Time Domain Nonlinear Dynamic Analysis of Vertically Loaded Tapered Pile in Layered Soils
Abstract
:1. Introduction
2. Vertical Vibration of Tapered Piles in Layered Soils
2.1. Vertical Vibration Analysis Model
- (1)
- It is assumed that the pile is elastic, the surface of the pile is always boned to the soil, the pile deformation exists only in the y-z plane and the displacement perpendicular to the pile is neglected, as shown in Figure 2.
- (2)
- It is assumed that the soil is distributed in layers, and the height of the pile discretization is the same as that of the soil discretization. The pile–soil interaction was simulated as a continuous series of separate soil springs and dampers distributed around the pile shaft.
- (3)
- It is assumed that the vertical harmonic load acts on the pile top, and the vertical vibration mode of the pile also exhibits a harmonic vibration mode.
- (4)
- It is assumed that each layer of soil is isotopically homogeneous. The soil around the pile is assumed to be a plane strain model with no forces on the surface of the soil.
2.2. Nonlinear Analysis Model
3. Validation and Sensitivity Analysis
3.1. Validation
3.2. Sensitivity Analysis
4. Parameter Discussion
4.1. Effect of Taper Angle on the Nonlinear Dynamic Response of the Tapered Pile
4.2. Effect of Soil Elastic Modulus on the Nonlinear Dynamic Response of the Tapered Pile
4.3. Effect of Soil Stratification on the Nonlinear Dynamic Response of the Tapered Pile
5. Conclusions
- (1)
- The simplified analytical model proposed in this study can effectively obtain the nonlinear dynamic properties of the vertically loaded tapered piles, and it can ensure high computational accuracy when the pile–soil segment n is equal to 200, which also greatly reduces the computational cost.
- (2)
- The taper angle and soil elastic modulus are the principal factors affecting the nonlinear dynamic response of vertically loaded tapered piles. The dynamic response of the tapered pile decreases with an increase in the taper angle or a decrease in the pile–soil elastic modulus ratio.
- (3)
- For the constant volume tapered pile, the vertical dynamic response decreases more significantly when keeping the pile end radius constant as compared to when keeping the pile length constant.
- (4)
- The soil stratification has a great influence on the nonlinear dynamic characteristics of vertically loaded tapered piles, especially the properties of the upper soil layer along the pile shaft.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conte, E.; Pugliese, L.; Troncone, A.; Vena, M. A simple approach for evaluating the bearing capacity of piles subjected to inclined loads. Int. J. Geomech. 2021, 21, 04021224. [Google Scholar] [CrossRef]
- Tamboura, H.H.; Isobe, K.; Ohtsuka, S. End bearing capacity of a single incompletely end-supported pile based on the rigid plastic finite element method with non-linear strength property against confining stress. Soils Found. 2022, 62, 101182. [Google Scholar] [CrossRef]
- Wei, J.; El Naggar, M.H. Experimental study of axial behaviour of tapered piles. Can. Geotech. J. 1998, 35, 641–654. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.H. Experimental study on the bearing capacity of wedge pile. J. Tianjin Univ. (Sci. Technol.) 2002, 35, 257–260. (In Chinese) [Google Scholar]
- Jiang, J.P.; Gao, G.Y.; Gu, B.H. Comparison of belled pile, tapered pile and equal diameter pile. Chin. J. Geotech. Eng. 2003, 25, 764–766. (In Chinese) [Google Scholar]
- El Naggar, M.H.; Sakr, M. Cyclic response of axially loaded tapered piles. Int. J. Phys. Model. Geotech. 2002, 2, 1–12. [Google Scholar]
- Hataf, N.; Shafaghat, A. Optimizing the bearing capacity of tapered piles in realistic scale using 3D finite element method. Geotech. Geol. Eng. 2005, 33, 1465–1473. [Google Scholar] [CrossRef]
- Vali, R.; Mehrinejad Khotbehsara, E.; Saberian, M.; Li, J.; Mehrinejad, M.; Jahandariet, S. A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles. Int. J. Geotech. Eng. 2019, 13, 236–248. [Google Scholar] [CrossRef]
- Shafaghat, A.; Khabbaz, H. Recent advances and past discoveries on tapered pile foundations: A review. Geomech. Geoengin. 2022, 17, 455–484. [Google Scholar] [CrossRef]
- Sudhendu, S.; Ghosh, D.P. Vertical vibration of tapered piles. J. Geotech. Eng. ASCE 1986, 112, 290–302. [Google Scholar]
- Xie, J.; Vaziri, H.H. Vertical vibration of nonuniform piles. J. Eng. Mech. ASCE 1991, 117, 1105–1118. [Google Scholar] [CrossRef]
- Wu, W.B.; Wang, K.H.; Dou, B. Vertical dynamic response of a viscoelastic tapered pile embedded in layered foundation. J. Vib. Shock 2013, 32, 120–127. (In Chinese) [Google Scholar]
- Wang, K.H.; Tong, W.F.; Xiao, C.; Wu, B.J. Study on dynamic response of tapered pile and model test. J. Hunan Univ. (Nat. Sci.) 2019, 46, 94–102. (In Chinese) [Google Scholar]
- Michaelides, O.; Gazetas, G.; Bouckovalas, G.; Chrysikou, E. Approximate non-linear dynamic axial response of piles. Géotechnique 1998, 48, 33–53. [Google Scholar] [CrossRef]
- Singh, S.; Patra, N.R. Free and forced vibration analyses of tapered piles under axial harmonic Loads. Int. J. Geomech. 2021, 21, 04021023. [Google Scholar] [CrossRef]
- Padrón, L.A.; Aznárez, J.J.; Maeso, O. Dynamic analysis of piled foundations in stratified soils by a BEM–FEM model. Soil. Dyn. Earthq. Eng. 2008, 28, 333–346. [Google Scholar] [CrossRef]
- He, C.; Zhou, S.H.; Guo, P.J.; Di, H.G.; Zhang, X.H. Analytical model for vibration prediction of two parallel tunnels in a full-space. J. Sound Vib. 2018, 423, 306–321. [Google Scholar] [CrossRef]
- Liu, J.; He, J.; Wu, Y.P.; Yang, Q.G. Load transfer behaviour of a tapered rigid pile. Géotechnique 2012, 62, 649–652. [Google Scholar] [CrossRef]
- Ghazavi, M. Analysis of kinematic seismic response of tapered piles. Geotech. Geol. Eng. 2007, 25, 37–44. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, D.; Zhang, Y.G.; Cai, W. Vertical impedance of a tapered pile in inhomogeneous saturated soil described by fractional viscoelastic model. Appl. Math. Model. 2019, 75, 88–100. [Google Scholar] [CrossRef]
- Hu, J.; Tu, W.B.; Gu, X.Q. A simple approach for the dynamic analysis of a circular tapered pile under axial harmonic vibration. Buildings 2023, 13, 999. [Google Scholar] [CrossRef]
- Huang, M.S.; Tu, W.B.; Gu, X.Q. Time domain nonlinear lateral response of dynamically loaded composite caisson-piles foundations in layered cohesive soils. Soil. Dyn. Earthq. Eng. 2018, 106, 113–130. [Google Scholar] [CrossRef]
- El Naggar, M.H.; Novak, M. Non-linear model for dynamic axial pile response. J. Geotech. Eng. 1994, 120, 308–329. [Google Scholar] [CrossRef]
- Zhang, Y. A finite difference method for fractional partial differential equation. Appl. Math. Comput. 2009, 215, 524–529. [Google Scholar] [CrossRef]
- Gazetas, G.; Makris, N. Dynamic pile-soil-pile interaction. Part I: Analysis of axial vibration. Earthq. Eng. Struct. Dyn. 1991, 20, 115–132. [Google Scholar] [CrossRef]
- Makris, N.; Gazetas, G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response. Earthq. Eng. Struct. Dyn. 1992, 21, 145–162. [Google Scholar] [CrossRef]
- Gazetas, G.; Fan, K.; Kaynia, A. Dynamic response of pile groups with different configurations. Soil Dyn. Earthq. Eng. 1993, 12, 239–257. [Google Scholar] [CrossRef]
- Lysmer, J.; Richart Jr, F.E. Dynamic response of footings to vertical loading. J. Soil Mech. Found. Div. 1966, 92, 65–91. [Google Scholar] [CrossRef]
- Hardin, B.O.; Drnevich, V.P. Shear modulus and damping in soils: Design equations and curves. J. Soil Mech. Found. Div. 1972, 98, 667–692. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Zhang, Z.M.; He, J.Y. A simplified approach for settlement analysis of single pile and pile groups considering interaction between identical piles in multilayered soils. Comput. Geotech. 2010, 37, 969–976. [Google Scholar] [CrossRef]
- Tu, W.B.; Huang, M.S.; Gu, X.Q.; Chen, H.P.; Liu, Z.H. Experimental and analytical investigations on nonlinear dynamic response of caisson-pile foundations under horizontal excitation. Ocean Eng. 2020, 208, 107431. [Google Scholar] [CrossRef]
- Kagawa, T.; Kraft, L.M. Lateral load-deflection relationships of piles subjected to dynamic loadings. Soils Found. 1980, 20, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.B.; Gu, X.Q.; Chen, H.P.; Fang, T.; Geng, D.X. Time domain nonlinear kinematic seismic response of composite caisson-piles foundation for bridge in deep water. Ocean Eng. 2021, 235, 109398. [Google Scholar] [CrossRef]
- Yu, J.; Huang, M.S.; Li, S.; Leung, C.F. Load-displacement and upper-bound solutions of a loaded laterally pile in clay based on a total-displacement-loading EMSD method. Comput. Geotech. 2017, 83, 64–76. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
- Bryden, C.; Arjomandi, K.; Valsangkar, A. Dynamic Axial Stiffness and Damping Parameters of Tapered Piles. Int. J. Geomech. 2018, 18, 06018014. [Google Scholar] [CrossRef]
- Ghazavi, M. Response of tapered piles to axial harmonic loading. Can. Geotech. J. 2008, 45, 1622–1628. [Google Scholar] [CrossRef]
- Troncone, A.; Pugliese, L.; Parise, A.; Conte, E. A simple method to reduce mesh dependency in modelling landslides involving brittle soils. Géotech. Lett. 2022, 12, 167–173. [Google Scholar] [CrossRef]
- Baek, J.; Schlinkman, R.T.; Beckwith, F.N.; Chen, J.S. A deformation-dependent coupled Lagrangian/semi-Lagrangian meshfree hydromechanical formulation for landslide modeling. Adv. Model. Simul. Eng. Sci. 2022, 9, 1–35. [Google Scholar] [CrossRef]
- Dehghanpoor, A.; Ghazavi, M. Response of tapered piles under lateral harmonic vibrations. Geomate J. 2012, 2, 261–265. [Google Scholar] [CrossRef]
- Singh, S.; Patra, N.R. Lateral dynamic response of tapered pile embedded in a cross-anisotropic medium. J. Earthq. Eng. 2022, 26, 5826–5847. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Yu, J.; Zhen, C.T.; Qi, Z.B.; Song, B.X. Analytical solution for longitudinal dynamic complex impedance of tapered pile. Chin. J. Geotech. Eng. 2011, 33, 392–398. (In Chinese) [Google Scholar]
- Wu, W.B.; Wang, K.H.; Wu, D.H.; Ma, B.N. Study of dynamic longitudinal impedance of tapered pile considering lateral inertial effect. Chin. J. Rock Mech. Eng. 2011, 30, 3618–3625. (In Chinese) [Google Scholar]
- El Naggar, M.H.; Bentley, K.J. Dynamic analysis for laterally loaded piles and dynamic p-y curves. Can. Geotech. J. 2000, 37, 1166–1183. [Google Scholar] [CrossRef]
- Gao, L.; Wang, K.H.; Xiao, S.; Wu, J.T.; Wang, N. Vertical impedance of tapered piles considering the vertical reaction of surrounding soil and construction disturbance. Mar. Georesour. Geotechnol. 2017, 35, 1068–1076. [Google Scholar] [CrossRef]
- Kodikara, J.K.; Moore, I.D. Axial response of tapered piles in cohesive frictional ground. J. Geotech. Eng. 1993, 119, 675–693. [Google Scholar] [CrossRef]
- Khan, M.K.; El Naggar, M.H.; Elkasabgy, M. Compression testing and analysis of drilled concrete tapered piles in cohesive-frictional soil. Can. Geotech. J. 2008, 45, 377–392. [Google Scholar] [CrossRef]
- Li, H.; He, C.; Gong, Q.M.; Zhou, S.H.; Li, X.X.; Zou, C. TLM-CFSPML for 3D dynamic responses of a layered transversely isotropic half-space. Comput. Geotech. 2024, 168, 106131. [Google Scholar] [CrossRef]
- He, C.; Zhou, S.H.; Di, H.G.; Guo, P.J.; Xiao, J.H. Analytical method for calculation of ground vibration from a tunnel embedded in a multi-layered half-space. Comput. Geotech. 2018, 99, 149–164. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
Tapered pile | Pile length L | 2.5 |
Equivalent radius req | 0.1 m | |
Elastic modulus Ep | 20 GPa | |
Density ρp | 2400 kg/m3 | |
Soil | Shear wave velocity Vs | 82.5 m/s |
Shear modulus Gs | 12.5 MPa | |
Density ρs | 1800 kg/m3 | |
Poisson’s ratio v | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shua, Q.; Liu, K.; Li, J.; Tu, W. Time Domain Nonlinear Dynamic Analysis of Vertically Loaded Tapered Pile in Layered Soils. Buildings 2024, 14, 445. https://doi.org/10.3390/buildings14020445
Shua Q, Liu K, Li J, Tu W. Time Domain Nonlinear Dynamic Analysis of Vertically Loaded Tapered Pile in Layered Soils. Buildings. 2024; 14(2):445. https://doi.org/10.3390/buildings14020445
Chicago/Turabian StyleShua, Qiangqiang, Kexing Liu, Jingkai Li, and Wenbo Tu. 2024. "Time Domain Nonlinear Dynamic Analysis of Vertically Loaded Tapered Pile in Layered Soils" Buildings 14, no. 2: 445. https://doi.org/10.3390/buildings14020445
APA StyleShua, Q., Liu, K., Li, J., & Tu, W. (2024). Time Domain Nonlinear Dynamic Analysis of Vertically Loaded Tapered Pile in Layered Soils. Buildings, 14(2), 445. https://doi.org/10.3390/buildings14020445