Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.1.1. Culture Medium and Solutions
2.1.2. Cell Concentrations
2.2. Mortars
2.2.1. Materials and Mix Proportion Design
2.2.2. Test Specimens, Characterizations, and Crack Creation
2.3. Exposure Environment
2.4. Nutrient Type and Concentration
2.5. Cement- and Nutrient-Derived Calcium Sources
2.6. Self-Healing Phenomenon Evaluation and Image Processing Analysis
2.7. Statistical Analysis
2.8. Thermal Analysis (TGA/DTG)
3. Results
3.1. Observations About the Exposure Environment
3.2. Findings About the Nutrient Type and Concentration
3.3. Influence of the Cement- and Nutrient-Derived Calcium Sources
3.4. Thermal Analysis (TGA/DTG) of Calcium Carbonate Behavior
4. Conclusions
- Submerged conditions demonstrated the most effective crack healing for MICP compared to wetting and drying cycle exposure environments. A crack area of 4mm² was 87.5% healed at 21 days.
- Crack closure was positively correlated with the concentration of calcium lactate, indicating the pivotal role of calcium content in the self-healing process. Bacterial suspensions enhance crack closure efficiency, particularly in environments with high calcium lactate content.
- The use of only urea as a nutrient source and hydration calcium ions as a calcium source showed less effectiveness in facilitating crack closure due to the adverse effects of ammonia, inhibiting the formation of cement hydration products. This behavior highlights the limited role of cement-derived calcium ions from cement hydration in MICP.
- Employing nutrient-derived calcium sources, such as calcium nitrate, in conjunction with ureolytic bacteria showed promising results in inducing calcium carbonate precipitation and achieving crack closure.
- Calcium nitrate significantly outperformed calcium lactate as a nutrient source, attributed to the higher concentration of available calcium ions and nitrate as an energy source for bacteria, facilitating more efficient calcium carbonate formation and self-healing. A crack area of 8 mm2 was fully healed at 35 days.
- TGA analysis shows that while calcium carbonate samples from different sources have varying decarbonation temperatures due to distinct formation environments, their chemical composition remains consistent.
- The study elucidated the complex interplay between nutrient type, bacterial activity, and calcium source, emphasizing the need for a nuanced approach to optimizing the self-healing process in concrete structures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peys, A.; Isteri, V.; Yliniemi, J.; Yorkshire, A.S.; Lemougna, P.N.; Utton, C.; Provis, J.L.; Snellings, R.; Hanein, T. Sustainable Iron-Rich Cements: Raw Material Sources and Binder Types. Cem. Concr. Res. 2022, 157, 106834. [Google Scholar] [CrossRef]
- Galusnyak, S.C.; Petrescu, L.; Cormos, C.C. Environmental Impact Assessment of Post-Combustion CO2 Capture Technologies Applied to Cement Production Plants. J. Environ. Manag. 2022, 320, 115908. [Google Scholar] [CrossRef] [PubMed]
- Cormos, A.M.; Cormos, C.C. Reducing the Carbon Footprint of Cement Industry by Post-Combustion CO2 Capture: Techno-Economic and Environmental Assessment of a CCS Project in Romania. Chem. Eng. Res. Des. 2017, 123, 230–239. [Google Scholar] [CrossRef]
- Gupta, S.; Chaudhary, S. State of the Art Review on Supplementary Cementitious Materials in India—II: Characteristics of SCMs, Effect on Concrete and Environmental Impact. J. Clean. Prod. 2022, 357, 131945. [Google Scholar] [CrossRef]
- Cappellesso, V.G.; di Summa, D.; Pourhaji, P.; Prabhu Kannikachalam, N.; Dabral, K.; Ferrara, L.; Cruz Alonso, M.; Camacho, E.; Gruyaert, E.; De Belie, N. A Review of the Efficiency of Self-Healing Concrete Technologies for Durable and Sustainable Concrete under Realistic Conditions. Int. Mater. Rev. 2023, 68, 556–603. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart Materials and Technologies for Sustainable Concrete Construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- de Rooij, M.; Van Tittelboom, K.; Schlangen, E.; De Belie, N. Self-Healing Phenomena in Cement-Based Materials; de Rooij, M., Van Tittelboom, K., De Belie, N., Schlangen, E., Eds.; RILEM State-of-the-Art Reports; Springer Netherlands: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6623-5. [Google Scholar]
- Van Tittelboom, K.; De Belie, N. Self-Healing in Cementitious Materials-a Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef]
- De Nardi, C.; Freeman, B.L.; Gardner, D.; Jefferson, T. Mechanical Response and Predictive Modelling of Vascular Self-Healing Cementitious Materials Using Novel Healing Agents. Cem. Concr. Compos. 2023, 142, 105143. [Google Scholar] [CrossRef]
- Zhu, X.; Mignon, A.; Nielsen, S.D.; Zieger, S.E.; Koren, K.; Boon, N.; De Belie, N. Viability Determination of Bacillus Sphaericus after Encapsulation in Hydrogel for Self-Healing Concrete via Microcalorimetry and in Situ Oxygen Concentration Measurements. Cem. Concr. Compos. 2021, 119, 104006. [Google Scholar] [CrossRef]
- Guan, B.; Tian, Q.; Li, J.; Zheng, H.; Xue, T. Selecting Bacteria for In-Depth Self-Healing of Concrete at both Room and Low Temperature. Constr. Build. Mater. 2023, 394, 132175. [Google Scholar] [CrossRef]
- Schwantes-Cezario, N.; Cremasco, L.V.; Medeiros, L.P.; Teixeira, G.M.; Albino, U.B.; Lescano, L.E.A.M.; Matsumoto, L.S.; de Oliveira, A.G.; da Silva, P.R.C.; Toralles, B.M. Potential of Cave Isolated Bacteria in Self-Healing of Cement-Based Materials. J. Build. Eng. 2022, 45, 103551. [Google Scholar] [CrossRef]
- van der Bergh, J.M.; Miljević, B.; Šovljanski, O.; Vučetić, S.; Markov, S.; Ranogajec, J.; Bras, A. Preliminary Approach to Bio-Based Surface Healing of Structural Repair Cement Mortars. Constr. Build. Mater. 2020, 248, 118557. [Google Scholar] [CrossRef]
- Saleem, B.; Hussain, A.; Khattak, A.; Khan, A. Performance Evaluation of Bacterial Self-Healing Rigid Pavement by Incorporating Recycled Brick Aggregate. Cem. Concr. Compos. 2021, 117, 103914. [Google Scholar] [CrossRef]
- Feng, J.; Chen, B.; Sun, W.; Wang, Y. Microbial Induced Calcium Carbonate Precipitation Study Using Bacillus Subtilis with Application to Self-Healing Concrete Preparation and Characterization. Constr. Build. Mater. 2021, 280, 122460. [Google Scholar] [CrossRef]
- Yang, D.; Xu, G.; Duan, Y.; Dong, S. Self-Healing Cement Composites Based on Bleaching Earth Immobilized Bacteria. J. Clean. Prod. 2022, 358, 132045. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X. Self-Healing of Concrete Cracks by Use of Bacteria-Containing Low Alkali Cementitious Material. Constr Build Mater 2018, 167, 1–14. [Google Scholar] [CrossRef]
- Huynh, N.N.T.; Imamoto, K.I.; Kiyohara, C. A Study on Biomineralization Using Bacillus Subtilis Natto for Repeatability of Self-Healing Concrete and Strength Improvement. J. Adv. Concr. Technol. 2019, 17, 700–714. [Google Scholar] [CrossRef]
- Mohamed, A.; Zhou, Y.; Bertolesi, E.; Liu, M.; Liao, F.; Fan, M. Factors Influencing Self-Healing Mechanisms of Cementitious Materials: A Review. Constr. Build. Mater. 2023, 393, 131550. [Google Scholar] [CrossRef]
- Hoffmann, T.D.; Reeksting, B.J.; Gebhard, S. Bacteria-Induced Mineral Precipitation: A Mechanistic Review. Microbiology 2021, 167, 001049. [Google Scholar] [CrossRef]
- Vaezi, M.; Zareei, S.A.; Jahadi, M. Recycled Microbial Mortar: Effects of Bacterial Concentration and Calcium Lactate Content. Constr. Build. Mater. 2020, 234, 117349. [Google Scholar] [CrossRef]
- Cappellesso, V.; Van Mullem, T.; Gruyaert, E.; Van Tittelboom, K.; De Belie, N. Bacteria-Based Self-Healing Concrete Exposed to Frost Salt Scaling. Cem. Concr. Compos. 2023, 139, 105016. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, W. Current Challenges and Future Directions for Bacterial Self-Healing Concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3059–3070. [Google Scholar] [CrossRef] [PubMed]
- Fronczyk, J.; Janek, M.; Szeląg, M.; Pyzik, A.; Franus, W. Immobilization of (Bio-)Healing Agents for Self-Healing Concrete Technology: Does It Really Ensure Long-Term Performance? Compos. B Eng. 2023, 266, 110997. [Google Scholar] [CrossRef]
- Zheng, T.; Qian, C.; Su, Y. Influences of Different Calcium Sources on the Early Age Cracks of Self-Healing Cementitious Mortar. Biochem. Eng. J. 2021, 166, 107849. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A.D. Biomineralization, Bacterial Selection and Properties of Microbial Concrete: A Review. J. Build. Eng. 2023, 73, 106695. [Google Scholar] [CrossRef]
- Javeed, Y.; Goh, Y.; Mo, K.H.; Yap, S.P.; Leo, B.F. Microbial Self-Healing in Concrete: A Comprehensive Exploration of Bacterial Viability, Implementation Techniques, and Mechanical Properties. J. Mater. Res. Technol. 2024, 29, 2376–2395. [Google Scholar] [CrossRef]
- American Type Culture Collection. ATCC 11859—Sporosarcina Pasteurii; American Type Culture Collection: Manassas, VA, USA, 2023. [Google Scholar]
- American Type Culture Collection. ATCC 6633—Bacillus Subtilis; American Type Culture Collection: Manassas, VA, USA, 2023. [Google Scholar]
- Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. Application of Bacteria as Self-Healing Agent for the Development of Sustainable Concrete. Ecol. Eng. 2010, 36, 230–235. [Google Scholar] [CrossRef]
- Nugroho, A.; Satyarno, I. Subyakto Bacteria as Self-Healing Agent in Mortar Cracks. J. Eng. Technol. Sci. 2015, 47, 279–295. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Y.; Liu, H.; Chu, J. Role of Bacteria on Bio-Induced Calcium Carbonate Formation: Insights from Droplet Microfluidic Experiments. Géotechnique 2024, 1–35. [Google Scholar] [CrossRef]
- Schöler, A.; Lothenbach, B.; Winnefeld, F.; Haha, M.B.; Zajac, M.; Ludwig, H.M. Early Hydration of SCM-Blended Portland Cements: A Pore Solution and Isothermal Calorimetry Study. Cem. Concr. Res. 2017, 93, 71–82. [Google Scholar] [CrossRef]
- da Silva, D.M.G.; Cappellesso, V.G.; Garcia, M.G.L.; Masuero, A.B.; Molin, D.C.C.D. Calcium Hydroxide Influence in Autogenous Self-Healing of Cement-Based Materials in Various Environmental Conditions. Ambiente Construído 2021, 21, 209–224. [Google Scholar] [CrossRef]
- ABNT. 16697—Portland Cement—Requirements; ABNT: São Paulo, Brazil, 2018; pp. 1–12. [Google Scholar]
- ABNT. 7211—Aggregates for Concrete—Specification; ABNT: São Paulo, Brazil, 2009; pp. 1–9. [Google Scholar]
- ABNT. NM 52—Fine Aggregate—Determination of the Bulk Specific Gravity and Apparent Specific Gravity; ABNT: São Paulo, Brazil, 2002; pp. 3–14. [Google Scholar]
- ABNT. NM 30—Fine Aggregate—Test Method for Water Absorption; ABNT: São Paulo, Brazil, 2000; pp. 1–9. [Google Scholar]
- ABNT. 13276—Mortars Applied on Walls and Ceilings—Determination of the Consistence Index; ABNT: São Paulo, Brazil, 2016; pp. 1–6. [Google Scholar]
- Arndt, J.A. Avaliação de Concretos de Cimento Portland Com Aditivos Cristalizantes; Federal University of Rio Grande do Sul (UFRGS): Porto Alegre, Brazil, 2019. [Google Scholar]
- Petry, N.d.S. Influência dos Ambientes de Exposição no Fenômeno da Autocicatrização de Fissuras com Idades Variadas em Concretos de Cimento Portland com Diferentes Resistências. Ph.D. Thesis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2021. [Google Scholar]
- Ziegler, F.; Masuero, A.B.; Pagnussat, D.T.; dal Molin, D.C.C. Evaluation of Internal and Superficial Self-Healing of Cracks in Concrete with Crystalline Admixtures. Materials 2020, 13, 4947. [Google Scholar] [CrossRef] [PubMed]
- ABNT. 7215—Portland Cement—Determination of Compressive Strength of Cylindrical Test Specimens; ABNT: São Paulo, Brazil, 2019; pp. 1–12. [Google Scholar]
- ASTM. C109/C109M—Standard Test Method for Compressive Strength or Hydraulic Cement Mortars (Using 2-in. or [50 Mm] Cube Specimens); ASTM: West Conshohocken, PA, USA, 2021. [Google Scholar] [CrossRef]
- ABNT. Concrete and Mortar—Determination of the Tension Strength by Diametrical Compression of Cylindrical Test Specimens; ABNT: São Paulo, Brazil, 2011. [Google Scholar]
- Garay, T.M.; Borowski, J.V.B.; Silva, D.M.G.d; Petry, N.d.S.; Masuero, A.B.; Molin, D.C.C.D. Self-Healing Evaluaon by Opcal Microscope: An Approach to Image Acquision, Processing and Analysis. In Proceedings of the Congresso Internacional Sobre Patologia e Reabilitação das Construções, Fortaleza, Brazil, 3–5 June 2021; Universidade Federal do Ceará: Fortaleza, Brazil, 2021; pp. 1298–1306. [Google Scholar]
- Tan, L.; Ke, X.; Li, Q.; Gebhard, S.; Ferrandiz-Mas, V.; Paine, K.; Chen, W. The Effects of Biomineralization on the Localised Phase and Microstructure Evolutions of Bacteria-Based Self-Healing Cementitious Composites. Cem. Concr. Compos. 2022, 128, 104421. [Google Scholar] [CrossRef]
- Scrivener, K.; Snellings, R.; Lothenbach, B. A Practical Guide to Microstructural Analysis of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781498738651. [Google Scholar]
- Cuenca, E.; Tejedor, A.; Ferrara, L. A Methodology to Assess Crack-Sealing Effectiveness of Crystalline Admixtures under Repeated Cracking-Healing Cycles. Constr. Build. Mater. 2018, 179, 619–632. [Google Scholar] [CrossRef]
- Maes, M.; Snoeck, D.; De Belie, N. Chloride Penetration in Cracked Mortar and the Influence of Autogenous Crack Healing. Constr. Build. Mater. 2016, 115, 114–124. [Google Scholar] [CrossRef]
- González, Á.; Parraguez, A.; Corvalán, L.; Correa, N.; Castro, J.; Stuckrath, C.; González, M. Evaluation of Portland and Pozzolanic Cement on the Self-Healing of Mortars with Calcium Lactate and Bacteria. Constr. Build. Mater. 2020, 257, 119558. [Google Scholar] [CrossRef]
- Galishnikova, V.V.; Elroba, S.H.; Nassar, M.; Sakna, A. Self-Healing Bacterial Mortar with Calcium Lactate and Improved Properties. Mag. Civ. Eng. 2021, 105, 10503. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.A.; Sufe, W.H. Effect of Sewage Wastes on the Physico-Mechanical Properties of Cement and Reinforced Steel. Ain Shams Eng. J. 2013, 4, 387–391. [Google Scholar] [CrossRef]
- Kuntz, C.; Weickenmeier, H.; Börnhorst, M.; Deutschmann, O. Deposition and Decomposition of Urea and Its By-Products on TiO2 and VWT-SCR Catalysts. Int. J. Heat Fluid Flow 2022, 95, 108969. [Google Scholar] [CrossRef]
Cement | Sand | w/c | fc3 ± SD (MPa) * | fc28 ± SD (MPa) * | Consistency (cm) |
---|---|---|---|---|---|
1.00 | 1.37 | 0.40 | 33.56 ± 1.68 | 43.76 ± 1.78 | 35.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurente-Silva, D.G.; Borowski, J.V.B.; Cappellesso, V.G.; Vainstein, M.H.; Masuero, A.B.; Dal Molin, D.C.C. Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material. Buildings 2024, 14, 3782. https://doi.org/10.3390/buildings14123782
Maurente-Silva DG, Borowski JVB, Cappellesso VG, Vainstein MH, Masuero AB, Dal Molin DCC. Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material. Buildings. 2024; 14(12):3782. https://doi.org/10.3390/buildings14123782
Chicago/Turabian StyleMaurente-Silva, Deividi Gomes, João Vitor Bitencourt Borowski, Vanessa Giaretton Cappellesso, Marilene Henning Vainstein, Angela Borges Masuero, and Denise Carpena Coitinho Dal Molin. 2024. "Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material" Buildings 14, no. 12: 3782. https://doi.org/10.3390/buildings14123782
APA StyleMaurente-Silva, D. G., Borowski, J. V. B., Cappellesso, V. G., Vainstein, M. H., Masuero, A. B., & Dal Molin, D. C. C. (2024). Effect of Exposure Environment and Calcium Source on the Biologically Induced Self-Healing Phenomenon in a Cement-Based Material. Buildings, 14(12), 3782. https://doi.org/10.3390/buildings14123782