Design Optimization of Energy-Efficient Residential Buildings in Morocco
Abstract
:1. Introduction
- An evident housing deficit expressed by a continuous building stock production over the past 10 years in the country, as depicted in Figure 3;
- An increasing use of energy-intensive equipment in buildings, including appliances, as well as space heating, air conditioning, and domestic hot water heating, due to the improvement in living standards and reduction in deployment costs of such equipment [5].
2. Analysis Methodology
2.1. Description of the Prototypical Residential Building
2.2. Climate Zones
2.3. Optimization Approach
2.3.1. Sequential Search Technique
2.3.2. Lifecycle Cost Analysis
- IC is the initial cost of implementing all design and operating features;
- EC is the annual energy cost required to maintain indoor comfort in the residential building;
- USPW is the uniform series present worth factor used to convert future recurrent costs into present costs and depends on discount rate rd and lifetime N as expressed by Equation (2), as follows:
3. Discussion
3.1. The Thermal Regulation Code of Morocco
- -
- Reducing the need for heating and air conditioning;
- -
- Improving the comfort of non-air-conditioned buildings;
- -
- Reducing the installed power of heating and air conditioning systems;
- -
- Reducing the building sector’s emissions of greenhouse gases.
3.2. Parametric Analysis Results
3.2.1. Effect of Envelope Insulation
- -
- The reference building without any insulation in the walls and roof;
- -
- Scenario 1: the addition of 2 cm-thick polystyrene layers to both the walls and roof;
- -
- Scenario 2: the addition of 3 cm-thick polystyrene layers to both the walls and roof;
- -
- Scenario 3: the addition of 4 cm-thick polystyrene layers to both the walls and roof.
3.2.2. Effect of Window Size
3.3. Optimal Designs
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Outlook 2023—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/outlooks/ieo/narrative/index.php (accessed on 2 April 2024).
- GlobalABC IEA. Global Status Report for Buildings and Construction: Towards a Zero Emissions, Efficient and Resilient Buildings and Construction Sector; Global Alliance for Buildings and Construction International Energy Agency UN Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Nicholas Howarth IEAE. Energy Efficiency Market Report 2022; Int Energy Agency: Paris, France, 2022. [Google Scholar]
- Moroccan Ministry of Energy, Mines, Water and Environment. National Energy Efficiency Strategy for 2030; Moroccan Ministry of Energy, Mines, Water and Environment: Rabat, Morocco, 2020. [Google Scholar]
- Plan Cadre National pour la Consommation et Production Durables Maroc. Programme SwitchMed Financé par l’Union Européenne, Ministère Délégué Chargé de l’Environnement. 2016. Available online: https://switchmed.eu/wp-content/uploads/2020/04/01.-SCP-NAP-Morocco-in-french.pdf (accessed on 1 January 2024).
- Principaux Indicateurs du Secteur de l’Immobilier. 2012–2022. Available online: https://www.mhpv.gov.ma/fr/flash-indicateurs (accessed on 1 January 2024).
- Merini, I.; Molina-García, A.; García-Cascales, M.S.; Mahdaoui, M.; Ahachad, M. Analysis and Comparison of Energy Efficiency Code Requirements for Buildings: A Morocco–Spain Case Study. Energies 2020, 13, 5979. [Google Scholar] [CrossRef]
- Rabbah, A. Décret n°2-17-746 Relatif à L’audit Energétiq[ue Obligatoire et Aux Organismes D’audit Energétique. Bulletin Officiel N° 6774: Rabat, Morocco, 2019. [Google Scholar]
- Décret N° 213874 Du 20 Hija 1435 (15 Octobre 2014) Approuvant le Règlement Général de Construction Fixant les Règles de Performance Energétique des Constructions Et Instituant le Comité National de L’efficacité Energétique Dans le Bâtiment, Bulletin Officiel n° 6306 du 12 Moharrem 1436 (06/11/2014), Ministère de L’aménagement du Territoire Naional, de L’urbanisme et, de L’habitat et de la Politique de la Ville, Rabat, Morocco. Available online: https://www.mhpv.gov.ma/fr/5086-2/ (accessed on 1 January 2024).
- Manzano-Agugliaro, F.; Montoya, F.G.; Sabio-Ortega, A.; García-Cruz, A. Review of bioclimatic architecture strategies for achieving thermal comfort. Renew. Sustain. Energy Rev. 2015, 49, 736–755. [Google Scholar] [CrossRef]
- Fuentes, E.; Arce, L.; Salom, J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renew. Sustain. Energy Rev. 2018, 81, 1530–1547. [Google Scholar] [CrossRef]
- Ben Taher, M.A.; Benseddik, Z.; Afass, A.; Smouh, S.; Ahachad, M.; Mahdaoui, M. Energy life cycle cost analysis of various solar water heating systems under Middle East and North Africa region. Case Stud. Therm. Eng. 2021, 27, 101262. [Google Scholar] [CrossRef]
- Ben Taher, M.A.; Kousksou, T.; Zeraouli, Y.; Ahachad, M.; Mahdaoui, M. Energetic, economic and environmental analysis of domestic solar water heating systems under the African continent. Int. J. Environ. Sci. Technol. 2021, 19, 2279–2294. [Google Scholar] [CrossRef]
- Nwaji, G.N.; Okoronkwo, C.A.; Ogueke, N.V.; Anyanwu, E.E. Hybrid solar water heating/nocturnal radiation cooling system I: A review of the progress, prospects and challenges. Energy Build. 2019, 198, 412–430. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, H.; Lin, W. A review of heating, ventilation and air conditioning technologies and innovations used in solar-powered net zero energy Solar Decathlon houses. J. Clean. Prod. 2019, 240, 118158. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, S. Design optimization of building geometry and fenestration for daylighting and energy performance. Sol. Energy 2019, 191, 7–18. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D. Environmental and cost performance of building’s envelope insulation materials to reduce energy demand: Thickness optimisation. Energy Build. 2017, 150, 527–545. [Google Scholar] [CrossRef]
- Hamdaoui, S.; Mahdaoui, M.; Kousksou, T.; El Afou, Y.; Msaad, A.A.; Arid, A.; Ahachad, A. Thermal behaviour of wallboard incorporating a binary mixture as a phase change material. J. Build. Eng. 2019, 25, 100820. [Google Scholar] [CrossRef]
- Mahdaoui, M.; Hamdaoui, S.; Msaad, A.A.; Kousksou, T.; El Rhafiki, T.; Jamil, A.; Ahachad, M. Building bricks with phase change material (PCM): Thermal performances. Constr. Build. Mater. 2021, 269, 121315. [Google Scholar] [CrossRef]
- Hamdaoui, S.; Mahdaoui, M.; Allouhi, A.; El Alaiji, R.; Kousksou, T.; El Bouardi, A. Energy demand and environmental impact of various construction scenarios of an office building in Morocco. J. Clean. Prod. 2018, 188, 113–124. [Google Scholar] [CrossRef]
- Bamdad, K.; Matour, S.; Izadyar, N.; Omrani, S. Impact of climate change on energy saving potentials of natural ventilation and ceiling fans in mixed-mode buildings. Build. Environ. 2022, 209, 108662. [Google Scholar] [CrossRef]
- Prabhakar, M.; Saffari, M.; de Gracia, A.; Cabeza, L.F. Improving the energy efficiency of passive PCM system using controlled natural ventilation. Energy Build. 2020, 228, 110483. [Google Scholar] [CrossRef]
- Heracleous, C.; Michael, A. Experimental assessment of the impact of natural ventilation on indoor air quality and thermal comfort conditions of educational buildings in the Eastern Mediterranean region during the heating period. J. Build. Eng. 2019, 26, 100917. [Google Scholar] [CrossRef]
- Abanda, F.H.; Byers, L. An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling). Energy 2016, 97, 517–527. [Google Scholar] [CrossRef]
- De Vasconcelos, A.B.; Cabaço, A.; Pinheiro, M.D.; Manso, A. The impact of building orientation and discount rates on a Portuguese reference building refurbishment decision. Energy Policy 2016, 91, 329–340. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, X.; Yang, J.; Yoon, J.H. Impact of BIPV windows on building energy consumption in street canyons: Model development and validation. Energy Build. 2021, 249, 111207. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, H.; Hong, T.; Lee, M. Determining the optimal window size of office buildings considering the workers’ task performance and the building’s energy consumption. Build. Environ. 2020, 177, 106872. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, M. Multi-objective optimization for pavement maintenance and rehabilitation decision-making: A critical review and future directions. Autom. Constr. 2021, 130, 103840. [Google Scholar] [CrossRef]
- Li, Y.; Bonyadi, N.; Papakyriakou, A.; Lee, B. A hierarchical decomposition approach for multi-level building design optimization. J. Build. Eng. 2021, 44, 103272. [Google Scholar] [CrossRef]
- Razmi, A.; Rahbar, M.; Bemanian, M. PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort. Appl. Energy 2022, 305, 117828. [Google Scholar] [CrossRef]
- Jung, Y.; Heo, Y.; Lee, H. Multi-objective optimization of the multi-story residential building with passive design strategy in South Korea. Build. Environ. 2021, 203, 108061. [Google Scholar] [CrossRef]
- Romani, Z.; Draoui, A.; Allard, F. Metamodeling and multicriteria analysis for sustainable and passive residential building refurbishment: A case study of French housing stock. Build. Simul. 2022, 15, 453–472. [Google Scholar] [CrossRef]
- Evins, R. A review of computational optimisation methods applied to sustainable building design. Renew. Sustain. Energy Rev. 2013, 22, 230–245. [Google Scholar] [CrossRef]
- Nguyen, A.-T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building performance analysis. Appl. Energy 2014, 113, 1043–1058. [Google Scholar] [CrossRef]
- Machairas, V.; Tsangrassoulis, A.; Axarli, K. Algorithms for optimization of building design: A review. Renew. Sustain. Energy Rev. 2014, 31, 101–112. [Google Scholar] [CrossRef]
- Attia, S.; Hamdy, M.; O’Brien, W.; Carlucci, S. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy Build. 2013, 60, 110–124. [Google Scholar] [CrossRef]
- Abdou, N.; EL Mghouchi, Y.; Hamdaoui, S.; EL Asri, N.; Mouqallid, M. Multi-objective optimization of passive energy efficiency measures for net-zero energy building in Morocco. Build. Environ. 2021, 204, 108141. [Google Scholar] [CrossRef]
- Alaidroos, A.; Krarti, M. Optimal design of residential building envelope systems in the Kingdom of Saudi Arabia. Energy Build. 2015, 86, 104–117. [Google Scholar] [CrossRef]
- Alnaser, N.W. Building integrated renewable energy to achieve zero emission in Bahrain. Energy Build. 2015, 93, 32–39. [Google Scholar] [CrossRef]
- Ihm, P.; Krarti, M. Design optimization of energy efficient residential buildings in Tunisia. Build. Environ. 2012, 58, 81–90. [Google Scholar] [CrossRef]
- Bichiou, Y.; Krarti, M. Optimization of envelope and HVAC systems selection for residential buildings. Energy Build. 2011, 43, 3373–3382. [Google Scholar] [CrossRef]
- Romani, Z.; Draoui, A.; Allard, F. Metamodeling the heating and cooling energy needs and simultaneous building envelope optimization for low energy building design in Morocco. Energy Build. 2015, 102, 139–148. [Google Scholar] [CrossRef]
- Anderson, R.; Christensen, C.; Horowitz, S. Program Design Analysis Using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2006. [Google Scholar]
- Griego, D.; Krarti, M.; Hernández-Guerrero, A. Optimization of energy efficiency and thermal comfort measures for residential buildings in Salamanca, Mexico. Energy Build. 2012, 54, 540–549. [Google Scholar] [CrossRef]
- Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R. A Method for Determining Optimal Residential Energy Efficiency Packages; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2011. [Google Scholar]
- Spencer, J. Analysis of EnergyPlus for Use in Residential Building Energy Optimization. Master’s Thesis, University of Colorado Boulder, Boulder, CO, USA, 2010. [Google Scholar]
- Allouhi, A.; Rehman, S.; Krarti, M. Role of energy efficiency measures and hybrid PV/biomass power generation in designing 100% electric rural houses: A case study in Morocco. Energy Build. 2021, 236, 110770. [Google Scholar] [CrossRef]
- Alaoui, H.M.; Radoine, H.; Chenal, J.; Yakubu, H.; Bajja, S. Understanding the Urban Middle-Class and Its Housing Characteristics—Case Study of Casablanca, Morocco. Urban Sci. 2022, 6, 32. [Google Scholar] [CrossRef]
- Sebbar, A. Etude de la variabilité et de l’évolution de la pluviométrie au Maroc (1935–2005): Réactualisation de la carte des précipitations. Ph.D. Thesis, University Hassan II Mohammedia – Casablancain, Morocco, 2013. [Google Scholar] [CrossRef]
- Moroccan Agency for Energy Efficiency (AMEE). Thermal Regulation of Construction in Morocco—Simplified Version; Moroccan Agency for Energy Efficiency (AMEE): Rabat, Morocco, 2014. [Google Scholar]
- Meteotest. Meteonorm Software. Available online: http://www.meteonorm.com/en/meteonorm-version-8 (accessed on 9 April 2024).
- Luo, X.J.; Oyedele, L.O. Life cycle optimisation of building retrofitting considering climate change effects. Energy Build. 2022, 258, 111830. [Google Scholar] [CrossRef]
- Yahiaoui, A.; Benmansour, K.; Tadjine, M. Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria. Sol. Energy 2016, 137, 1–10. [Google Scholar] [CrossRef]
- Daouas, N. A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Appl. Energy 2011, 88, 156–164. [Google Scholar] [CrossRef]
- Jaber, S.; Ajib, S. Optimum, technical and energy efficiency design of residential building in Mediterranean region. Energy Build. 2011, 43, 1829–1834. [Google Scholar] [CrossRef]
- Znouda, E.; Ghrab-Morcos, N.; Hadj-Alouane, A. Optimization of Mediterranean building design using genetic algorithms. Energy Build. 2007, 39, 148–153. [Google Scholar] [CrossRef]
- Tuhus-Dubrow, D.; Krarti, M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build. Environ. 2010, 45, 1574–1581. [Google Scholar] [CrossRef]
- Diler, Y.; Turhan, C.; Durmuş Arsan, Z.; Gökçen Akkurt, G. Thermal comfort analysis of historical mosques. Case study: The Ulu mosque, Manisa, Turkey. Energy Build. 2021, 252, 111441. [Google Scholar] [CrossRef]
- Timur, B.A.; Başaran, T.; İpekoğlu, B. Thermal retrofitting for sustainable use of traditional dwellings in Mediterranean climate of southwestern Anatolia. Energy Build. 2022, 256, 111712. [Google Scholar] [CrossRef]
- Winkelmann, F.C.; Birdsall, B.E.; Buhl, W.F.; Ellington, K.L.; Erdem, A.E.; Hirsch, J.J.; Gates, S. DOE-2 Supplement Version 2.1 E, LBL-34947; Lawrence Berkeley Lab: Berkeley, CA, USA, 1993. [Google Scholar]
- National Renewable Energy Laboratory (NREL). EnergyPlus. Available online: https://energyplus.net/ (accessed on 6 June 2023).
- Si, B.; Wang, J.; Yao, X.; Shi, X.; Jin, X.; Zhou, X. Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms. Adv. Eng. Inform. 2019, 40, 93–109. [Google Scholar] [CrossRef]
- Waibel, C.; Evins, R.; Carmeliet, J. Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials. Appl. Energy 2019, 242, 1661–1682. [Google Scholar] [CrossRef]
- Ouarghi, R.; Krarti, M. Building Shape Optimization Using Neural Network and Genetic Algorithm Approach. Ashrae Trans. 2006, 112, 484. [Google Scholar]
- Consommation et Facture, Amendis. Available online: https://www.amendis.ma/fr/nos-activites/la-relation-client/grandes-entreprises-et-administrations/consommation-et-facture (accessed on 9 March 2024).
- Moroccan Agency for Energy Efficiency (AMEE). Technical Guide on Thermal Insulation of Buildings in Morocco; Moroccan Agency for Energy Efficiency (AMEE): Rabat, Morocco, 2014. [Google Scholar]
- Générateur de Prix—CYPE, CYPE. 2020. Available online: https://info.cype.com/fr/software/generateur-de-prix (accessed on 5 May 2024).
- Krarti, M.; Ihm, P. Evaluation of net-zero energy residential buildings in the MENA region. Sustain. Cities Soc. 2016, 22, 116–125. [Google Scholar] [CrossRef]
- Solargis. (n.d.). Global Solar Atlas. The World Bank Group. Available online: https://globalsolaratlas.info/download/morocco (accessed on 2 March 2024).
- Jäger, J. Étude du Potentiel de Développement de L’énergie Photovoltaïque Dans les Régions de Meknès-Tafilalet, Oriental et Souss-Massa-Drâa; GIZ GmbH: New Delhi, India, 2011. [Google Scholar]
- Felimban, A.; Knaack, U.; Konstantinou, T. Evaluating Savings Potentials Using Energy Retrofitting Measures for a Residential Building in Jeddah, KSA. Buildings 2023, 13, 1645. [Google Scholar] [CrossRef]
Materials | Thickness (m) | λ (W/m·°C) | CP (J/kg·°C) | ρ (kg/m3) | R Value (m2K/W) |
---|---|---|---|---|---|
Cement plaster | 0.015 | 0.42 | 1000 | 1800 | 4.48 |
Red brick | 0.07 | 0.34 | 1000 | 1800 | |
Air blade | 0.1 | 0.025 | 1012 | 1 | |
Red brick | 0.07 | 0.34 | 1000 | 1800 | |
Cement plaster | 0.015 | 0.42 | 1000 | 1800 |
Materials | Thickness (m) | λ (W/m·°C) | CP (J/kg·°C) | ρ (kg/m3) | R Value (m2K/W) |
---|---|---|---|---|---|
Tile | 0.007 | 1.4 | 1000 | 2500 | 0.35 |
Chape | 0.015 | 0.42 | 1000 | 1800 | |
Reinforced concrete | 0.04 | 2.3 | 1000 | 2350 | |
hollow block | 0.16 | 0.6 | 880 | 1000 | |
Cement plaster | 0.015 | 0.42 | 1000 | 1800 |
Materials | Thickness (m) | λ (W/m·°C) | CP (J/kg·°C) | ρ (kg/m3) | R Value (m2K/W) |
---|---|---|---|---|---|
Tile | 0.007 | 1.4 | 1000 | 2500 | 0.10 |
Chape | 0.015 | 0.42 | 1000 | 1800 | |
Reinforced concrete | 0.04 | 2.3 | 1000 | 2350 |
Climate Zone | Representative City | Maximum Annual Loads Allowed (kWh/m2/year) |
---|---|---|
Z1 | Agadir | 40 |
Z2 | Tangier | 46 |
Z3 | Fez | 48 |
Z4 | Ifrane | 64 |
Z5 | Marrakech | 61 |
Z6 | Errachidia | 65 |
Climate Zone | Window-to-Wall Ratio (WWR) | U-Value of Roofs (W/m2·K) | U-Value of Exterior Walls (W/m2·K) | U-Value of Windows (W/m2·K) | Minimum R Value of Floor on Slab (m2·k/W) | Glazing Solar Factor |
---|---|---|---|---|---|---|
Z1: Agadir | ≤15% | ≤0.75 | ≤1.20 | ≤5.80 | Unrequired | Unrequired |
16–25% | ≤0.75 | ≤1.20 | ≤5.80 | Unrequired | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.75 | ≤1.20 | ≤3.30 | Unrequired | North: Unrequired Other: ≤0.5 | |
36–45% | ≤0.65 | ≤1.20 | ≤3.30 | Unrequired | North: ≤0.7 Other: ≤0.3 | |
Z2: Tangier | ≤15% | ≤0.75 | ≤0.80 | ≤5.80 | Unrequired | Unrequired |
16–25% | ≤0.65 | ≤0.80 | ≤3.30 | Unrequired | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.65 | ≤0.70 | ≤3.30 | Unrequired | North: Unrequired Other: ≤0.5 | |
36–45% | ≤0.55 | ≤0.60 | ≤2.60 | Unrequired | North: ≤0.7 Other: ≤0.3 | |
Z3: Fez | ≤15% | ≤0.65 | ≤0.80 | ≤3.30 | ≥0.75 | Unrequired |
16–25% | ≤0.65 | ≤0.80 | ≤3.30 | ≥0.75 | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.65 | ≤0.70 | ≤2.60 | ≥0.75 | North: Unrequired Other: ≤0.5 | |
36–45% | ≤0.55 | ≤0.60 | ≤1.90 | ≥0.75 | North: ≤0.7 Other: ≤0.5 | |
Z4: Ifrane | ≤15% | ≤0.55 | ≤0.60 | ≤3.30 | ≥1.25 | Unrequired |
16–25% | ≤0.55 | ≤0.60 | ≤3.30 | ≥1.25 | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.55 | ≤0.60 | ≤2.60 | ≥1.25 | North: ≤0.7 Other: ≤0.6 | |
36–45% | ≤0.49 | ≤0.55 | ≤1.90 | ≥1.25 | North: ≤0.6 Other: ≤0.5 | |
Z5: Marrakech | ≤15% | ≤0.65 | ≤0.80 | ≤3.30 | ≥1.00 | Unrequired |
16–25% | ≤0.65 | ≤0.70 | ≤3.30 | ≥1.00 | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.55 | ≤0.60 | ≤2.60 | ≥1.00 | North: ≤0.6 Other: ≤0.4 | |
36–45% | ≤0.49 | ≤0.55 | ≤1.90 | ≥1.00 | North: ≤0.5 Other: ≤0.3 | |
Z6: Errachidia | ≤15% | ≤0.65 | ≤0.80 | ≤3.30 | ≥1.00 | Unrequired |
16–25% | ≤0.65 | ≤0.70 | ≤3.30 | ≥1.00 | North: Unrequired Other: ≤0.7 | |
26–35% | ≤0.55 | ≤0.60 | ≤2.60 | ≥1.00 | North: ≤0.6 Other: ≤0.4 | |
36–45% | ≤0.49 | ≤0.55 | ≤1.90 | ≥1.00 | North: ≤0.5 Other: ≤0.3 |
City (Climate Zone) | Present Energy Savings Relative to the Reference Design (i.e., no Insulation in Walls or Roof) | ||
---|---|---|---|
2-cm Polystyrene | 3-cm Polystyrene | 3-cm Polystyrene | |
Agadir (Zone 1) | 12.16 | 20.27 | 24.54 |
Tangier (Zone 2) | 7.14 | 13.54 | 17.16 |
Fez (Zone 3) | 7.48 | 14.56 | 18.64 |
Ifrane (Zone 4) | 6.95 | 14.63 | 19.53 |
Marrakech (Zone 5) | 7.33 | 13.47 | 17.69 |
Errachidia (Zone 6) | 5.15 | 12.98 | 16.97 |
City (Climate Zone) | Percent Reduction in Annual Energy Demand | |
---|---|---|
WWR = 10%/WWR = 25% | WWR = 10%/WWR = 40% | |
Agadir (Zone 1) | 31.67 | 49.6 |
Tangier (Zone 2) | 21.03 | 36.71 |
Fez (Zone 3) | 15.70 | 29.22 |
Ifrane (Zone 4) | 5.08 | 12.13 |
Marrakech (Zone 5) | 51.16 | 61.36 |
Errachidia (Zone 6) | 30.39 | 35.27 |
Design Features | Options | Implementation Costs (USD) | |
---|---|---|---|
Orientation of the building | 0° | USD 0 for all options | |
45° | |||
90° | |||
135° | |||
180° | |||
225° | |||
270° | |||
Insulation Level for the Exterior Walls | No insulation | USD 26.53/m2 | |
Extruded Polystyrene (2 cm) | USD 33.36/m2 | ||
Extruded Polystyrene (4 cm) | USD 35.03/m2 | ||
Extruded Polystyrene (6 cm) | USD 36.62/m2 | ||
Insulation Level for the Roof | No insulation | USD 74,07/m2 | |
Extruded Polystyrene (2 cm) | USD 80.9/m2 | ||
Extruded Polystyrene (4 cm) | USD 82.57/m2 | ||
Extruded Polystyrene (6 cm) | USD 84.16/m2 | ||
Window Size (WWR) | 25% | USD 0 for all options | |
Scenario 1: 10% | |||
Scenario 2: 20% | |||
Scenario 3: 30% | |||
Scenario 4: 40% | |||
Window Glazing type | Single clear (6 mm; U = 6.17 W/m2·°C FGS = 0.82) | USD 14.86/m2 | |
Single bronze (6 mm; U = 6.17 W/m2·°C; FGS = 0.61) | USD 24.41/m2 | ||
Single low-e (6 mm; U = 4.27 W/m2·°C; FGS = 0.5) | USD 46.7/m2 | ||
Double clear (6/12/6; U = 3.163 W/m2·°C; FGS = 0.72) | USD 21.23/m2 | ||
Double bronze (6/12/6; U = 3.16 W/m2·°C; FGS = 0.49) | USD 31.84/m2 | ||
Double low-e (6/12/6; U = 1.65 W/m2·°C; FGS = 0.61) | USD 100.83/m2 | ||
Lighting Power Use | Typical (7.3 W/m2) | USD 0.42/m2 | |
30% reduction | USD 0.74/m2 | ||
50% reduction | USD 1.16/m2 | ||
70% reduction | USD 1.59/m2 | ||
Air Leakage (ACH) | Typical (0.84 ACH) | USD 0/m2 | |
25% reduction | USD 0.7/m2 | ||
50% reduction | USD 1.4/m2 | ||
75% reduction | USD 2.09/m2 | ||
Heating Setpoint Temperature | 22 °C | USD 0 for all options | |
20 °C | |||
18 °C | |||
Cooling Setpoint Temperature | 26 °C | USD 0 for all options | |
25 °C | |||
24 °C | |||
Power Rating for the Refrigerator | 412 kWh/an | USD 360/unit | |
(20% reduction) | USD 529/unit | ||
(40% reduction) | USD 740/unit | ||
(60% reduction) | USD 1270/unit | ||
Efficiency for Heating/Air Conditioning Systems | COP = 2.6 | EER = 2.85 | USD 7407.41/unit |
COP = 3 | EER = 3.25 | USD 8465.61/unit | |
COP= 3.3 | EER = 3.60 | USD 9523.81/unit | |
COP = 3.5 | EER = 3.85 | USD 10,582/unit |
Climate Zone/City | PV Power Capacity (kW) | Number of PV Panels | PV Installation Cost (USD) |
---|---|---|---|
Z1/Agadir | 1.92 | 7 | 11,530 |
Z2/Tangier | 2.94 | 11 | 13,717 |
Z3/Fez | 3.91 | 14 | 16,856 |
Z4/Ifrane | 6 | 22 | 25,731 |
Z5/Marrakech | 5.84 | 21 | 25,191 |
Z6/Errachidia | 5.97 | 22 | 25,731 |
City (Climatezone) | LCC Optimum Design | LCCreference/LCCoptimal (%) | LCCRTCM/LCCoptimal (%) | |
---|---|---|---|---|
LCC (USD) | Energy Savings (%) | |||
Agadir (Zone 1) | 87,503 | 51 | 22.98 | 22.91 |
Tangier (Zone 2) | 89,383 | 53 | 23.94 | 22.71 |
Fez (Zone 3) | 92,162 | 60 | 30.50 | 19.68 |
Ifrane (Zone 4) | 101,131 | 67 | 33.80 | 18.79 |
Marrakech (Zone 5) | 96,970 | 54 | 24.29 | 13.00 |
Errachidia (Zone 6) | 105,730 | 56 | 29.31 | 9.24 |
Design Feature | Agadir | Tangier | Fez | Marrakech | Ifrane | Errachidia |
---|---|---|---|---|---|---|
Orientation of the Building | 180° (North) | 0° (South) | 0° (South) | 0° (South) | 0° (South) | 0° (South) |
Insulation Level for Exterior Walls | No insulation | Extruded Polystyrene (2 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) |
Insulation Level for Roof | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) | Extruded Polystyrene (6 cm) |
Window Size (WWR) | WWR = 10% | WWR = 10% | WWR = 10% | WWR = 10% | WWR = 10% | WWR = 10% |
Window Glazing Type | Single clear | Single clear | Single clear | Double bronze | Double low-e | Double bronze |
Lighting Type | 100% CFL | 100% CFL | 100% CFL | 100% CFL | 100% CFL | 100% CFL |
Refrigerator Energy Rating | A++ | A | A++ | A+++ | A+ | A+++ |
Air Leakage (ACH) | 0.84 ACH | 0.21 ACH | 0.21 ACH | 0.21 ACH | 0.21 ACH | 0.21 ACH |
Heating Setpoint Temperature | 18 °C | 18 °C | 18 °C | 18 °C | 18 °C | 18 °C |
Cooling Setpoint Temperature | 26 °C | 26 °C | 26 °C | 26 °C | 26 °C | 26 °C |
Energy Efficiency for Heating (COP)/Air Conditioning (EER) | COP = 2.6 EER = 2.85 | COP = 2.6 EER = 2.85 | COP = 2.6 EER = 2.85 | COP = 2.6 EER = 2.85 | COP = 2.6 EER = 2.85 | COP = 2.6 EER = 2.85 |
Energy Saving (%) | % LCC Increase (+)/Decrease (−) Compared to the Reference Design | ||||
---|---|---|---|---|---|
Climate Zone: City | RTCM | Optimal Point | RTCM | Optimal Point | NZEB Design |
Z1: Agadir | 8.63 | 51 | −0.17 | −18.7 | +0.7 |
Z2: Tangier | 10 | 53 | −1 | −19 | +1.8 |
Z3: Fez | 39 | 60 | −7 | −23 | −0.7 |
Z4: Ifrane | 41 | 66 | −9.2 | −25 | +2.6 |
Z5: Marrakech | 15 | 54 | −8 | −19.5 | +10 |
Z6: Errachidia | 38 | 56 | −16 | −23 | +5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boumlik, K.; Belarbi, R.; Ahachad, M.; Mahdaoui, M.; Radoine, H.; Krarti, M. Design Optimization of Energy-Efficient Residential Buildings in Morocco. Buildings 2024, 14, 3915. https://doi.org/10.3390/buildings14123915
Boumlik K, Belarbi R, Ahachad M, Mahdaoui M, Radoine H, Krarti M. Design Optimization of Energy-Efficient Residential Buildings in Morocco. Buildings. 2024; 14(12):3915. https://doi.org/10.3390/buildings14123915
Chicago/Turabian StyleBoumlik, Karim, Rafik Belarbi, Mohammed Ahachad, Mustapha Mahdaoui, Hassan Radoine, and Moncef Krarti. 2024. "Design Optimization of Energy-Efficient Residential Buildings in Morocco" Buildings 14, no. 12: 3915. https://doi.org/10.3390/buildings14123915
APA StyleBoumlik, K., Belarbi, R., Ahachad, M., Mahdaoui, M., Radoine, H., & Krarti, M. (2024). Design Optimization of Energy-Efficient Residential Buildings in Morocco. Buildings, 14(12), 3915. https://doi.org/10.3390/buildings14123915