Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Testing Program
2.3.1. Drying Shrinkage Test
2.3.2. Chemical Shrinkage Test
2.3.3. Autogenous Shrinkage Test
2.3.4. Microstructural Characterization
2.3.5. Rapid Chloride Migration Test
3. Results and Discussion
3.1. Chemical, Autogenous, and Drying Shrinkage
3.2. Microstructure and Modification Mechanism
3.2.1. Micromorphology and Porosity
3.2.2. Characteristic Bonds and Mineralogy
3.2.3. Molecular Structure
3.2.4. Polymerization Mechanism
3.3. Resistance to Chloride Ion Penetration
4. Conclusions
- The addition of the SCA, WER, and mixture of these two agents significantly reduced the drying shrinkage, chemical shrinkage, and autogenous shrinkage of the MKG. The chemical shrinkage and shrinkage rate of the SCA-modified MKG were the lowest, while the synergistic modification by the WER and SCA led to the highest reduction in the autogenous shrinkage and drying shrinkage of the MKG. In particular, the MKG modified by the SCA and SCA-WER showed slight micro-expansion, which might be due to modified porosity caused by the SCA and newly formed products that increased the volume of the composites.
- MKG-WER-SCA had the most promising performance in reducing drying shrinkage, chemical shrinkage, and autogenous shrinkage, which is mainly attributed to the densified microstructure and the “restriction” effect of the organic modifiers. The microstructure of MKG-WER-SCA was densified by the compact organic–inorganic network formed by the bridging SCA between MKG and the WER. The denser microstructure reduced the consumption of pore water during the dissolution of the geopolymer and the evaporation of pore water into the external environment, thereby reducing the drying shrinkage, chemical shrinkage, and autogenous shrinkage. Furthermore, the coating film of WER-SCA restricted the chemical shrinkage and autogenous shrinkage of the MKG.
- The improved chloride permeability of concrete with the organically modified MKG coating further confirmed the improved shrinkage resistance of MKG-WER, MKG-SCA, and MKG-WER-SCA. The chloride ion diffusion coefficient of organically modified geopolymer-coated concrete was 2 × 10−12 m2/s and 51.4~59.5% lower than that without a coating compared with the control group. This indicates that MKG composite coatings can effectively inhibit the diffusion of chloride ions and be applied in concrete protective coatings for marine engineering.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, B.; Lee, S. Review on characteristics of metakaolin-based geopolymer and fast setting. J. Korean Ceram. Soc. 2020, 57, 368–377. [Google Scholar] [CrossRef]
- Patil, S.; Karikatti, V.; Chitawadagi, M. Granulated Blast-Furnace Slag (GGBS) based Geopolymer Concrete–Review. Int. J. Adv. Sci. Eng 2018, 5, 879–885. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; Elsayed, H.A.; AbdelMoied, S. Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance. Hbrc J. 2018, 14, 159–164. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Stud. Constr. Mater. 2022, 16, e00830. [Google Scholar] [CrossRef]
- Guo, X.; Yang, J. Intrinsic properties and micro-crack characteristics of ultra-high toughness fly ash/steel slag based geopolymer. Constr. Build. Mater. 2020, 230, 116965. [Google Scholar] [CrossRef]
- Nair, B.; Zhao, Q.; Cooper, R. Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications. J. Mater. Sci. 2007, 42, 3083–3091. [Google Scholar] [CrossRef]
- Tong, L.; Zhao, J.; Cheng, Z. Chloride ion binding effect and corrosion resistance of geopolymer materials prepared with seawater and coral sand. Constr. Build. Mater. 2021, 309, 125126. [Google Scholar] [CrossRef]
- Najafi, E.K.; Chenari, R.J.; Arabani, M. The potential use of clay-fly ash geopolymer in the design of active-passive liners: A review. Clays Clay Miner. 2020, 68, 296–308. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, A.; Bao, X.; Ni, T.; Ling, J. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Jindal, B.B.; Alomayri, T.; Hasan, A.; Kaze, C.R. Geopolymer concrete with metakaolin for sustainability: A comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environ. Sci. Pollut. Res. 2023, 30, 25299–25324. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W. A novel waterproof, fast setting and high early strength repair material derived from metakaolin geopolymer. Constr. Build. Mater. 2016, 124, 69–73. [Google Scholar] [CrossRef]
- Zarina, Y.; Al Bakri Abdullah, M.M.; Kamarudin, H.; Nizar, I.K.; Razak, R.A. Reviews on the geopolymer materials for coating application. Adv. Mater. Res. 2013, 626, 958–962. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Wang, H. Potential application of geopolymers as protection coatings for marine concrete III. Field experiment. Appl. Clay Sci. 2012, 67, 57–60. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Z.; Shi, C.; Zhang, J. Some progresses in the challenges for geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 431, 022003. [Google Scholar] [CrossRef]
- Vilaplana, J.L.; Baeza, F.J.; Galao, O.; Alcocel, E.; Zornoza, E.; Garcés, P. Mechanical properties of alkali activated blast furnace slag pastes reinforced with carbon fibers. Constr. Build. Mater. 2016, 116, 63–71. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, H.; Chen, H.; Ni, Y.; Xu, X.; Huo, Q. Shrinkage-reducing measures and mechanisms analysis for alkali-activated coal gangue-slag mortar at room temperature. Constr. Build. Mater. 2020, 252, 119001. [Google Scholar] [CrossRef]
- Al-Mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Junior, J.; Saha, A.K.; Sarker, P.K.; Pramanik, A. Workability and Flexural Properties of Fibre-Reinforced Geopolymer Using Different Mono and Hybrid Fibres. Materials 2021, 14, 4447. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.N. Engineering Properties of Ambient Cured Alkali-Activated Fly Ash–Slag Concrete Reinforced with Different Types of Steel Fiber. Am. Soc. Civ. Eng. 2018, 30, 04018142. [Google Scholar] [CrossRef]
- Rashad, A.M. Effect of steel fibers on geopolymer properties–the best synopsis for civil engineer. Constr. Build. Mater. 2020, 246, 118534. [Google Scholar] [CrossRef]
- Samal, S.; Blanco, I. An Application Review of Fiber-Reinforced Geopolymer Composite. Fibers 2021, 9, 23. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferone, C.; Cioffi, R. Preparation and characterization of new geopolymer-epoxy resin hybrid mortars. Materials 2013, 6, 2989–3006. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Wu, Q.; Zhu, H.; Liu, Y. Thermal properties of metakaolin-based geopolymer modified by the silane coupling agent. Mater. Chem. Phys. 2021, 267, 124655. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Hu, Z.; Wu, Q.; Zhu, H.; Lu, J. Long-term performance of silane coupling agent/metakaolin based geopolymer. J. Build. Eng. 2021, 36, 102091. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, H.; Zhang, Z.; Wu, Q. Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr. Build. Mater. 2019, 222, 872–881. [Google Scholar] [CrossRef]
- Ferone, C.; Roviello, G.; Colangelo, F.; Cioffi, R.; Tarallo, O. Novel hybrid organic-geopolymer materials. Appl. Clay Sci. 2013, 73, 42–50. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative fly ash geopolymer-epoxy composites: Preparation, microstructure and mechanical properties. Materials 2016, 9, 461. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Cioffi, R.; Tarallo, O. Synthesis and characterization of novel epoxy geopolymer hybrid composites. Materials 2013, 6, 3943–3962. [Google Scholar] [CrossRef]
- Saludung, A.; Ogawa, Y.; Kawai, K. Microstructure and mechanical properties of epoxy resin-reinforced geopolymer exposed to high temperatures. Mater. Lett. 2023, 331, 133473. [Google Scholar] [CrossRef]
- Du, J.; Bu, Y.; Shen, Z.; Hou, X.; Huang, C. Effects of epoxy resin on the mechanical performance and thickening properties of geopolymer cured at low temperature. Mater. Des. 2016, 109, 133–145. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, G. The shrinkage of alkali activated fly ash. Cem. Concr. Res. 2015, 68, 75–82. [Google Scholar] [CrossRef]
- Neto, A.A.M.; Cincotto, M.A.; Repette, W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008, 38, 565–574. [Google Scholar] [CrossRef]
- Lee, N.; Jang, J.G.; Lee, H.-K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Firouz, R.M.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Zuo, Y.; Chen, W.; Ye, G. Chemical deformation of metakaolin based geopolymer. Cem. Concr. Res. 2019, 120, 108–118. [Google Scholar] [CrossRef]
- Khatib, J.M.; Ramadan, R.; Ghanem, H.; Elkordi, A.; Sonebi, M. Effect of limestone fines as a partial replacement of cement on the chemical, autogenous, drying shrinkage and expansion of mortars. Mater. Today Proc. 2022, 58, 1199–1204. [Google Scholar] [CrossRef]
- Thomas, R.; Lezama, D.; Peethamparan, S. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cem. Concr. Res. 2017, 91, 13–23. [Google Scholar] [CrossRef]
- Luo, L.; Yao, W.; Liang, G.; Luo, Y. Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus. J. Build. Eng. 2023, 73, 106712. [Google Scholar] [CrossRef]
- Kumarappa, D.B.; Peethamparan, S.; Ngami, M. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 2018, 109, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Chen, Y.; Ye, G. Effect of metakaolin on the autogenous shrinkage of alkali-activated slag-fly ash paste. Constr. Build. Mater. 2021, 278, 122397. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr. Build. Mater. 2017, 153, 284–293. [Google Scholar] [CrossRef]
- Ruan, S.; Chen, S.; Liu, Y.; Zhang, Y.; Yan, D.; Zhang, M. Early-age deformation of hydrophobized metakaolin-based geopolymers. Cem. Concr. Res. 2023, 169, 107168. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, X.; Zhang, Z.; Zhang, K.; Tang, X. Potential using of water-soluble polymer latex modified greener road geopolymeric grouts: Its preparation, characterization and mechanism. Constr. Build. Mater. 2021, 273, 121757. [Google Scholar] [CrossRef]
- Reeb, C.; Pierlot, C.; Davy, C.; Lambertin, D. Incorporation of organic liquids into geopolymer materials-A review of processing, properties and applications. Ceram. Int. 2021, 47, 7369–7385. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Zeze, A.L.P.; Zhang, J. Metakaolin-based geopolymer composites modified by epoxy resin and silane: Mechanical properties and organic-inorganic interaction mechanism. Appl. Clay Sci. 2023, 232, 106767. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Zeze, A.L.P.; Liu, X.; Tao, M. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection. Cem. Concr. Compos. 2022, 129, 104495. [Google Scholar] [CrossRef]
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Building Industry Press: Beijing, China, 2009.
- US-ASTM 1608-17; Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste. ASTM International: West Conshohocken, PA, USA, 2017.
- US-ASTM 1698-09; Standard Test Method for Autogenous Strain of Cement Paste and Mortar. ASTM International: West Conshohocken, PA, USA, 2009.
- Jaya, N.A.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Hussin, K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020, 247, 118641. [Google Scholar] [CrossRef]
- Weng, L.; Sagoe-Crentsil, K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. J. Mater. Sci. 2007, 42, 2997–3006. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, P. Hydration kinetics of the epoxy resin-modified cement at different temperatures. Constr. Build. Mater. 2017, 150, 287–294. [Google Scholar] [CrossRef]
- Feng, H.; Le, H.; Wang, S.; Zhang, M.H. Effects of silanes and silane derivatives on cement hydration and mechanical properties of mortars. Constr. Build. Mater. 2016, 129, 48–60. [Google Scholar] [CrossRef]
- Yao, J.Z.; Wang, Y.C.; Xu, D.L.; Sheng, L. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater. Sci. Eng. A 2010, 527, 6574–6580. [Google Scholar]
- Zhang, C.; Hu, Z.; Zhu, H.; Wang, X.; Gao, J. Effects of silane on reaction process and microstructure of metakaolin-based geopolymer composites. J. Build. Eng. 2020, 32, 101695. [Google Scholar] [CrossRef]
- Guo, S.-Y.; Zhang, X.; Chen, J.-Z.; Mou, B.; Shang, H.-S.; Wang, P.; Zhang, L.; Ren, J. Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr. Build. Mater. 2020, 264, 120715. [Google Scholar] [CrossRef]
- Tesoro, G.; Wu, Y. Silane coupling agents: The role of the organofunctional group. J. Adhes. Sci. Technol. 1991, 5, 771–784. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Qomi, M.J.A.; Brochard, L.; Honorio, T.; Maruyama, I.; Vandamme, M. Advances in atomistic modeling and understanding of drying shrinkage in cementitious materials. Cem. Concr. Res. 2021, 148, 106536. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, T.; Lv, W. Study on the micro-mechanism and structure of unsaturated polyester resin modified concrete for bridge deck pavement. Constr. Build. Mater. 2021, 289, 123174. [Google Scholar] [CrossRef]
- Mo, Z.; Zhao, M.; Zhang, G.; Sietins, J.M.; Sergio, G.F.; Pepi, M.S.; Yan, X.; Tao, M. Reaction kinetics of red mud-fly ash based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cem. Concr. Compos. 2018, 93, 175–185. [Google Scholar]
- Zaharaki, D.; Komnitsas, K.; Perdikatsis, V. Use of analytical techniques for identification of inorganic polymer gel composition. J. Mater. Sci. 2010, 45, 2715–2724. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Lu, J.; Zhu, C.; Lin, W.; Feng, J. Aqueous epoxy-based superhydrophobic coatings: Fabrication and stability in water. Prog. Org. Coat. 2018, 121, 201–208. [Google Scholar] [CrossRef]
- Wang, L.Q.; Mattigod, S.V.; Parker, K.E.; Hobbs, D.T.; Mccready, D.E. Nuclear magnetic resonance studies of aluminosilicate gels prepared in high-alkaline and salt-concentrated solutions. J. Non-Cryst. Solids 2005, 351, 3435–3442. [Google Scholar] [CrossRef]
- Sagoe-Crentsil, K.; Weng, L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 2007, 42, 3007–3014. [Google Scholar] [CrossRef]
- Brochier Salon, M.C.; Belgacem, M.N. Hydrolysis-Condensation Kinetics of Different Silane Coupling Agents. Phosphorus 2011, 186, 240–254. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, D.; Fang, H.; Chen, S.; Ye, H. Early-stage geopolymerization revealed by 27Al and 29Si nuclear magnetic resonance spectroscopy based on vacuum dehydration. Constr. Build. Mater. 2021, 266, 121114. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; Cholico-González, D.F.; Ortiz, N.L. Combination formation in the reinforcement of metakaolin geopolymers with quartz sand. Cem. Concr. Compos. 2017, 80, 115–122. [Google Scholar] [CrossRef]
- Djouani, F.; Chehimi, M.M.; Benzarti, K. Interactions of fully formulated epoxy with model cement hydrates. J. Adhes. Sci. Technol. 2013, 27, 469–489. [Google Scholar] [CrossRef]
- Dellinghausen, L.; Gastaldini, A.; Vanzin, F.; Veiga, K. Total shrinkage, oxygen permeability, and chloride ion penetration in concrete made with white Portland cement and blast-furnace slag. Constr. Build. Mater. 2012, 37, 652–659. [Google Scholar] [CrossRef]
- JG/T 337-2011; Agents of Surface Coating for Protection of Concrete Structures. China Communications Press: Beijing, China, 2011.
Metakaolin | SiO2 | Al2O3 | TiO2 | Fe2O3 | Na2O | CaO | K2O | MgO |
---|---|---|---|---|---|---|---|---|
Chemical Composition (wt%) | 49.67 | 42.54 | 2.14 | 1.32 | 0.68 | 0.19 | 0.18 | 0.14 |
Sample | Metakaolin (g) | Na2O·2SiO2 (mL) | 50 wt% NaOH (mL) | E51 Epoxy Resin (g) | Q17 Hardener (g) | SCA (g) |
---|---|---|---|---|---|---|
MKG | 100 | 90 | 18 | - | - | - |
MKG-WER | 100 | 90 | 18 | 32.9 | 19.8 | - |
MKG-SCA | 100 | 90 | 18 | - | - | 2.6 |
MKG-WER-SCA | 100 | 90 | 18 | 32.9 | 19.8 | 3.2 |
Initial Current (I30V/mA) | Applied Voltage (U/V) | Possible New Initial Current (I0/mA) | Duration of Test (t/h) |
---|---|---|---|
I0 < 5 | 60 | I0 < 10 | 96 |
5 ≤ I0 < 10 | 60 | 10 ≤ I0 < 20 | 48 |
10 ≤ I0 < 15 | 60 | 20 ≤ I0 < 30 | 24 |
15 ≤ I0 < 20 | 50 | 25 ≤ I0 < 35 | 24 |
20 ≤ I0 < 30 | 40 | 25 ≤ I0 < 40 | 24 |
30 ≤ I0 < 40 | 35 | 35 ≤ I0 < 50 | 24 |
40 ≤ I0 < 60 | 30 | 40 ≤ I0 < 60 | 24 |
Peaks | MKG | MKG-WER | MKG-SCA | MKG-WER-SCA | ||||
---|---|---|---|---|---|---|---|---|
Signal Position (ppm) | Ratio (%) | Signal Position (ppm) | Ratio (%) | Signal Position (ppm) | Ratio (%) | Signal Position (ppm) | Ratio (%) | |
Q4(0Al) | −96.2 | 18.68 | −96.9 | 10.64 | −105.1 | 5.12 | −99.4 | 13.97 |
Q4(1Al) | −92.0 | 24.04 | −93.4 | 19.46 | −97.0 | 19.46 | −93.6 | 36.78 |
Q4(2Al) | −88.5 | 29.77 | −90.3 | 31.19 | −91.9 | 35.89 | −89.3 | 29.38 |
Q4(3Al) | −84.9 | 17.57 | −86.5 | 25.59 | −87.6 | 24.82 | −85.3 | 19.97 |
Q4(4Al) | −81.2 | 9.94 | −82.4 | 13.12 | −83.7 | 14.70 | -- | -- |
Apparent Diffusion Coefficient of Chloride ions (Da/10−12 m2/s) | Concrete Properties |
---|---|
<2 | Very good resistance to chloride ion penetration |
<8 | Good resistance to chloride ion penetration |
<16 | General resistance to chloride ion penetration |
>16 | Not suitable for harsh environments |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zang, Y.; Shan, L. Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA. Buildings 2024, 14, 586. https://doi.org/10.3390/buildings14030586
Zhang M, Zang Y, Shan L. Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA. Buildings. 2024; 14(3):586. https://doi.org/10.3390/buildings14030586
Chicago/Turabian StyleZhang, Mo, Yongquan Zang, and Lingyan Shan. 2024. "Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA" Buildings 14, no. 3: 586. https://doi.org/10.3390/buildings14030586
APA StyleZhang, M., Zang, Y., & Shan, L. (2024). Enhancing Volumetric Stability of Metakaolin-Based Geopolymer Composites with Organic Modifiers WER and SCA. Buildings, 14(3), 586. https://doi.org/10.3390/buildings14030586