 s)/0.1 mm | 66.1 |
Softening point/°C | 87.6 |
Ductility (5 °C, 5 cm/min)/cm | 39.3 |
Dynamic viscosity (60 °C)/Pa·s | 62,375 |
Flash point/°C | 287 |
Elastic recovery (25 °C)/% | 89 |
Film heating (residual penetration ratio)/% | 91.9 |
Film heating (residual ductility) (5 °C/cm) | 36.1 |
Experimental Indicators | Test Result |
---|---|
Penetration (25 °C, 100 g, 5 s)/0.1 mm | 52.3 |
Softening point/°C | 97.2 |
Ductility (5 °C, 5 cm/min)/cm | 38.2 |
Dynamic viscosity (60 °C)/Pa·s | 341 |
Flash point/°C | 97 |
Elastic recovery (25 °C)/% | 73.2 |
Film heating (residual penetration ratio)/% | 20.4 |
Technical Index | Apparent Relative Density (g/cm3) | Relative Density of Gross Volume (g/cm3) | Crushing Value (%) | Needle Shaped (%) | Abrasion Value (%) |
---|---|---|---|---|---|
Basalt | 2.856 | 2.803 | 25.6 | 5.3 | 17.8 |
Limestone | 2.745 | 2.712 | 24.6 | 4.8 | 18.1 |
SMA heavy-duty aggregate | 2.905 | 2.865 | 25.9 | 5.5 | 18.4 |
AC aggregate | 2.738 | 2.678 | 26.3 | 6.1 | 18.2 |
Pilot Project | Measured Value | Technical Requirements | Test Method | ||
---|---|---|---|---|---|
Laboratory test of mineral powder | Performance density (t/m3) | 2.675 | ≥2.50 | T0352 | |
Water content (%) | 0.3 | ≤1.0 | T0352 | ||
Particle size range | <0.6 mm (%) | 100 | 100 | T0351 | |
<0.15 mm (%) | 97.5 | 90~100 | |||
<0.075 mm (%) | 87 | 70~100 | |||
Hydrophilic coefficient | 0.73 | <1 | T0353 | ||
Ore powder for heavy duty | Performance density (t/m3) | 2.735 | ≥2.50 | T0352 | |
Water content (%) | 0.4 | ≤1.0 | T0352 | ||
Particle size range | <0.6 mm (%) | 100 | 100 | T0351 | |
<0.15 mm (%) | 97.0 | 90~100 | T0353 | ||
<0.075 mm (%) | 88.4 | 70~100 | T0352 | ||
Hydrophilic coefficient | 0.81 | <1 | T0352 |
Technical Index | Lignin Fiber |
---|---|
Appearance and color | Gray |
Fiber length (mm) | <6 |
Ash content (%) | 18.7 |
pH value | 7.3 |
Oil absorption (%) | 6.8 |
Moisture content (%) | 4 |
Density (g/cm3) | 0.87 |
Screen Size | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard grading | Lower limiting value | 100 | 90 | 78 | 62 | 50 | 26 | 16 | 12 | 8 | 5 | 4 | 3 |
Upper limit value | 100 | 100 | 92 | 80 | 72 | 56 | 44 | 33 | 24 | 17 | 13 | 7 | |
Mid-value | 100 | 95 | 85 | 71 | 61 | 41 | 30 | 22.5 | 16 | 11 | 8.5 | 5 | |
Target grading | 100.0 | 92.2 | 83.5 | 75.2 | 61.1 | 37.7 | 26.4 | 18.0 | 10.0 | 6.8 | 5.6 | 5.2 |
Screen Size | 26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard grading | Lower limiting value | 100 | 90 | 78 | 62 | 50 | 26 | 16 | 12 | 8 | 5 | 4 | 3 |
Upper limit value | 100 | 100 | 92 | 80 | 72 | 56 | 44 | 33 | 24 | 17 | 13 | 7 | |
Mid-value | 100 | 95 | 85 | 71 | 61 | 41 | 30 | 22.5 | 16 | 11 | 8.5 | 5 | |
Target grading | 100.0 | 92.2 | 83.5 | 75.0 | 60.2 | 36.7 | 25.7 | 17.5 | 9.8 | 6.7 | 5.6 | 5.2 |
Screen Size | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Standard grading | Lower limiting value | 100 | 100 | 90 | 28 | 20 | 14 | 12 | 10 | 9 | 8 |
Upper limit value | 100 | 100 | 100 | 60 | 32 | 26 | 22 | 18 | 16 | 13 | |
Mid-value | 100 | 100 | 95 | 44 | 26 | 20 | 17 | 14 | 12.5 | 10.5 | |
Target grading | 100.0 | 100.0 | 99.6 | 37.8 | 28.7 | 22.1 | 17.1 | 12.9 | 11.2 | 9.1 |
Screen Size | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Standard grading | Lower limiting value | 100 | 90 | 45 | 22 | 18 | 14 | 12 | 10 | 9 | 8 |
Upper limit value | 100 | 100 | 65 | 34 | 27 | 22 | 19 | 16 | 14 | 12 | |
Mid-value | 100 | 95 | 55 | 28 | 22.5 | 18 | 15.5 | 13 | 11.5 | 10 | |
Target grading | 100.0 | 91.1 | 63.1 | 27.0 | 22.3 | 18.4 | 15.4 | 12.9 | 11.8 | 9.5 |
Asphalt Type | A | B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Heavy-load asphalt | 3.952 | 0.880 | 0.457 | 5.82 × 108 | 5.20 | 333.8 | 4,983,097 | 136,044 | 16,554 | 3714 |
High-viscosity asphalt | 4.63 | 0.076 | 0.494 | 3.53 × 108 | 5.50 | 323.5 | 2,299,213 | 51,037 | 5502 | 1132 |
Asphalt Type | Test Temperature (°C) | Stiffness Modulus S (MPa) | Creep Rate (m) |
---|---|---|---|
Base asphalt | −6 | 70 | 0.431 |
−12 | 181 | 0.374 | |
−18 | 442 | 0.212 | |
High-viscosity asphalt | −6 | 111 | 0.401 |
−12 | 264 | 0.315 | |
−18 | 597 | 0.229 | |
Heavy-load asphalt | −6 | 129 | 0.364 |
−12 | 270 | 0.311 | |
−18 | 627 | 0.233 |
Aggregate Grading Type | Asphalt–Aggregate Ratio (%) | Density (g/cm3) | Voidage (%) | Intermittent Rate (%) | Stability (kN) | Saturability (%) | Flow Value (×0.1 mm) |
---|---|---|---|---|---|---|---|
High-viscosity AC-20 | 4.3 | 2.464 | 3.3 | 12.1 | 13.0 | 73.2 | 32.3 |
Heavy-load AC-20 | 4.2 | 2.477 | 2.9 | 11.6 | 14.3 | 74.9 | 31.0 |
Reload SMA-10 | 6.2 | 2.586 | 3.0 | 16.8 | 13.9 | 75.7 | 35.2 |
Reload SMA-13 | 5.8 | 2.603 | 4.4 | 17.1 | 14.2 | 74.6 | 37.1 |
Type of Mixture | G-AC20 | Z-AC20 | Z-SMA13 | Z-SMA10 |
---|---|---|---|---|
δ | 2.513950364 | 1.929009021 | 2.166833537 | 2.089978375 |
α | 1.986024096 | 2.598457452 | 2.303731693 | 2.382774627 |
β | −0.616206593 | −1.067416479 | −0.763456088 | −0.777443172 |
γ | −0.636053933 | −0.543338913 | −0.577850231 | −0.571573125 |
Structure Type | Stress Ratio | Fatigue Life | |||
---|---|---|---|---|---|
1 | 2 | 3 | Average Value | ||
Structure 1 | 0.3 | 16,524 | 17,532 | 16,562 | 16,873 |
0.4 | 9152 | 8250 | 8528 | 8643 | |
0.5 | 5652 | 5012 | 5186 | 5283 | |
0.6 | 1896 | 2521 | 2350 | 2256 | |
Structure 2 | 0.3 | 17,128 | 16,925 | 17,367 | 17,140 |
0.4 | 10,547 | 9654 | 11,683 | 10,628 | |
0.5 | 6781 | 6149 | 6368 | 6432 | |
0.6 | 1987 | 2645 | 2460 | 2364 | |
Structure 3 | 0.3 | 22,679 | 23,025 | 23,529 | 23,078 |
0.4 | 14,456 | 13,856 | 13,552 | 13,988 | |
0.5 | 6925 | 7362 | 7856 | 7381 | |
0.6 | 4098 | 3625 | 3425 | 3716 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lu, J.; Zhang, Z.; Chen, Z.; Wang, T.; Zheng, Q. Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture. Buildings 2024, 14, 3643. https://doi.org/10.3390/buildings14113643
Liu Q, Lu J, Zhang Z, Chen Z, Wang T, Zheng Q. Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture. Buildings. 2024; 14(11):3643. https://doi.org/10.3390/buildings14113643
Chicago/Turabian StyleLiu, Qi, Jiakai Lu, Zhiqiang Zhang, Zhiang Chen, Tao Wang, and Qi Zheng. 2024. "Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture" Buildings 14, no. 11: 3643. https://doi.org/10.3390/buildings14113643
APA StyleLiu, Q., Lu, J., Zhang, Z., Chen, Z., Wang, T., & Zheng, Q. (2024). Comprehensive Study on Dynamic Modulus and Road Performance of High-Performance Asphalt Mixture. Buildings, 14(11), 3643. https://doi.org/10.3390/buildings14113643