Seismic Performance Evaluation of a Frame System Strengthened with External Self-Centering Components
Abstract
:1. Introduction
2. Parameter Variation Simulation Using ABAQUS
2.1. Test Model Description
2.2. Establishment of ABAQUS Model
2.3. Calculation Results and Parameter Analysis
3. Dynamic Simulation Using OpenSees
3.1. Establishment of OpenSees Model
3.2. Quasi-Static Test Under OpenSees
3.3. Nonlinear Time-History Analysis of the Structure
4. Conclusions
- (1)
- For the static simulation of a single frame before and after reinforcement, the modeling results from ABAQUS and OpenSees had an experimental error of less than 10%.
- (2)
- Analysis using the ABAQUS software revealed that the main factor affecting the reinforcement effect was the prestressed tendons inside the prefabricated beams. By increasing the tensile force of the prestressed steel strands, the residual deformation rate of the reinforced frame can be reduced by 26%.
- (3)
- Analysis using the OpenSees software showed that, compared to non-reinforced buildings, reinforced buildings exhibit better seismic characteristics when subjected to three types of earthquake waves, with the residual displacement reduced by 55.82–64.7%.
- (4)
- As the peak ground acceleration increased, the reduction in the residual deformation of the reinforced building became more pronounced and exhibited a linear relationship.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, T.K.; Choudhury, S. Developments in the unified performance-based seismic design. J. Build. Pathol. Rehabil. 2023, 8, 13. [Google Scholar] [CrossRef]
- Padalu, P.K.V.R.; Surana, M. An overview of performance-based seismic design framework for reinforced concrete frame buildings. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 635–667. [Google Scholar] [CrossRef]
- Patel Vasudev, T. Ajay Radke Performance-based seismic design of reinforced concrete structure—A review. Int. Res. J. Adv. Eng. Hub. IRJAEH 2024, 2, 555–558. [Google Scholar] [CrossRef]
- Zameeruddin, M.; Sangle, K.K. Review on recent developments in the performance-based seismic design of reinforced concrete structures. Structures 2016, 6, 119–133. [Google Scholar] [CrossRef]
- Zeng, B.; Li, Y. Towards performance-based design of masonry buildings: Literature review. Buildings 2023, 13, 1534. [Google Scholar] [CrossRef]
- GB50011-2010; Code for Seismic Design of Buildings. Standardization Administration of China: Beijing, China, 2016.
- Li, Y.Y.; Guo, B.; Liu, J. Research on reinforced concrete beam enlarged cross section method experiment and finite element simulation. Appl. Mech. Mater. 2014, 638–640, 208–213. [Google Scholar] [CrossRef]
- Prakash, A.; Agarwala, S.K.; Singh, K.K. Optimum design of reinforced concrete sections. Comput. Struct. 1988, 30, 1009–1011. [Google Scholar] [CrossRef]
- Wang, Y.D.; Yang, S.; Han, M.; Yang, X. Experimental study of section enlargement with reinforced concrete to increase shear capacity for damaged reinforced concrete beams. Appl. Mech. Mater. 2012, 256–259, 1148–1153. [Google Scholar] [CrossRef]
- Cao, J.; Du, J.; Fan, Q.; Yang, J.; Bao, C.; Liu, Y. Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric. Eng. Struct. 2024, 306, 117787. [Google Scholar] [CrossRef]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J. Modeling strategies of finite element simulation of reinforced concrete beams strengthened with FRP: A review. J. Compos. Sci. 2021, 5, 19. [Google Scholar] [CrossRef]
- Pan, B.; Liu, F.; Zhuge, Y.; Zeng, J.-J.; Liao, J. ECCs/UHPFRCCs with and without FRP reinforcement for structural strengthening/repairing: A state-of-the-art review. Constr. Build. Mater. 2022, 316, 125824. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Kim, J.-H.J.; Varaee, H.; Nam, Y.; Khankhaje, E. Testing methods and design specifications for FRP-prestressed concrete members: A review of current practices and case studies. J. Build. Eng. 2023, 73, 106723. [Google Scholar] [CrossRef]
- Raza, A.; Khan, Q.U.Z.; Ahmad, A. Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS. Adv. Civ. Eng. 2019, 2019, 1745341. [Google Scholar] [CrossRef]
- Reichenbach, S.; Preinstorfer, P.; Hammerl, M.; Kromoser, B. A review on embedded fibre-reinforced polymer reinforcement in structural concrete in europe. Constr. Build. Mater. 2021, 307, 124946. [Google Scholar] [CrossRef]
- Wei, J.; Ying, H.; Yang, Y.; Zhang, W.; Yuan, H.; Zhou, J. Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates. Eng. Struct. 2023, 278, 115500. [Google Scholar] [CrossRef]
- El-Emam, M.M.; Bathurst, R.J. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls. Geotext. Geomembr. 2007, 25, 33–49. [Google Scholar] [CrossRef]
- Maheri, M.R.; Sahebi, A. Use of steel bracing in reinforced concrete frames. Eng. Struct. 1997, 19, 1018–1024. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Zhao, M.; Wang, B.; Ye, Y. Seismic performance of frame with middle partially encased composite brace and steel-hollow core partially encased composite spliced frame beam. J. Build. Eng. 2024, 95, 110226. [Google Scholar] [CrossRef]
- Anilkumar, P.M.; Haldar, A.; Scheffler, S.; Rao, B.N.; Rolfes, R. Numerical studies on the design of self-resetting active bistable cross-shaped structure for morphing applications. Proceedings 2020, 64, 16. [Google Scholar] [CrossRef]
- Chancellor, N.; Eatherton, M.; Roke, D.; Akbaş, T. Self-centering seismic lateral force resisting systems: High performance structures for the city of tomorrow. Buildings 2014, 4, 520–548. [Google Scholar] [CrossRef]
- Guo, M.; Shen, Y. Research on the influence of mild steel dampers on seismic performance of self-resetting pier. Staveb. Obz.-Civ. Eng. J. 2021, 30, 105–118. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiong, E. Research Progress of Self-Centering Structure System. In Proceedings of the 2021 7th International Conference on Hydraulic and Civil Engineering & Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE & SWIDR), Nanjing, China, 6–8 November 2021; IEEE: New York, NY, USA, 2021; pp. 406–410. [Google Scholar]
- Zhong, C.; Christopoulos, C. Self-centering seismic-resistant structures: Historical overview and state-of-the-art. Earthq. Spectra 2022, 38, 1321–1356. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Zhang, W.; Yuan, Y. Seismic behavior of a friction-type artificial plastic hinge for the precast beam–column connection. Arch. Civ. Mech. Eng. 2022, 22, 201. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Yuan, Y.; Bai, H. Experimental Research on the Seismic Performance of Precast Concrete Frame with Replaceable Artificial Controllable Plastic Hinges. J. Struct. Eng. 2023, 149, 4022222. [Google Scholar] [CrossRef]
- Aure, T.W.; Ioannides, A.M. Simulation of crack propagation in concrete beams with cohesive elements in ABAQUS. Transp. Res. Rec. J. Transp. Res. Board 2010, 2154, 12–21. [Google Scholar] [CrossRef]
- Cao, X.; Wu, L.; Li, Z. Behaviour of steel-reinforced concrete columns under combined torsion based on ABAQUS FEA. Eng. Struct. 2020, 209, 109980. [Google Scholar] [CrossRef]
- Lee, S.-H.; Abolmaali, A.; Shin, K.-J.; Lee, H.-D. ABAQUS modeling for post-tensioned reinforced concrete beams. J. Build. Eng. 2020, 30, 101273. [Google Scholar] [CrossRef]
- Mohammad Noh, N.; Liberatore, L.; Mollaioli, F.; Tesfamariam, S. Modelling of masonry infilled RC frames subjected to cyclic loads: State of the art review and modelling with OpenSees. Eng. Struct. 2017, 150, 599–621. [Google Scholar] [CrossRef]
- Qingfu, L.; Wei, G.; Yihang, K. Parameter calculation and verification of concrete plastic damage model of ABAQUS. IOP Conf. Ser. Mater. Sci. Eng. 2020, 794, 012036. [Google Scholar] [CrossRef]
- Baltzopoulos, G.; Baraschino, R.; Iervolino, I.; Vamvatsikos, D. Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees. Eng. Struct. 2018, 177, 395–408. [Google Scholar] [CrossRef]
- Kechidi, S.; Colaço, A.; Alves Costa, P.; Castro, J.M.; Marques, M. Modelling of soil-structure interaction in OpenSees: A practical approach for performance-based seismic design. Structures 2021, 30, 75–88. [Google Scholar] [CrossRef]
- Lu, X.; Xie, L.; Guan, H.; Huang, Y.; Lu, X. A shear wall element for nonlinear seismic analysis of super-tall buildings using OpenSees. Finite Elem. Anal. Des. 2015, 98, 14–25. [Google Scholar] [CrossRef]
- McKenna, F. OpenSees: A framework for earthquake engineering simulation. Comput. Sci. Eng. 2011, 13, 58–66. [Google Scholar] [CrossRef]
- Feng, S.; Yang, Y.; Xue, Y.; Yu, Y. Numerical Investigation on the Hysteretic Performance of Self-Centering Precast Steel–Concrete Hybrid Frame. Buildings 2024, 14, 3202. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Bie, J.; Zhang, W.; Jiang, J.; Chen, H.; Chen, X. Finite Element Analysis of Hysteretic Behavior of Superposed Shear Walls Based on OpenSEES. Buildings 2023, 13, 1382. [Google Scholar] [CrossRef]
Specimen ID | Concrete (Unreinforced/Reinforced) | Column Section (mm) | Beam Section (mm) | de ① (mm) | Prestressed Steel Tendons | σpetAp ② (kN) |
---|---|---|---|---|---|---|
LF1 | C20/- | 270 × 270 | 150 × 306 | -- | -- | -- |
LF2 | C20/Grouting material | 390 × 480 | 270 × 426 | 14 | 2Ø15.2 | 51.3 |
LF3 | C20/Grouting material | 390 × 480 | 270 × 426 | 20 | 4Ø15.2 | 43.0 |
ABAQUS Simulation Variable Grouping | Specimen ID | Columns | Beam | Energy-Dissipating Steel Bar | Prestressed Steel Tendons | ||||
---|---|---|---|---|---|---|---|---|---|
Section Dimensions (mm × mm) | Concrete Strength | Section Dimensions (mm × mm) | Concrete Strength | Diameter (mm) | Material | Quantity (n) | Effective Prestressing of a Single Steel Tendon (kN) | ||
Experiment simulation | S1 | 270 × 270 | C20 | 150 × 306 | C20 | - | - | - | - |
S2 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | Q235 | 2 | 40 | |
S3 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | Q2355 | 4 | 40 | |
Section enlargement strengthening | ES | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | - | - | - | - |
Steel strand prestressing | P80 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | Q2355 | 2 | 80 |
P120 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | Q235 | 2 | 120 | |
Diameter of energy-dissipating steel reinforcement | ED0 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 0 | Q235 | 2 | 40 |
ED20 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 20 | Q235 | 2 | 40 | |
Material of energy-dissipating steel reinforcement | EM1 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | HRB335 (400) | 2 | 40 |
EM2 | 390 × 480 | C20/C40 | 270 × 426 | C20/C40 | 14 | HRB400 (500) | 2 | 40 |
Specimen ID | Yield Displacement (mm) | Yield Load (kN) | Ultimate Displacement (mm) | Ultimate Load (kN) | Initial Stiffness (kN/mm) | Ductility Coefficient (μ) |
---|---|---|---|---|---|---|
S1 | 45.23 | 166.45 | 97 | 170.79 | 12.13 | 2.16 |
S2 | 36.75 | 417.35 | 129.479 | 545.8 | 94.28 | 3.52 |
S3 | 35.92 | 417.54 | 129.479 | 583.85 | 103.65 | 3.6 |
ES | 38.68 | 386.14 | 129.479 | 494.002 | 89.61 | 3.34 |
P80 | 36.2 | 417.55 | 129.479 | 556.73 | 101.359 | 3.57 |
P120 | 35.29 | 418.91 | 129.479 | 570.85 | 104.83 | 3.66 |
ED0 | 36.26 | 400.35 | 129.479 | 542.08 | 96.77 | 3.57 |
ED20 | 36.1 | 418.39 | 129.479 | 547.04 | 99.92 | 3.58 |
EM1 | 36.54 | 417.99 | 129.479 | 543.75 | 98.151 | 3.54 |
EM2 | 36.48 | 417.87 | 129.479 | 543.88 | 98.151 | 3.54 |
Specimen ID | Loading Displacement Angle and Residual Displacement Rate of Specimens (R) | ||||
---|---|---|---|---|---|
[θe ①] (1/550) | 2 [θe] (1/275) | 3 [θe] (1/183) | 4 [θe] (1/138) | [θp ②] (1/50) | |
S1 | 0.2 | 0.28 | 0.34 | 0.19 | 0.24 |
S2 | 0.17 | 0.27 | 0.29 | 0.18 | 0.22 |
S3 | 0.14 | 0.25 | 0.27 | 0.17 | 0.21 |
ES | 0.17 | 0.29 | 0.35 | 0.19 | 0.24 |
P80 | 0.17 | 0.25 | 0.3 | 0.17 | 0.21 |
P120 | 0.12 | 0.22 | 0.31 | 0.19 | 0.2 |
ED0 | 0.15 | 0.25 | 0.29 | 0.17 | 0.2 |
ED20 | 0.17 | 0.27 | 0.31 | 0.18 | 0.21 |
EM1 | 0.13 | 0.25 | 0.3 | 0.12 | 0.19 |
EM2 | 0.13 | 0.25 | 0.3 | 0.12 | 0.19 |
Specimen ID | Software | T1 (s) | T2 (s) | T3 (s) |
---|---|---|---|---|
SL1 | YJK | 1.159 | 1.143 | 1.015 |
OpenSees | 1.108 | 1.022 | 0.965 | |
SL2 | YJK | 0.511 | 0.443 | 0.382 |
OpenSees | 0.521 | 0.422 | 0.394 |
Earthquake | Station | Date | PGA (G) | Duration (S) | Record Gap |
---|---|---|---|---|---|
Chi-Chi-Taiwan | TCU065 | 1999 | 2.33 | 28.96 | 0.02 |
Cape Mendocino | Petrolia | 1992 | 1.89 | 30.2 | 0.02 |
Artificial | — | — | 1.00 | 38.95 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Song, J.; Zhou, X.; Liu, H. Seismic Performance Evaluation of a Frame System Strengthened with External Self-Centering Components. Buildings 2024, 14, 3666. https://doi.org/10.3390/buildings14113666
Fan Y, Song J, Zhou X, Liu H. Seismic Performance Evaluation of a Frame System Strengthened with External Self-Centering Components. Buildings. 2024; 14(11):3666. https://doi.org/10.3390/buildings14113666
Chicago/Turabian StyleFan, Yulin, Jiaye Song, Xuelu Zhou, and Hang Liu. 2024. "Seismic Performance Evaluation of a Frame System Strengthened with External Self-Centering Components" Buildings 14, no. 11: 3666. https://doi.org/10.3390/buildings14113666
APA StyleFan, Y., Song, J., Zhou, X., & Liu, H. (2024). Seismic Performance Evaluation of a Frame System Strengthened with External Self-Centering Components. Buildings, 14(11), 3666. https://doi.org/10.3390/buildings14113666