Application of Environmental and Biological Frequency Indicators to Assess the Serpula lacrymans Fungus in Wooden Dwellings
Abstract
:1. Introduction
2. Methodology
2.1. Definition of the Frequency Indicators
- Qe: extraction volume, l/s;
- Wi: absolute moisture of the place at an air temperature of 19 °C and 70% of relative moisture, g/m3;
- We: absolute moisture of the locality with the mean temperature and absolute moisture in July, g/m3;
- n: volume air changes in the place per hour, 1/h;
- V: volume of the place, m3.
2.2. Dwellings
2.3. Monitoring and Determinations
- At: air change rate (1/h);
- ln C(0): initial CO2 concentration, (ppm);
- ln C(t): CO2 concentration in the time t1, (ppm).
3. Results
3.1. Frequency of Air Temperature FATs (%)
3.2. Frequency of Relative Moisture FRMs
3.3. Frequency of Weekly Ventilation Rate FVRs (%)
3.4. Spore Concentration CFU/pp
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S Enviromental Protection Agency. Guía para el Control de la Humedad en el Diseño, Construcción, y Mantenimiento de Edificaciones, 2016, p. 156. Available online: https://espanol.epa.gov/sites/default/files/2016-07/documents/moisture_control_guidance_spanish_april_2016_508_final.pdf (accessed on 3 November 2023).
- Bekker, M.; Erich, S.J.F.; Hermanns, S.P.M.; van Maris, M.P.F.H.L.; Huinink, H.P.; Adan, O.C.G. Quantifying discoloration caused by the indoor fungus Penicillium rubens on building material at controlled humidity. Build. Environ. 2015, 90, 60–70. [Google Scholar] [CrossRef]
- Daza, M.; Martinez, D.; Caro, P. Contaminación microbiológica del aire al interior y el síndrome del edificio enfermo. Biociencias 2015, 10, 37–50. [Google Scholar] [CrossRef]
- Gavira, M.J.; Linares-Alemparte, P.; Nouvel, J.F.; Aeraulique, A.; Lautour, M.; Venticontrol, A. Comportamiento Higrotérmico de la Envolvente del Edificio Según el CTE. Análisis de las Condensaciones Mediante el Cálculo de la Humedad Relativa Interior. Soluciones Alternativas: Sistemas de Ventilación por Caudal Variable. I Jornadas de Investigación en Construcción (Instituto de Ciencias de la Construcción "Eduardo Torroja", Madrid, 2–4 Junio 2005): Actas de las Jornadas. T. II, pp. 739–756. 2005. Available online: https://core.ac.uk/download/pdf/36017806.pdf (accessed on 9 November 2023).
- Ministerio de Transporte Movilidad y Agenda Urbana. CTE DA DB-HE/1. Cálculo de Parámetros Característicos de la Envolvente, 2020, pp. 1–26. Available online: https://www.codigotecnico.org/pdf/Documentos/HE/DA_DB-HE1_Calculo_de_parametros_caracteristicos_de_la_envolvente.pdf (accessed on 13 October 2023).
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Grunewald, J.; Häupl, P.; Bomberg, M. Towards an Engineering Model of Material Characteristics for Input to Ham Transport Simulations—Part 1: An Approach. J. Build. Phys. 2003, 26, 343–366. [Google Scholar] [CrossRef]
- Xue, Y.; Fan, Y.; Wang, Z.; Gao, W.; Sun, Z.; Ge, J. Facilitator of moisture accumulation in building envelopes and its influences on condensation and mould growth. Energy Build. 2022, 277, 112528. [Google Scholar] [CrossRef]
- 9. Mesquita, Carlos Alexandre Coutinho. Revestimientos Continuos Interiores de Varias Capas Con Características de Barrera de Vapor e Higroscopicidad. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2013.
- Nath, S.; Dewsbury, M.; Freya, S.; Hartwig, K. A novel method established to convert Australian climate data for hygrothermal simulation. ASA 2022, 2022, 44. [Google Scholar]
- Brambilla, A.; Gasparri, E. Mould Growth Models and Risk Assessment for Emerging Timber Envelopes in Australia: A Comparative Study. Buildings 2021, 11, 261. [Google Scholar] [CrossRef]
- Bobadilla, A. Calidad Energética y Ambiental Interior de la Edificación Habitacional en Chile. Ph.D. Thesis, Université Catholique de Louvain UCL, Ottignies-Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Jiménez, F.; Carrillo, J. Evaluación de la Resistencia a la Absorción de Agua, Ataque de Termitas Nasutitermes Corniger y Propiedades Mecánicas de un Material Lignocelulósico. Available online: https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/415/1/PCM_M_Tesis_2015_Milton_Jimenez.pdf (accessed on 19 September 2023).
- Brimblecombe, P.; Lankester, P. Cambios a largo plazo en el clima y daños por insectos en casas históricas. Semental. Conservar. 2013, 58, 13–22. [Google Scholar]
- Ayanleye, S.; Udele, K.; Nasir, V.; Zhang, X.; Militz, H. Durability and protection of mass timber structures: A review. J. Build. Eng. 2021, 46, 103731. [Google Scholar] [CrossRef]
- Wirth, A.; Pacheco, F.; Toma, N.; Valiati, V.; Tutikian, V.; Gomes, L. Análisis sobre el crecimiento de hongos en diferentes revestimientos aplicados a sistemas ligeros. Rev. Ing. De Construcción 2019, 34, 5–14. [Google Scholar] [CrossRef]
- Cobas, A. Características de la Madera; Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica, La Plata, Argentina, 2017; p. 10. Available online: https://ri.conicet.gov.ar/bitstream/handle/11336/160050/CONICET_Digital_Nro.8b67b300-39a1-4330-8d5c-dafb771382a6_B.pdf?sequence=5&isAllowed=y (accessed on 20 September 2023).
- Ortiz, R.; Jamet, A.; Herrera, P.; Vindigni, G.; Pereira, A. Determinación de los modelos de biodeterioro en elementos de madera producidos por hongos de pudrición en edificaciones de la zona de conservación histórica de Valparaíso, Chile. Rev. La Construcción 2011, 10, 82–89. [Google Scholar] [CrossRef]
- Clausen, C.A.; Kartal, S.N. Accelerated detection of brown-rot decay: Comparison of soil block test, chemical analysis, mechanical properties, and immunodetection. For. Prod. J. 2003, 53, 90–94. [Google Scholar]
- García, V.R.; Benítez, G.; Martínez, M.; Velázquez, C. Wood preservatives and microbial exudates with antagonistic activity against biological agents. Rev. Mex. Fitopatol. 2017, 36, 56–78. [Google Scholar] [CrossRef]
- Embacher, J.; Seehauser, M.; Kappacher, C.; Stuppner, S.; Zeilinger, S.; Kirchmair, M.; Neuhauser, S. Serpula lacrymans reacts with a general, unspecialized chemical response during interaction with mycoparasitic Trichoderma spp. and bacteria. Fungal Ecol. 2023, 63, 101230. [Google Scholar] [CrossRef]
- Ayyappa, S.; Wensheng, Q. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology 2018, 9, 93–105. [Google Scholar]
- Gadd, G.; Watkinson, S.; Dyer, P. (Eds.) Fungi in the Environment; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Haas, D.; Mayrhofer, H.; Habib, J.; Galler, H.; Reinthaler, F.; Fuxjäger, M. Distribution of building-associated wood-destroying fungi in the federal state of Styria, Austria. Eur. J. Wood Wood Prod. 2019, 77, 527–537. [Google Scholar] [CrossRef]
- Schmidt, O. Basidiomicetos de descomposición de madera en interiores: Daño, hongos causales, fisiología, identificación y caracterización, prevención y control. Mycol. Prog. 2007, 6, 261–279. [Google Scholar] [CrossRef]
- Steenkjær, A.; Green, F.; Clausen, C.; Jensen, B. Tolerance of Serpula lacrymans to copper-based wood preservatives. Int. Biodeterior. Biodegrad. 2005, 56, 173–177. [Google Scholar] [CrossRef]
- Nordén, J.; Abrego, N.; Boddy, L.; Bässler, C.; Dahlberg, A.; Halme, P.; Hällfors, M.; Maurice, S.; Menkis, A.; Miettinen, O.; et al. Ten principles for conservation translocations of threatened wood-inhabiting fungi. Fungal Ecol. 2020, 44, 100919. [Google Scholar] [CrossRef]
- Hyde, K.D.; Al-Hatmi, A.M.S.; Andersen, B.; Boekhout, T.; Buzina, W.; Dawson, T.L.J.; Eastwood, D.C.; Jones, E.B.G.; de Hoog, S.; Kang, Y.; et al. The world’s ten most feared fungi. Fungal Divers. 2018, 93, 161–194. [Google Scholar] [CrossRef]
- Maurice, S.; Coroller, L.; Debaets, S.; Vasseur, V.; Le Floch, G.; Barbier, G. Modelling the effect of temperature, water activity and pH on the growth of Serpula lacrymans. J. Appl. Microbiol. 2011, 111, 1436–1446. [Google Scholar] [CrossRef]
- Gabriel, J.; Švec, K. Occurrence of indoor wood decay basidiomycetes in Europe. Fungal Biol. Rev. 2017, 31, 212–217. [Google Scholar] [CrossRef]
- Persaud, K.C.; Wareham, P.D. Hand-Held Electronic Nose (HHEN) for dry rot detection in buildings. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Republic of Korea, 5–9 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 1947–1950. [Google Scholar]
- Jennings, D.H.; Bravery, A.F. Serpula lacrymans: Fundamental Biology and Control Strategies; Wiley: Chichester, UK, 1991. [Google Scholar]
- Ortiz, R.; Jamet, A.; Herrera, P.; Vindigni, G.; Pereira, A. Influencia del deterioro incipiente producido por el hongo de pudrición parda Serpula lacrymans, sobre las propiedades mecánicas de compresión normal y paralela a la fibra en madera de Pinus radiata D. Don. Inf. Construcción 2011, 63, 69–74. [Google Scholar] [CrossRef]
- Wilde, R. Reporting on timber decay in a condition survey. J. Build. Apprais. 2005, 1, 47–62. [Google Scholar] [CrossRef]
- Kauserud, H.; Svegården, I.B.; Sætre, G.-P.; Knudsen, H.; Stensrud, O.; Schmidt, O.; Doi, S.; Sugiyama, T.; Högberg, N. Asian origin and rapid global spread of the destructive dry rot fungus Serpula lacrymans. Mol. Ecol. 2007, 16, 3350–3360. [Google Scholar] [CrossRef] [PubMed]
- Palfreyman, J.W.; White, N.A.; Buultjens, T.E.J.; Glancy, H. The impact of current research on the treatment of infestations by the dry rot fungus Serpula lacrymans. Int. Biodeterior. Biodegrad. 1995, 35, 369–395. [Google Scholar] [CrossRef]
- Bavendamm, W.; Reichelt, H. Die Abhängigkeit des Wachstums holzzersetzender Pilze vom Wassergehalt des Nährsubstrates. Arch. Mikrobiol. 1938, 9, 486–544. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N.; Time, B.; Köhler, J. Mould growth criteria and design avoidance approaches in wood-based materials—A systematic review. Constr. Build. Mater. 2017, 150, 77–88. [Google Scholar] [CrossRef]
- Theden, G. Untersuchungen über die Feuchtigkeitsansprüche der wichtigsten in Gebäuden auftretenden holzzerstörenden Pilze. Angew. Bot. 1941, 23, 189–253. [Google Scholar]
- Valenzuela, E.; Osorio, M. Serpula lacrymans a Rot Wood Fungus. En: XXI Congreso Sociedad Chilena de Fitopatología, pag. 81. Puerto Varas—Chile 2012. Available online: https://www.sochifit.cl/site2019/wp-content/uploads/2019/06/XXI.pdf (accessed on 20 September 2023).
- Canales, P. “Extraño Hongo Destruye una Decena de Casas en Valdivia”, Canal 13. T13: 3 October 2019. Available online: https://www.t13.cl/noticia/nacional/hongo-destruye-casas-valdivia (accessed on 13 September 2023).
- Palfreyman, J.W.; Smith, D.; Low, G.A. The use of representative modelling to test the efficacy of environmental control treatments for the dry rot fungus Serpula lacrymans: Simulating the infection and the treatment of flooring timber. Int. Biodeterior. Biodegrad. 2001, 47, 27–36. [Google Scholar] [CrossRef]
- Kim, S.; Zirkelbach, D.; Künzel, H.M. Review of Methods to Create Meteorological Data Suitable for Moisture Control Design by Hygrothermal Building Envelope Simulation. Energies 2023, 16, 3271. [Google Scholar] [CrossRef]
- Cárdenas, J.P.; Araneda, C.; Beaumont, J.C. Evaluación del Plan de Reacondicionamiento Térmico en Temuco y Padre Las Casas. Rev. Ing. Obras Civ. 2014, 4, 14–22. [Google Scholar]
- IIRC. ANSI-Approved ANSI/IICRC S520 Standard for Professional Mold REMEDIATION and IICRC R520 Reference Guide for Professional Mold Remediation, 4th ed.; IICRC: Las Vegas, NV, USA, 2015; Available online: https://iicrc.org/wp-content/uploads/2024/01/IICRC-S520-Standard-Substantive-Changes_Second-Limited-Public-Review_Jan-2024.pdf (accessed on 12 June 2023).
- Pottier, D.; Andre, V.; Rioult, J.; Bourreau, A.; Duhamel, C.; Bouchart, V.; Richard, E.; Guibert, M.; Verite, P.; Garon, D. Airborne molds and mycotoxins in Serpula lacrymans-damaged homes. Atmos. Pollut. Res. 2014, 5, 325–334. [Google Scholar] [CrossRef]
- Balasundaram, S.V.; Hess, J.; Durling, M.B.; Moody, S.C.; Thorbek, L.; Progida, C.; LaButti, K.; Aerts, A.; Barry, K.; Grigoriev, I.V.; et al. The fungus that came in from the cold: Dry rot’s pre-adapted ability to invade buildings. ISME J. 2018, 12, 791–801. [Google Scholar] [CrossRef]
- ASTM E741-23; Standard Test Method for Determining Air Change in a Single Zone by Means of a Tracer Gas Dilution. ASTM (American Society for Testing and Materials): Philadelphia, PA, USA, 2023.
- PCA Property Care Association. Code of Practice Remedial Timber Treatment. Published April 2016 by the Property Care Association 11 Ramsay Court, Kingfisher Way, Hinchingbrooke Business Park, Huntingdon, PE29 6FY. Available online: https://www.property-care.org/write/MediaUploads/News/Documents/Remedial-Timber-Treatment_Code-of-Practice_FINAL-27.04.16.pdf (accessed on 23 May 2023).
- Viitanen, H.; Toratti, T.; Makkonen, L.; Peuhkuri, R.; Ojanen, T.; Ruokolainen, L.; Räisänen, J. Towards modelling of decay risk of wooden materials. Eur. J. Wood Wood Prod. 2010, 68, 303–313. [Google Scholar] [CrossRef]
- Van Niekerk, P.B.; Brischke, C.; Niklewski, J. Estimating the service life of timber structures concerning risk and influence of fungal decay—A review of existing theory and modelling approaches. Forests 2021, 12, 588. [Google Scholar] [CrossRef]
- Katja, S. Fungi: Their role in deterioration of cultural heritage. Fungal Biol. Rev. 2010, 24, 47–55. [Google Scholar] [CrossRef]
- NCh3309:2022; Ventilation—Acceptable Indoor Air Quality in Residential Buildings—Requirements. NIS (National Institute of Standardization): Santiago, Chile, 2022.
- Embacher, J.; Zeilinger, S.; Kirchmair, M.; Rodriguez-R, L.; Neuhauser, S. Wood decay fungi and their bacterial interaction partners in the built environment—A systematic review on fungal bacteria interactions in dead wood and timber. Fungal Biol. Rev. 2023, 45, 100305. [Google Scholar] [CrossRef]
- Embacher, J.; Neuhauser, S.; Zeilinger, S.; Kirchmair, M. Microbiota Associated with Different Developmental Stages of the Dry Rot Fungus Serpula lacrymans. J. Fungi 2021, 7, 354. [Google Scholar] [CrossRef]
- Burge, H.; Boise, J.; Rutherford, J.; Solomon, W. Comparative recoveries of airborne fungus spores by viable and non-viable modes of volumetric collection. Mycopathologia 1977, 61, 27–33. [Google Scholar] [CrossRef]
- Findlay, W.P.K. Dry Rot Investigations in an Experimental House. Dry Rot Investig. Exp. House, Forest Products Research Records, N°14, 1937. HMSO, London. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19372701428 (accessed on 20 September 2023).
Performance Indicators | Referential Standard |
---|---|
Frequency of weekly relative moisture FRMs (%) mold | ≥5% weekly time about 70% |
Frequency of weekly relative moisture FRMs (%) Serpulla fungus | ≥20% weekly time about 90% |
Frequency of weekly air temperature FATs (%) mold and Serpula | 100% weekly time within the range (5–35 °C) |
Frequency of weekly ventilation rate FVRs (%) mold and Serpula | 0% weekly time lower than 1.8 (1/h) in living rooms, and 1.5 (1/h) in bedrooms and spaces under the floor |
Rot fungus spore concentration | ≥52 (CFU/pp) measured for 4 h as maximum |
Item | Address | Locality | City | Changes |
---|---|---|---|---|
(1) | Lago Malleco #560 | Tte. Merino | Valdivia | Increase, obstructed small windows, replacement of ventilated floor with thermal sandwich floor |
(2) | Lago Malleco #570 | Tte. Merino | Valdivia | Increase, obstructed small windows, replacement of ventilated floor with thermal sandwich floor |
(3) | Lago Villarrica #2780 | Tte. Merino | Valdivia | Shed, obstructed small windows, replacement of ventilated floor with thermal sandwich floor |
(4) | Lago Llanquihue #3030 | Tte. Merino | Valdivia | Shed, thermal improvement in wall, no changes in the floor |
(5) | Los Aromos #0184 | Las Quilas | Temuco | Replacement of ventilated floor with concrete floor |
(6) | Los Helechos #1450 | Las Quilas | Temuco | Increase, replacement of ventilated floor with concrete floor |
(7) | Los Notros #1463 | Las Quilas | Temuco | Shed, replacement of ventilated floor with concrete floor |
(8) | Palihue #968. | Millaray | Temuco | No significant changes |
City | Dwelling | Space | Maximum Temperature (°C) | Minimum Temperature (°C) | Average Temperature (°C) | Maximum Relative Moisture (%) | Minimum Relative Moisture (%) | Average Relative Moisture (%) | Maximum Ventilation (1/h) | Minimum Ventilation (1/h) | Average Ventilation (1/h) |
---|---|---|---|---|---|---|---|---|---|---|---|
Valdivia | 1 | Under the floor | 18.6 | 11.9 | 14.0 | 96.9 | 66.9 | 88.8 | 0.7 | 0.0 | 0.0 |
Living room | 25.5 | 11.4 | 18.0 | 73.3 | 46.7 | 58.5 | 10.0 | 0.0 | 1.6 | ||
Bedroom | 23.5 | 11.1 | 16.1 | 93.0 | 55.8 | 81.2 | 3.1 | 0.0 | 0.3 | ||
2 | Under the floor | 16.7 | 12.2 | 14.2 | 93.3 | 90.1 | 91.7 | 0.9 | 0.0 | 0.1 | |
Living room | 24.2 | 15.1 | 19.4 | 72.2 | 54.5 | 62.9 | 9.0 | 0.0 | 1.2 | ||
Bedroom | 23.5 | 14.1 | 18.7 | 70.5 | 49.3 | 60.1 | 8.8 | 0.0 | 0.6 | ||
3 | Under the floor | 18.9 | 13.8 | 15.6 | 85.8 | 76.7 | 81.8 | 0.9 | 0.0 | 0.1 | |
Living room | 25.8 | 16.2 | 20.5 | 58.0 | 39.6 | 47.9 | 9.5 | 0.0 | 1.4 | ||
Bedroom | 17.9 | 12.9 | 15.3 | 95.0 | 76.0 | 89.7 | 3.4 | 0.0 | 0.2 | ||
4 (witness) | Under the floor | 16.6 | 14.2 | 15.4 | 88.7 | 78.5 | 83.5 | 2.3 | 0.0 | 0.4 | |
Living room | 25.6 | 14.1 | 19.2 | 82.3 | 49.2 | 63.8 | 9.8 | 0.0 | 0.5 | ||
Bedroom | 27.6 | 13.2 | 19.9 | 82.5 | 43.7 | 61.9 | 8.7 | 0.0 | 0.7 | ||
Outdoor | 30.7 | 5.8 | 15.7 | 92.1 | 30.4 | 63.8 | - | - | - | ||
Temuco | 1 | Living room | 26.1 | 10.9 | 17.0 | 75.9 | 45.5 | 62.5 | 12.1 | 0.0 | 0.8 |
Bedroom | 27.2 | 12.7 | 18.2 | 66.2 | 43.2 | 57.7 | 8.0 | 0.0 | 0.4 | ||
2 | Living room | 21.3 | 14.0 | 17.3 | 69.3 | 54.9 | 63.0 | 1.3 | 0.0 | 0.1 | |
Bedroom | 27.8 | 14.7 | 20.0 | 73.2 | 58.3 | 64.4 | 2.1 | 0.0 | 0.1 | ||
3 (witness) | Living room | 26.7 | 14.3 | 19.4 | 76.5 | 49.9 | 59.5 | 1.1 | 0.0 | 0.1 | |
Bedroom | 27.6 | 13.5 | 19.3 | 75.1 | 45.3 | 59.1 | 1.5 | 0.0 | 0.1 | ||
4 | Living room | 25.5 | 14.1 | 19.1 | 67.0 | 44.1 | 54.7 | 0.6 | 0.0 | 0.0 | |
Bedroom | 25.0 | 14.9 | 19.2 | 63.5 | 46.2 | 55.5 | 8.0 | 0.0 | 1.1 | ||
Outdoor | 28.8 | 5.4 | 15.8 | 86.9 | 35.9 | 63.6 | - | - | - |
Performance | Dwellings in Valdivia | Dwellings in Temuco | |||||||
---|---|---|---|---|---|---|---|---|---|
Dw. 1 | Dw. 2 | Dw. 3 | Dw. 4 (witness) | Dw. 1 | Dw. 2 | Dw. 3 (witness) | Dw. 4 | Referential Standard | |
Frequency of the weekly air relative humidity FRMs | |||||||||
FRMs living room 70 (%) | 4 | 46 | 0 | 8 | 6 | 1 | 0 | 0 | ≥5% time greater than 70% |
FRMs bedroom 70 (%) | 82 | 52 | 100 | 13 | 0 | 1 | 0 | 0 | ≥5% time greater than 70% |
FRMs living room 90 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≥20% time greater than 90% |
FRMs bedroom 90 (%) | 43 | 0 | 61 | 0 | 0 | 0 | 0 | 0 | ≥20% time greater than 90% |
FRMs under the floor 90 (%) | 55 | 100 | 0 | 0 | - | - | - | - | ≥20% time greater than 90% |
Frequency of the weekly air temperature FATs | |||||||||
FATs living room (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100% of time between 5 °C and 35 °C |
FATs bedroom (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100% of time between 5 °C and 35 °C |
FATs under the floor (%) | 100 | 100 | 100 | 100 | - | - | - | - | - |
Frequency of weekly ventilation rate FVRs | |||||||||
FVRs living room (%) | 39 | 49 | 41 | 69 | 75 | 100 | 100 | 100 | ≤0% time lower than 1.8 (1/h) |
FVRs bedroom (%) | 95 | 79 | 98 | 65 | 87 | 98 | 100 | 49 | ≤0% time lower than 1.5 (1/h) |
FVRs under the floor (%) | 100 | 100 | 100 | 89 | - | - | - | - | ≤0% time lower than 1.5 (1/h) |
Spore concentration | |||||||||
Concentration in living room (CFU/pp) | 183 | 46 | - | 18 | 190 | 43 | 36 | 28 | ≥52 (CFU/pp) |
Concentration in bedroom (CFU/pp) | 90 | 43 | 22 | - | 67 | 32 | - | - | ≥52 (CFU/pp) |
Concentration under the floor (CFU/pp) | 124 | 85 | 102 | 52 | - | - | - | - | ≥52 (CFU/pp) |
Coincidence of Percentage of the NCBI Database | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Valdivia | Temuco | |||||||||
Species | Type | Total of Isolated | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Lago Malleco #560 | Lago Malleco #570 | Lago Villarrica #2780 | Lago Llanquihue #3030 (Witness) | Los Aromos #0184 | Los Helechos #1450 | Los Notros #1463 (Witness) | Palihue #968 | |||
Bjerkandera adusta | White | 12 | 100% | - | 100% | 100% | 100% | - | - | 100% |
Peniophora lycii | White | 4 | 100% | - | - | 99.9% | - | 99.8% | 99.8% | - |
Phanerochaete sordida | White | 11 | 99.2% | 99.0% | - | 99.1% | 99.1% | 99.1% | - | 100% |
Stereum hirsutum | White | 8 | 100% | 99.9% | 99.9% | 100% | - | - | - | - |
Sterum illidens | White | 2 | 99.6% | - | - | - | 99.5% | - | - | - |
Trametes ochracea | White | 3 | - | - | - | 100% | - | - | 100% | - |
Trametes versicolor | White | 3 | 100% | - | - | - | 99.4% | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza Maldonado, R.; Bobadilla, A.; Rubio-Bellido, C. Application of Environmental and Biological Frequency Indicators to Assess the Serpula lacrymans Fungus in Wooden Dwellings. Buildings 2024, 14, 589. https://doi.org/10.3390/buildings14030589
Espinoza Maldonado R, Bobadilla A, Rubio-Bellido C. Application of Environmental and Biological Frequency Indicators to Assess the Serpula lacrymans Fungus in Wooden Dwellings. Buildings. 2024; 14(3):589. https://doi.org/10.3390/buildings14030589
Chicago/Turabian StyleEspinoza Maldonado, Rodrigo, Ariel Bobadilla, and Carlos Rubio-Bellido. 2024. "Application of Environmental and Biological Frequency Indicators to Assess the Serpula lacrymans Fungus in Wooden Dwellings" Buildings 14, no. 3: 589. https://doi.org/10.3390/buildings14030589
APA StyleEspinoza Maldonado, R., Bobadilla, A., & Rubio-Bellido, C. (2024). Application of Environmental and Biological Frequency Indicators to Assess the Serpula lacrymans Fungus in Wooden Dwellings. Buildings, 14(3), 589. https://doi.org/10.3390/buildings14030589