Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Takt-Time Planning Method
2.2. Arena Computer Simulation
2.3. VaR- and CVaR-Based Risk Assessment
3. Research Method
3.1. Data Collection
3.2. Apply Takt-Time Optimization
3.3. Arena Simulation
3.4. VaR and CVaR Evaluation Analysis
4. Case Studies
4.1. Preliminary Work
4.2. Make Takt-Time Adjustments
4.3. Generate Simulation Data
5. Results and Discussion
5.1. Optimization of Model and Workforce Combinations at Takt-Time
5.1.1. Vertical Comparison: Different Models with the Same Labor Combination
5.1.2. Horizontal Comparison: Different Labor Combinations with the Same Model
5.2. VaR and CVaR Analysis for Specified Models
5.2.1. VaR and CVaR Analysis of Construction Period
5.2.2. VaR and CVaR Analysis of End Time of Tying Beam Reinforcing Bars
5.3. Validation of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Preliminary Organization of Data and Calculations
Appendix B. Identifying Productivity Distribution Curve for Tying Beam Reinforcing Rebar
Appendix C. Activity Duration Defined for the Simulation Models (Unit: Hour)
Appendix D. The Models Generated in Arena Software (an Excerpt)
Appendix E. Detailed Description of Research Steps
- (1)
- Collect sufficient productivity data (illustrated in Table 1);
- (2)
- Calculate productivity (illustrated in Appendix A).
- (1)
- Determine working hours based on recorded data.
- (2)
- Dividing regions for different construction activities.
- (3)
- Set Takt as 5 or 2.5 h, only allowing one crew in one unit area within the Takt.
- (4)
- Apply 50% fast-tracking.
- (1)
- Select optimal model data.
- (2)
- Normalize simulated data from 0 to 1.
- (3)
- Calculate project parameters using Equation (4).
- (4)
- Determine VaR and CVaR values based on the selected confidence level using Equations (2) and (3), respectively.
References
- Dave, B.; Koskela, L. Collaborative Knowledge Management—A Construction Case Study. Autom. Constr. 2009, 18, 894–902. [Google Scholar] [CrossRef]
- Guo, H.; Yu, Y.; Skitmore, M. Visualization Technology-Based Construction Safety Management: A Review. Autom. Constr. 2017, 73, 135–144. [Google Scholar] [CrossRef]
- He, C.; Liu, M.; Alves, T.C.L.; Scala, N.M.; Hsiang, S.M. Prioritizing Collaborative Scheduling Practices Based on Their Impact on Project Performance. Constr. Manag. Econ. 2022, 40, 618–637. [Google Scholar] [CrossRef]
- Faghihi, V.; Nejat, A.; Reinschmidt, K.F.; Kang, J.H. Automation in Construction Scheduling: A Review of the Literature. Int. J. Adv. Manuf. Technol. 2015, 81, 1845–1856. [Google Scholar] [CrossRef]
- Khalesi, H.; Balali, A.; Valipour, A.; Antucheviciene, J.; Migilinskas, D.; Zigmund, V. Application of Hybrid SWARA--BIM in Reducing Reworks of Building Construction Projects from the Perspective of Time. Sustainability 2020, 12, 8927. [Google Scholar] [CrossRef]
- Biruk, S.; Rzepecki, Ł. A Simulation Model of Construction Projects Executed in Random Conditions with the Overlapping Construction Works. Sustainability 2021, 13, 5795. [Google Scholar] [CrossRef]
- Dasović, B.; Galić, M.; Klanšek, U. Active BIM Approach to Optimize Work Facilities and Tower Crane Locations on Construction Sites with Repetitive Operations. Buildings 2019, 9, 21. [Google Scholar] [CrossRef]
- Mohamed, H.H.; Ibrahim, A.H.; Soliman, A.A. Toward Reducing Construction Project Delivery Time under Limited Resources. Sustainability 2021, 13, 11035. [Google Scholar] [CrossRef]
- Chen, G.; He, C.; Hsiang, S.; Liu, M.; Li, H. A Mechanism for Smart Contracts to Mediate Production Bottlenecks under Constraints. In Proceedings of the 31st Annual Conference of the International Group for Lean Construction (IGLC), Lille, France, 26 June–2 July 2023; International Group for Lean Construction (IGLC): Lille, France, 2023; pp. 1232–1244. [Google Scholar]
- Ballard, G.; Koskela, L.; Howell, G.; Zabelle, T. Production System Design in Construction. In Proceedings of the 9th Annual Conference of the International Group for Lean Construction, Singapore, 6–8 August 2001. [Google Scholar]
- Koskela, L.; Ballard, G. What Should We Require from a Production System in Construction? In Proceedings of the Construction Research Congress, Honolulu, HI, USA, 19–21 March 2003; pp. 1–8. [Google Scholar]
- Abbasi, S.; Taghizade, K.; Noorzai, E. BIM-Based Combination of Takt Time and Discrete Event Simulation for Implementing Just in Time in Construction Scheduling under Constraints. J. Constr. Eng. Manag. 2020, 146, 04020143. [Google Scholar] [CrossRef]
- Lerche, J.; Enevoldsen, P.; Seppänen, O. Application of Takt and Kanban to Modular Wind Turbine Construction. J. Constr. Eng. Manag. 2022, 148, 05021015. [Google Scholar] [CrossRef]
- Tommelein, I.D. Work Density Method for Takt Planning of Construction Processes with Nonrepetitive Work. J. Constr. Eng. Manag. 2022, 148, 4022134. [Google Scholar] [CrossRef]
- Ibrahim, K.K.; Daniel, C.O. Influence of Project Planning Processes on Construction Project Success in Nigeria. Eur. J. Bus. Manag. 2020, 12, 40–47. [Google Scholar]
- Keskiniva, K.; Saari, A.; Junnonen, J.-M. Takt Planning in Apartment Building Renovation Projects. Buildings 2020, 10, 226. [Google Scholar] [CrossRef]
- Dlouhy, J.; Binninger, M.; Oprach, S.; Haghsheno, S. Three-Level Method of Takt Planning and Takt Control--A New Approach for Designing Production Systems in Construction. In Proceedings of the 24th Annual Conference of the International Group for Lean Construction, Boston, MA, USA, 20–22 July 2016; pp. 20–22. [Google Scholar]
- Akhavian, R.; Behzadan, A.H. Construction Equipment Activity Recognition for Simulation Input Modeling Using Mobile Sensors and Machine Learning Classifiers. Adv. Eng. Inform. 2015, 29, 867–877. [Google Scholar] [CrossRef]
- Chen, J.-H.; Yang, L.-R.; Tai, H.-W. Process Reengineering and Improvement for Building Precast Production. Autom. Constr. 2016, 68, 249–258. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Esrafilian, R.; Kardan, R.; Shiwakoti, N.; Stasinopoulos, P. Lean Construction Analysis of Concrete Pouring Process Using Value Stream Mapping and Arena Based Simulation Model. Mater. Today Proc. 2021, 42, 1279–1286. [Google Scholar] [CrossRef]
- Utku, D.H. The Evaluation and Improvement of the Production Processes of an Automotive Industry Company via Simulation and Optimization. Sustainability 2023, 15, 2331. [Google Scholar] [CrossRef]
- Li, P.; Walton, J.R. Evaluating Freeway Service Patrols in Low-Traffic Areas Using Discrete-Event Simulation. J. Transp. Eng. 2013, 139, 1095–1104. [Google Scholar] [CrossRef]
- He, C.; Liu, M.; Zhang, Y.; Wang, Z.; Simon, M.H.; Chen, G.; Chen, J. Exploit Social Distancing in Construction Scheduling: Visualize and Optimize Space–Time–Workforce Tradeoff. J. Manag. Eng. 2022, 38, 4022027. [Google Scholar] [CrossRef]
- Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.; Akhavian, R.; Hwang, S. Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. J. Comput. Civ. Eng. 2016, 30, 04016035. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; He, C. Study on Dynamic Influence of Passenger Flow on Intelligent Bus Travel Service Model. Transport 2021, 36, 25–37. [Google Scholar] [CrossRef]
- Kolny, D.; Kaczmar-Kolny, E.; Dulina, L. Modeling and Simulation of the Furniture Manufacturing and Assembly Process in the Arena Simulation Software. Technol. Autom. Montażu 2023, 119, 13–22. [Google Scholar] [CrossRef]
- Göb, R. Estimating Value at Risk and Conditional Value at Risk for Count Variables. Qual. Reliab. Eng. Int. 2011, 27, 659–672. [Google Scholar] [CrossRef]
- Hong, L.J.; Hu, Z.; Liu, G. Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review. ACM Trans. Model. Comput. Simul. 2014, 24, 1–37. [Google Scholar] [CrossRef]
- Xie, K.; Zhu, S.; Gui, P.; Chen, Y. Coordinating an Emergency Medical Material Supply Chain with CVaR under the Pandemic Considering Corporate Social Responsibility. Comput. Ind. Eng. 2023, 176, 108989. [Google Scholar] [CrossRef]
- Bodnar, T.; Lindholm, M.; Niklasson, V.; Thorsén, E. Bayesian Portfolio Selection Using VaR and CVaR. Appl. Math. Comput. 2022, 427, 127120. [Google Scholar] [CrossRef]
- Müller, F.M.; Righi, M.B. Comparison of Value at Risk (VaR) Multivariate Forecast Models. Comput. Econ. 2024, 63, 75–110. [Google Scholar] [CrossRef]
- Balbás, A.; Balbás, B.; Balbás, R. Differential Equations Connecting VaR and CVaR. J. Comput. Appl. Math. 2017, 326, 247–267. [Google Scholar] [CrossRef]
- Avci, M.G.; Avci, M. An Empirical Analysis of the Cardinality Constrained Expectile-Based VaR Portfolio Optimization Problem. Expert Syst. Appl. 2021, 186, 115724. [Google Scholar] [CrossRef]
- Fan, W.; Tan, Z.; Li, F.; Zhang, A.; Ju, L.; Wang, Y.; De, G.; Lund, H.; Kaiser, M.J. A Two-Stage Optimal Scheduling Model of Integrated Energy System Based on CVaR Theory Implementing Integrated Demand Response. Energy 2023, 263, 125783. [Google Scholar] [CrossRef]
- Oulidi, A.; Charpentier, A. Estimating Allocations for Value-at-Risk Portfolio Optimzation. Available online: https://ssrn.com/abstract=1023911 (accessed on 3 February 2024).
- Altun, E.; Tatlıdil, H.; Özel, G. Conditional ASGT-GARCH Approach to Value-at-Risk. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 239–247. [Google Scholar] [CrossRef]
- Balbás, A.; Balbás, B.; Balbás, R. VaR as the CVaR Sensitivity: Applications in Risk Optimization. J. Comput. Appl. Math. 2017, 309, 175–185. [Google Scholar] [CrossRef]
- Zheng, H. Efficient Frontier of Utility and CVaR. Math. Methods Oper. Res. 2009, 70, 129–148. [Google Scholar] [CrossRef]
- Hu, Z.; Wei, C.; Yao, L.; Li, L.; Li, C. A Multi-Objective Optimization Model with Conditional Value-at-Risk Constraints for Water Allocation Equality. J. Hydrol. 2016, 330–342. [Google Scholar] [CrossRef]
- Chen, G.; Liu, M.; Zhang, Y.; Wang, Z.; Hsiang, S.M.; He, C. Using Images to Detect, Plan, Analyze, and Coordinate a Smart Contract in Construction. J. Manag. Eng. 2023, 39, 04023002. [Google Scholar] [CrossRef]
- Javanmardi, A.; He, C.; Hsiang, S.M.; Abbasian-Hosseini, S.A.; Liu, M. Enhancing Construction Project Workflow Reliability through Observe–Plan–Do–Check–React Cycle: A Bridge Project Case Study. Buildings 2023, 13, 2379. [Google Scholar] [CrossRef]
- Tang, L.; Ling, A. A Closed-Form Solution for Robust Portfolio Selection with Worst-Case CVaR Risk Measure. Math. Probl. Eng. 2014, 2014, 494575. [Google Scholar] [CrossRef]
- Schniederjans, M.J.; Schniederjans, D.; Cao, Q. Value Analysis Planning with Goal Programming. Ann. Oper. Res. 2017, 251, 367–382. [Google Scholar] [CrossRef]
- Caron, F.; Fumagalli, M.; Rigamonti, A. Engineering and Contracting Projects: A Value at Risk Based Approach to Portfolio Balancing. Int. J. Proj. Manag. 2007, 25, 569–578. [Google Scholar] [CrossRef]
- Joukar, A.; Nahmens, I. Estimation of the Escalation Factor in Construction Projects Using Value at Risk. In Proceedings of the Construction Research Congress 2016, San Juan, Puerto Rico, 31 May–2 June 2016. [Google Scholar]
- Elena Bruni, M.; Beraldi, P.; Guerriero, F.; Pinto, E. A Scheduling Methodology for Dealing with Uncertainty in Construction Projects. Eng. Comput. 2011, 28, 1064–1078. [Google Scholar] [CrossRef]
- Rahimi, M.; Ghezavati, V. Sustainable Multi-Period Reverse Logistics Network Design and Planning under Uncertainty Utilizing Conditional Value at Risk (CVaR) for Recycling Construction and Demolition Waste. J. Clean. Prod. 2018, 172, 1567–1581. [Google Scholar] [CrossRef]
- He, C.; Liu, M.; Zhang, Y.; Wang, Z.; Hsiang, S.M.; Chen, G.; Li, W.; Dai, G. Space–Time–Workforce Visualization and Conditional Capacity Synthesis in Uncertainty. J. Manag. Eng. 2023, 39, 04022071. [Google Scholar] [CrossRef]
- Filippi, C.; Guastaroba, G.; Speranza, M.G. Conditional Value-at-Risk beyond Finance: A Survey. Int. Trans. Oper. Res. 2020, 27, 1277–1319. [Google Scholar] [CrossRef]
- Charpentier, A.; Oulidi, A. Estimating Allocations for Value-at-Risk Portfolio Optimization. Math. Methods Oper. Res. 2009, 69, 395–410. [Google Scholar] [CrossRef]
- De Schepper, A.; Heijnen, B. How to Estimate the Value at Risk under Incomplete Information. J. Comput. Appl. Math. 2010, 233, 2213–2226. [Google Scholar] [CrossRef]
- Heinkenschloss, M.; Kramer, B.; Takhtaganov, T.; Willcox, K. Conditional-Value-at-Risk Estimation via Reduced-Order Models. SIAM/ASA J. Uncertain. Quantif. 2018, 6, 1395–1423. [Google Scholar] [CrossRef]
- Almeida, J.; Soares, J.; Lezama, F.; Vale, Z. Robust Energy Resource Management Incorporating Risk Analysis Using Conditional Value-at-Risk. IEEE Access 2022, 10, 16063–16077. [Google Scholar] [CrossRef]
- AbouRizk, S. Role of Simulation in Construction Engineering and Management. J. Constr. Eng. Manag. 2010, 136, 1140–1153. [Google Scholar] [CrossRef]
- Romanko, O.; Mausser, H. Robust Scenario-Based Value-at-Risk Optimization. Ann. Oper. Res. 2016, 237, 203–218. [Google Scholar] [CrossRef]
- Lehtovaara, J.; Seppänen, O.; Peltokorpi, A.; Kujansuu, P.; Grönvall, M. How Takt Production Contributes to Construction Production Flow: A Theoretical Model. Constr. Manag. Econ. 2021, 39, 73–95. [Google Scholar] [CrossRef]
Date | 30 July 2022 | Floor | 15th Floor |
---|---|---|---|
Job category | Bar placers | Number of workers | 1 person |
Working position | Data | Starting time | 16:40 |
Activity | Tying of wall and column reinforcement | End time | 17:05 |
Description of activities | Set column hoops, tied lap vertical structural bars |
No-Fast-tr. Takt = 5 | No-Fast-tr. Takt = 2.5 | Fast-tr. Takt = 2.5 | Subarea-Fast-tr. Takt = 2.5 | |
---|---|---|---|---|
Minimum | 69.3 | 67.18 | 57.95 | 55.28 |
Maximum | 87.26 | 84.9 | 74.53 | 70.81 |
Average | 77.98 | 75.55 | 65.73 | 62.55 |
Average/No-fast-tr. Takt = 5 | 1 | 0.969 | 0.843 | 0.802 |
Average/No-fast-tr. Takt = 2.5 | / | 1 | 0.87 | 0.828 |
Average/Fast-tr. Takt = 2.5 | / | / | 1 | 0.952 |
Confidence Level α | α = 90% | α = 75% | Results of α = 90% vs. α = 75% | |
---|---|---|---|---|
VaR | relative value | 70.0% | 57.5% | reduced by 12.5% |
actual value | 69.69 h | 65.94 h | reduced by 3.75 h | |
CVaR | relative value | 86.2% | 72.3% | reduced by 13.9% |
actual value | 74.56 h | 70.38 h | reduced by 4.18 h | |
Results of VAR vs. CVAR | relative value increased by 16.2% actual value increased by 4.87 h | relative value increased by 14.8% actual value increased by 4.44 h |
Confidence Level α | α = 90% | α = 75% | Results of α = 90% vs. α = 75% | |
---|---|---|---|---|
VaR | relative value | 65.0% | 55.0% | reduced by 10.0% |
actual value | 42.54 h | 40.01 h | reduced by 2.53 h | |
CVaR | relative value | 75.8% | 76.3% | increased by 0.5% |
actual value | 45.27 h | 45.39 h | increased by 0.12 h | |
Results of VAR vs. CVAR | relative value increased by 10.8% actual value increased by 2.73 h | relative value increased by 21.3% actual value increased by 5.38 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, F.; Liu, M.; Hsiang, S.M.; Hu, P.; Zhang, Y.; Jiang, K. Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis. Buildings 2024, 14, 553. https://doi.org/10.3390/buildings14020553
Ding F, Liu M, Hsiang SM, Hu P, Zhang Y, Jiang K. Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis. Buildings. 2024; 14(2):553. https://doi.org/10.3390/buildings14020553
Chicago/Turabian StyleDing, Fan, Min Liu, Simon M. Hsiang, Peng Hu, Yuxiang Zhang, and Kewang Jiang. 2024. "Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis" Buildings 14, no. 2: 553. https://doi.org/10.3390/buildings14020553
APA StyleDing, F., Liu, M., Hsiang, S. M., Hu, P., Zhang, Y., & Jiang, K. (2024). Duration and Labor Resource Optimization for Construction Projects—A Conditional-Value-at-Risk-Based Analysis. Buildings, 14(2), 553. https://doi.org/10.3390/buildings14020553