Research Perspectives on Buildings’ Sustainability after COVID-19: Literature Review and Analysis of Changes
Abstract
:1. Introduction
2. Literature Review
2.1. Introduction to Sustainability and Sustainable Development
2.2. The Construction Industry and Approaches to Sustainability in the Global Context
2.3. The Intersection between Sustainability, Climate Change, and COVID-19
2.4. COVID-19 Implications of Environmental and Economic Sustainability
2.5. Renovations and Energy Efficiency Improvements in the Construction Sector
2.6. COVID-19 and Its Impact on the Global Supply Chain
3. Methodology
4. Results and Discussion
5. Conclusions and Future Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nässén, N.; Rambaree, K. Greta Thunberg and the Generation of Moral Authority: A Systematic Literature Review on the Characteristics of Thunberg’s Leadership. Sustainability 2021, 13, 11326. [Google Scholar] [CrossRef]
- Jackson, K. ‘Over to you’: Considering the purpose of education through a student-centred sustainability project. Aust. J. Environ. Educ. 2023, 39, 67–79. [Google Scholar] [CrossRef]
- Arch4Change Erasmus+ Project. Available online: https://www.arch4change.com/ (accessed on 20 December 2023).
- CE, New Rules for Greener and Smarter Buildings Will Increase Quality of Life for All Europeans. 2019. Available online: https://ec.europa.eu/info/news/new-rules-greener-and-smarter-buildings-will-increase-quality-life-alleuropeans-2019-apr-15_en (accessed on 14 March 2023).
- Report of the World Commission on Environment and Development—Our Common Future. 1987. Available online: https://www.are.admin.ch/are/en/home/media/publications/sustainable-development/brundtland-report.html (accessed on 26 December 2023).
- Global Construction 2030. Available online: https://www.databasedanalysis.com/global-construction-perspectives/ (accessed on 10 October 2023).
- Construction Market. Available online: https://www.vantagemarketresearch.com/industry-report/construction-market-0818 (accessed on 10 October 2023).
- Construction Industry Statistics. Available online: https://constructionblog.autodesk.com/construction-industry-statistics/#Rising-Costs (accessed on 12 October 2023).
- ISTAT. Rapporto Annuale 2022 La Situazione del PAESE; ISTAT (Istituto Nazionale di Statistica): Rome, Italy, 2022. [Google Scholar]
- UNI EN ISO 14006:2020; Sistemi di Gestione Ambientale—Linee Guida per l’Integrazione Dell’ecodesign. UNI: Rome, Italy, 2020. Available online: http://store.uni.com/catalogo/uni-en-iso-14006-2020 (accessed on 23 January 2023).
- UNI EN ISO 14008:2020; Valutazione Monetaria Degli Impatti Ambientali e Aspetti Ambientali Correlate. UNI: Rome, Italy, 2020. Available online: http://store.uni.com/catalogo/uni-en-iso-14008-2020 (accessed on 23 January 2023).
- European Commission, Directorate-General for Climate Action, EU-Level Technical Guidance on Adapting Buildings to Climate Change, Publications Office of the European Union, 2023. Available online: https://data.europa.eu/doi/10.2834/558395 (accessed on 5 January 2024).
- Othman Ahmed, K. Impact of the Covid-19 Pandemic on awareness, risk level, hand washing, and water consumption for hospital staff in Sulaimaniyah city of Iraq. J. Stud. Sci. Eng. 2023, 3, 13–29. [Google Scholar] [CrossRef]
- Motuzien, V.; Bielskus, J.; Lapinskien, V.; Rynkun, G.; Bernataviciene, J. Office buildings occupancy analysis and prediction associated with the impact of the COVID-19 pandemic. Sustain. Cities Soc. 2022, 77, 103557. [Google Scholar] [CrossRef]
- DMS 5/7/1975—Modificazioni alle Istruzioni Ministeriali 20 giugno 1896, Relativamente All’altezza Minima ed ai Requisiti Igienico-Sanitari Principali dei Locali di Abitazione. Gazz. Uff. 1975, 190. Available online: https://www.bosettiegatti.eu/info/norme/statali/1975_dm_05_07.htm (accessed on 20 December 2023).
- Legislative Decree 81/08. Available online: https://www.altalex.com/documents/biblioteca/2013/10/22/testo-unico-per-la-sicurezza-sul-lavoro-scaricalo-gratuitamente (accessed on 15 January 2024).
- Obla, M.; Ukabi, E. Education in the Virtual Space: A Sustainable Strategy for Achieving Tension-free and Inclusive Learning in COVID-19 Dispensation. J. Stud. Sci. Eng. 2021, 1, 17–35. [Google Scholar] [CrossRef]
- Bapir, S.Y.; Kareem, S.M. Covid-19 and functionality: By providing social distancing of indoor common spaces in residential building. J. Stud. Sci. Eng. 2021, 1, 36–45. [Google Scholar] [CrossRef]
- ACCA. Riapertura Attività Coronavirus: La Guida Completa per l’Adeguamento di Uffici e Aziende. 2020. Available online: https://bim.acca.it/riapertura-uffici-aziende-guida-tecnica/ (accessed on 26 December 2023).
- Büssing, A.; Rodrigues Recchia, D.; Hein, R.; Dienberg, T. Perceived changes of specific attitudes, perceptions and behaviors during the Corona pandemic and their relation to wellbeing. Health Qual. Life Outcomes 2020, 18, 1–17. [Google Scholar] [CrossRef]
- Pelsmaker, S.; Hoggard, A.; Kozminska, U.; Donovan, E. Designing for the Climate Emergency. A Guide for Architecture Students, 1st ed.; RIBA Publishing: London, UK, 2022. [Google Scholar]
- Moscato, U.; La Pietra, L.; Ricciardi, G. Non-viable particles and hospital yards. In Proceedings of the 34th Course—Building Yards in Hospital, Sanitary and Technical Aspects of Refurbishing of Hospital Buildings, Erice, Italy, 3–6 March 2007; p. 174. [Google Scholar]
- Efficienza Energetica ENEA. Available online: https://www.efficienzaenergetica.enea.it/images/detrazioni/Avvisi/Report_dati_mensili_300921.pdf (accessed on 26 December 2023).
- IEE EPISCOPE Project. Available online: https://episcope.eu/welcome/ (accessed on 14 March 2023).
- Nagao, T.; Nagasawa, K. Bi-objective Problem of Material-based GreenHouse Gas Emission and Costs by Global Supply Chain Network Disruption across TPP countries during COVID-19. In Proceedings of the 12th International Workshop on Computational Intelligence and Applications (IEEE), Hiroshima, Japan, 6–7 November 2021; pp. 1–7. [Google Scholar] [CrossRef]
- US$4 Billion Has Been Spent by International Partners to Support Small Island Developing States in Tackling COVID-19. Available online: https://www.un.org/ohrlls/content/covid-19-sids (accessed on 13 January 2024).
- Small Island Developing States (SIDS) Liaison Committee Appointed to Strengthen Links with the SIDS Scientific Community. Available online: https://council.science/current/news/sids-committee/ (accessed on 13 January 2024).
- Piemonte, C. Mapping the Economic Consequences of COVID-19 in Small Island Developing States (SIDS). Development Co-Operation Directorate/Development Assistance Committee—OECD Report. 2020. Available online: https://one.oecd.org/document/DCD/DAC(2020)35/FINAL/En/pdf (accessed on 13 January 2024).
- Ezeh, C.I.; Hong, Y.; Deng, W.; Zhao, H. High rise office building makeovers—Exploiting architectural and engineering factors in designing sustainable buildings in different climate zones. Energy Rep. 2022, 8, 6396–6410. [Google Scholar] [CrossRef]
- Khan, R.; Islam, N.; Das, S.K.; Muyeen, S.M.; Moyeen, S.I.; Ali, M.F.; Tasneem, Z.; Islam, M.R.; Saha, D.K.; Badal, M.F.R.; et al. Energy Sustainability_Survey on Technology and Control of Microgrid, Smart Grid and Virtual Power Plant. IEEE Access 2021, 9, 104663–104694. [Google Scholar] [CrossRef]
- Muraj, I.; Veršić, Z.; Binicki, M. Sustainability, Environmental Performance and Energy Efficiency in Higher Education: Faculty of Architecture, University of Zagreb. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012088. [Google Scholar] [CrossRef]
- Costa, M.L.; Freire, M.R.; Kiperstok, A. Strategies for thermal comfort in university buildings—The case of the faculty of architecture at the Federal University of Bahia, Brazil. J. Environ. Manag. 2019, 239, 114–123. [Google Scholar] [CrossRef]
- Lozano-Miralles, J.A.; Hermoso Orzáez, M.J.; Martínez García, C.; Rojas Sola, J.I. Comparative Study on the Environmental Impact of Traditional Clay Bricks Mixed with Organic Waste Using Life Cycle Analysis. Sustainability 2018, 10, 2917. [Google Scholar] [CrossRef]
- Mancini, F.; Clemente, C.; Carbonara, E.; Fraioli, S. Energy and environmental retrofitting of the university building of Orthopaedic and Traumatological Clinic within Sapienza Città Universitaria. Energy Procedia 2017, 126, 195–202. [Google Scholar] [CrossRef]
- Bajcinovci, B.; Jerliu, F. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles. Environ. Clim. Technol. 2016, 18, 54–63. [Google Scholar] [CrossRef]
- Holstov, A.; Bridgens, B.; Farmer, G. Hygromorphic materials for sustainable responsive architecture. Constr. Build. Mater. 2015, 98, 570–582. [Google Scholar] [CrossRef]
- Vazquez, E.; Brandão, M.; Rola, S.; Alves, L.; Freitas, M.; Rosa, L.P. Incorporation of bioclimatic conditions in architectural projects: A case study of the Solar Hemicycle building, Madrid, Spain. Trans. Ecol. Built Environ. 2014, 142, 3. [Google Scholar] [CrossRef]
- Conejos, S.; Langston, C.; Smith, J. AdaptSTAR model: A climate-friendly strategy to promote built environment sustainability. Habitat Int. 2013, 37, 95–103. [Google Scholar] [CrossRef]
- Almatawa, M.S.; Elmualim, A.A.; Essah, E.A. Passive and active hybrid approach to building design in Saudi Arabia. Trans. Ecol. Environ. 2012, 165, 163–174. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Xiao, Q.; Wu, C. Million trees Los Angeles canopy cover and benefit assessment. Landsc. Urban Plan. 2011, 99, 40–50. [Google Scholar] [CrossRef]
- Indraganti, M. Understanding the climate sensitive architecture of Marikal, a village in Telangana region in Andhra Pradesh, India. Build. Environ. 2010, 45, 2709–2722. [Google Scholar] [CrossRef]
- Salameh, M.; Touqan, B. Traditional Passive Design Solutions as a Key Factor for Sustainable Modern Urban Designs in the Hot, Arid Climate of the United Arab Emirates. Buildings 2022, 12, 1811. [Google Scholar] [CrossRef]
- Qureshi, R.A.; Shah, S.J.; Akhtar, M.; Abbass, W.; Mohamed, A. Investigating Sustainability of the Traditional Courtyard Houses Using Deep Beauty Framework. Sustainability 2022, 14, 6894. [Google Scholar] [CrossRef]
- Schiano-Phan, R.; Gonçalves, J.C.S.; Vallejo, J.A. Pedagogy Pro-Design and Climate Literacy: Teaching Methods and Research Approaches for Sustainable Architecture. Sustainability 2022, 14, 6791. [Google Scholar] [CrossRef]
- Paris, M.; Sansen, M.; Bosc, S.; Devillers, P. Simulation Tools for the Architectural Design of Middle-Density Housing Estates. Sustainability 2022, 14, 10696. [Google Scholar] [CrossRef]
- Seyrek, C.I.; Widera, B.; Woźniczka, A. Sustainability-Related Parameters and Decision Support Tools for Kinetic Green Façades. Sustainability 2021, 13, 10313. [Google Scholar] [CrossRef]
- Røstvik, H.N. Sustainable Architecture—What’s Next? Encyclopedia 2021, 1, 293–313. [Google Scholar] [CrossRef]
- Pais, M.R.; Hoffmann, K.; Campos, S. Understanding Bunker Architecture Heritage as a Climate Action Tool: Plan Barron in Lisbon as a “Milieu” and as “Common Good” When Dealing with the Rise of the Water Levels. Heritage 2021, 4, 4609–4628. [Google Scholar] [CrossRef]
- Pilar, L.; Kvasničková Stanislavská, L.; Pitrová, J.; Krejčí, I.; Tichá, I.; Chalupová, M. Twitter Analysis of Global Communication in the Field of Sustainability. Sustainability 2019, 11, 6958. [Google Scholar] [CrossRef]
- Chiou, Y.S.; Elizalde, J.S. Thermal Performances of Three Old Houses: A Comparative Study of Heterogeneous Vernacular Traditions in Taiwan. Sustainability 2019, 11, 5538. [Google Scholar] [CrossRef]
- Mileto, C.; Vegas López-Manzanares, F.; Villacampa Crespo, L.; García-Soriano, L. The Influence of Geographical Factors in Traditional Earthen Architecture: The Case of the Iberian Peninsula. Sustainability 2019, 11, 2369. [Google Scholar] [CrossRef]
- de Waal, R.M.; Stremke, S. Energy Transition: Missed Opportunities and Emerging Challenges for Landscape Planning and Designing. Sustainability 2014, 6, 4386–4415. [Google Scholar] [CrossRef]
- Baek, J. Fudo: An East Asian Notion of Climate and Sustainability. Buildings 2013, 3, 588–597. [Google Scholar] [CrossRef]
- Meena, C.S.; Dienberg, A.; Jain, S.; Dienberg, A.U.; Mishra, S.; Sharma, N.K.; Bajaj, M.; Shafiq, M.; Eldin, E.T. Innovation in Green Building Sector for Sustainable Future. Energies 2022, 15, 6631. [Google Scholar] [CrossRef]
- Fnais, A.; Rezgui, Y.; Petri, I.; Beach, T.; Yeung, J.; Ghoroghi, A.; Kubicki, S. The application of life cycle assessment in buildings: Challenges, and directions for future research. Int. J. Life Cycle Assess. 2022, 27, 627–654. [Google Scholar] [CrossRef]
- Silva, R.; Eggimann, S.; Fierz, L.; Fiorentini, M.; Orehounig, K.; Baldini, L. Opportunities for passive cooling to mitigate the impact of climate change in Switzerland. Build. Environ. 2022, 208, 108574. [Google Scholar] [CrossRef]
- Mannan, M.; Al-Ghamdi, S.G. Investigating environmental life cycle impacts of active living wall for improved indoor air quality. Build. Environ. 2022, 208, 108595. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.C.; Darko, A. Green finance gap in green buildings: A scoping review and future research needs. Build. Environ. 2022, 207, 108443. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Sadeghi, M.; Reiter, S. Strategies and scenarios to reduce energy consumption and CO2 emission in the urban, rural and sustainable neighbourhoods. Sustain. Cities Soc. 2001, 72, 103053. [Google Scholar] [CrossRef]
- Bardzell, J.; Bardzell, S.; Light, A. Wanting to Live Here: Design after Anthropocentric Functionalism. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021. [Google Scholar] [CrossRef]
- Khahro, S.H.; Kumar, D.; Siddiqui, F.H.; Ali, T.H.; Raza, M.S.; Khoso, A.R. Optimizing Energy Use, Cost and Carbon Emission through Building Information Modelling and a Sustainability Approach: A Case-Study of a Hospital Building. Sustainability 2021, 13, 3675. [Google Scholar] [CrossRef]
- Fishman, T.; Heeren, N.; Pauliuk, S.; Berrill, P.; Tu, Q.; Wolfram, P.; Hertwich, E.G. A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling. J. Ind. Ecol. 2021, 25, 305–320. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Tleuken, A.; Guney, M.; Turkyilmaz, A.; Karaca, F. How is COVID-19 Experience Transforming Sustainability Requirements of Residential Buildings? A Review. Sustainability 2020, 12, 8732. [Google Scholar] [CrossRef]
- Goldstein, B.; Gounaridis, D.; Newell, J.P. The carbon footprint of household energy use in the United States. Soc. Sci. 2020, 117, 19122–19130. [Google Scholar] [CrossRef] [PubMed]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Amaral, A.R.; Rodrigues, E.; Gaspar, A.R.; Gomes, Á. A review of empirical data of sustainability initiatives in university campus operations. J. Clean. Prod. 2020, 250, 119558. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable Construction Materials Using Agro-Wastes. Materials 2019, 13, 262. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Bosch, F.; Cervera, C.; Ysa, T. Key aspects of building retrofitting: Strategizing sustainable cities. J. Environ. Manag. 2019, 248, 109247. [Google Scholar] [CrossRef]
- Lanau, M.; Liu, G.; Kral, U.; Wiedenhofer, D.; Keijzer, E.; Yu, C.; Ehlert, C. Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ. Sci. Technol. 2019, 53, 8499–8515. [Google Scholar] [CrossRef]
- Edwards, R.E.; Lou, E.; Bataw, A.; Kamaruzzaman, S.N.; Johnson, C. Sustainability-led design: Feasibility of incorporating whole-life cycle energy assessment into BIM for refurbishment projects. J. Build. Eng. 2019, 24, 100697. [Google Scholar] [CrossRef]
- Orr, S.A.; Young, M.; Stelfox, D.; Curran, J.; Viles, H. Wind-driven rain and future risk to built heritage in the United Kingdom: Novel metrics for characterising rain spells. Sci. Total Environ. 2018, 640–641, 1098–1111. [Google Scholar] [CrossRef]
- Invidiata, A.; Lavagna, M.; Ghisi, E. Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build. Environ. 2018, 139, 58–68. [Google Scholar] [CrossRef]
- Breton, C.; Blanchet, P.; Amor, B.; Beauregard, R.; Chang, W.S. Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches. Sustainability 2018, 10, 2020. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Asif, M.; Hassanain, M.A.; Babsail, M.O.; Sanni-Anibire, M.O. Energy and Economic Evaluation of Green Roofs for Residential Buildings in Hot-Humid Climates. Buildings 2017, 7, 30. [Google Scholar] [CrossRef]
- Spaans, M.; Waterhout, B. Building up resilience in cities worldwide—Rotterdam as participant in the 100 Resilient Cities Programme. Cities 2017, 61, 109–116. [Google Scholar] [CrossRef]
- Kammen, D.M.; Sunter, D.A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renew. Energy 2016, 85, 1106–1115. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H.; Kaloush, K.E. Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island? Renew. Sustain. Energy Rev. 2015, 47, 830–843. [Google Scholar] [CrossRef]
- Clear, A.; Friday, A.; Hazas, M.; Lord, C. Catch my drift? In Proceedings of the Designing Interactive Systems Conference, Vancouver, BC, Canada, 21–25 June 2014; pp. 1015–1024. [Google Scholar] [CrossRef]
- Kumar, P.; Imam, B. Footprints of air pollution and changing environment on the sustainability of built infrastructure. Sci. Total Environ. 2013, 444, 85–101. [Google Scholar] [CrossRef]
- Kok, K.H.; Sidek, L.M.; Abidin, M.R.Z.; Basri, H.; Muda, Z.C.; Beddu, S. Evaluation of green roof as green technology for urban stormwater quantity and quality controls. IOP Conf. Ser. Earth Environ. Sci. 2013, 16, 012045. [Google Scholar] [CrossRef]
- Erkal, A.; D’ayala, D.; Sequeira, L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. J. Affect. Disord. 2012, 57, 336–348. [Google Scholar] [CrossRef]
- Haggag, M.A.; Elmasry, S.K.; Hassan, A. Design with nature: Integrating green façades into sustainable buildings with reference to Abu Dhabi. Trans. Ecol. Environ. 2012, 160, 37–47. [Google Scholar]
- Wilkinson, S.J.; Reed, R. Examining and quantifying the drivers behind alterations and extensions to commercial buildings in a central business district. Constr. Manag. Econ. 2011, 29, 725–735. [Google Scholar] [CrossRef]
- Kelly, M.J. Energy efficiency, resilience to future climates and long-term sustainability: The role of the built environment. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1083–1089. [Google Scholar] [CrossRef]
- Gosztonyi, S.; Brychta, M.; Gruber, P. Challenging the engineering view: Comparative analysis of technological and biological functions targeting energy efficient facade systems. Trans. Ecol. Environ. 2010, 138, 491–502. [Google Scholar]
- Isaksson, R.; Steimle, U. What does GRI-reporting tell us about corporate sustainability? TQM J. 2009, 21, 168–181. [Google Scholar] [CrossRef]
- Kharrufa, S.N. Evaluation of Basement′s Thermal Performance in Iraq for Summer Use. J. Asian Arch. Build. Eng. 2008, 7, 411–417. [Google Scholar] [CrossRef]
- Cortese, T.T.P.; Sousa de Almeida, J.F.; Batista, G.Q.; Storopoli, J.E.; Liu, A.; Yigitcanlar, T. Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review. Energies 2022, 15, 2382. [Google Scholar] [CrossRef]
- Monna, S.; Abdallah, R.; Juaidi, A.; Albatayneh, A.; Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Potential Electricity Production by Installing Photovoltaic Systems on the Rooftops of Residential Buildings in Jordan: An Approach to Climate Change Mitigation. Energies 2022, 15, 496. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; González-Avilés, B.; Galiano-Garrigós, A.; Lozoya-Peral, A. Optimization of Architectural Thermal Envelope Parameters in Modern Single-Family House Typologies in Southeastern Spain to Improve Energy Efficiency in a Dry Mediterranean Climate. Sustainability 2022, 14, 3910. [Google Scholar] [CrossRef]
- Teo, Y.H.; Makani, M.A.B.H.; Wang, W.; Liu, L.; Yap, J.H.; Cheong, K.H. Urban Heat Island Mitigation: GIS-Based Analysis for a Tropical City Singapore. Int. J. Environ. Res. Public Health 2022, 19, 11917. [Google Scholar] [CrossRef]
- Niza, I.L.; da Luz, I.M.; Bueno, A.M.; Broday, E.E. Thermal Comfort and Energy Efficiency: Challenges, Barriers, and Step towards Sustainability. Smart Cities 2022, 5, 1721–1741. [Google Scholar] [CrossRef]
- Albatayneh, A.; Assaf, M.N.; Albadaineh, R.; Juaidi, A.; Abdallah, R.; Zabalo, A.; Manzano-Agugliaro, F. Reducing the Operating Energy of Buildings in Arid Climates through an Adaptive Approach. Sustainability 2022, 14, 13504. [Google Scholar] [CrossRef]
- Im, Y.-H. Assessment of the Technological Sustainability of the Tri-Generation Model in the Era of Climate Change: A Case Study of Terminal Complexes. Energies 2022, 15, 4959. [Google Scholar] [CrossRef]
- Gounden, K.; Mwangi, F.M.; Mohan, T.P. A Perspective on Four Emerging Threats to Sustainability and Sustainable Development. Earth 2022, 3, 1207–1236. [Google Scholar] [CrossRef]
- Elshafei, G.; Vilcekova, S.; Zelenakova, M.; Negm, A.M. Towards an Adaptation of Efficient Passive Design for Thermal Comfort Buildings. Sustainability 2021, 13, 9570. [Google Scholar] [CrossRef]
- Khalaf, R.W. World Heritage on the Move: Abandoning the Assessment of Authenticity to Meet the Challenges of the Twenty-First Century. Heritage 2021, 4, 371–386. [Google Scholar] [CrossRef]
- Zarco-Periñán, P.J.; Zarco-Soto, I.M.; Zarco-Soto, F.J. Influence of Population Density on CO2 Emissions Eliminating the Influence of Climate. Atmosphere 2021, 12, 1193. [Google Scholar] [CrossRef]
- Giresini, L.; Casapulla, C.; Croce, P. Environmental and Economic Impact of Retrofitting Techniques to Prevent Out-of-Plane Failure Modes of Unreinforced Masonry Buildings. Sustainability 2021, 13, 11383. [Google Scholar] [CrossRef]
- Raveendran, R.; Aoul, K.A.T. A Meta-Integrative Qualitative Study on the Hidden Threats of Smart Buildings/Cities and Their Associated Impacts on Humans and the Environment. Buildings 2021, 11, 251. [Google Scholar] [CrossRef]
- Fabbri, K.; Gaspari, J. A Replicable Methodology to Evaluate Passive Façade Performance with SMA during the Architectural Design Process: A Case Study Application. Energies 2021, 14, 6231. [Google Scholar] [CrossRef]
- Wretling, V.; Balfors, B. Are Local Authorities Building Their Capacity to Plan for Reduced Climate Impact? A Longitudinal Analysis of Swedish Comprehensive Plans. Land 2021, 10, 652. [Google Scholar] [CrossRef]
- Bulbaai, R.; Halman, J.I.M. Energy-Efficient Building Design for a Tropical Climate: A Field Study on the Caribbean Island Curaçao. Sustainability 2021, 13, 13274. [Google Scholar] [CrossRef]
- Mancini, F.; Basso, G.L. How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector. Energies 2020, 13, 410. [Google Scholar] [CrossRef]
- Xue, J.; You, R.; Liu, W.; Chen, C.; Lai, D. Applications of Local Climate Zone Classification Scheme to Improve Urban Sustainability: A Bibliometric Review. Sustainability 2020, 12, 8083. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. Modeling the Effect of Green Roof Systems and Photovoltaic Panels for Building Energy Savings to Mitigate Climate Change. Remote Sens. 2020, 12, 2402. [Google Scholar] [CrossRef]
- Keniry, L.J. Equitable Pathways to 2100: Professional Sustainability Credentials. Sustainability 2020, 12, 2328. [Google Scholar] [CrossRef]
- Sesana, E.; Bertolin, C.; Gagnon, A.S.; Hughes, J.J. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef]
- McEvoy, D.; Iyer-Raniga, U.; Ho, S.; Mitchell, D.; Jegatheesan, V.; Brown, N. Integrating Teaching and Learning with Inter-Disciplinary Action Research in Support of Climate Resilient Urban Development. Sustainability 2019, 11, 6701. [Google Scholar] [CrossRef]
- Padilla-Rivera, A.; Amor, B.; Blanchet, P. Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada. Sustainability 2018, 10, 2715. [Google Scholar] [CrossRef]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N.S.G. Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate. Sustainability 2017, 9, 1451. [Google Scholar] [CrossRef]
- Alrashed, F.; Asif, M.; Burek, S. The Role of Vernacular Construction Techniques and Materials for Developing Zero-Energy Homes in Various Desert Climates. Buildings 2017, 7, 17. [Google Scholar] [CrossRef]
- Khan, H.S.; Asif, M.; Mohammed, M.A. Case Study of a Nearly Zero Energy Building in Italian Climatic Conditions. Infrastructures 2017, 2, 19. [Google Scholar] [CrossRef]
- Kim, D.; Lim, U. Urban Resilience in Climate Change Adaptation: A Conceptual Framework. Sustainability 2016, 8, 405. [Google Scholar] [CrossRef]
- Alibaba, H. Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate. Sustainability 2016, 8, 187. [Google Scholar] [CrossRef]
- Sun, F. Chinese Climate and Vernacular Dwellings. Buildings 2013, 3, 143–172. [Google Scholar] [CrossRef]
- Smart Working, Smart Working Observatory of the Polytechnic University of Milan. Available online: https://www.osservatori.net/it/ricerche/osservatori-attivi/smart-working (accessed on 23 January 2024).
- Smart Worker: Chi Sono e Quanti Sono i Lavoratori Agili in Italia, Smart Working Observatory of the Polytechnic University of Milan. Available online: https://blog.osservatori.net/it_it/smart-worker-in-italia#%3A~%3Atext%3DSecondo%20i%20numeri%20dell%27Osservatorio%2C3%20dei%20lavoratori%20dipendenti%20italiani (accessed on 23 January 2024).
- Smart Office, Cos’è e Come Progettare Uno Spazio di Lavoro Smart, Smart Working Observatory of the Polytechnic University of Milan. Available online: https://blog.osservatori.net/it_it/smart-office-significato-come-progettarlo?_gl=1*1uvm97p*_ga*MTQ4MzkxMDM5NC4xNzA1OTQ3NDc0*_ga_8JFFBZLKC3*MTcwNTk0NzQ3My4xLjEuMTcwNTk0NzUzNC42MC4wLjA (accessed on 23 January 2024).
- Materiali e Manodopera Gonfiano del 25% i Costi di Nuovo e Ristrutturato, NTCondominio Sole24ore. Available online: https://ntpluscondominio.ilsole24ore.com/art/materiali-e-manodopera-gonfiano-25percento-costi-nuovo-e-ristrutturato-AEOuX4XC (accessed on 23 January 2024).
- Aumento Prezzi Edilizia, Quali Materiali Hanno Subito Maggiori Variazioni? BibLus—ACCA. Available online: https://biblus.acca.it/aumento-prezzi-edilizia-quali-materiali-hanno-subito-maggiori-variazioni/ (accessed on 23 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coraglia, U.M.; Simeone, D.; Bragadin, M.A. Research Perspectives on Buildings’ Sustainability after COVID-19: Literature Review and Analysis of Changes. Buildings 2024, 14, 482. https://doi.org/10.3390/buildings14020482
Coraglia UM, Simeone D, Bragadin MA. Research Perspectives on Buildings’ Sustainability after COVID-19: Literature Review and Analysis of Changes. Buildings. 2024; 14(2):482. https://doi.org/10.3390/buildings14020482
Chicago/Turabian StyleCoraglia, Ugo Maria, Davide Simeone, and Marco Alvise Bragadin. 2024. "Research Perspectives on Buildings’ Sustainability after COVID-19: Literature Review and Analysis of Changes" Buildings 14, no. 2: 482. https://doi.org/10.3390/buildings14020482
APA StyleCoraglia, U. M., Simeone, D., & Bragadin, M. A. (2024). Research Perspectives on Buildings’ Sustainability after COVID-19: Literature Review and Analysis of Changes. Buildings, 14(2), 482. https://doi.org/10.3390/buildings14020482