Equivalent Linearization and Parameter Optimization of the Negative Stiffness Bistable Damper
Abstract
:1. Introduction
2. Control Equations of a Single-Degree-of-Freedom (SDOF) Structure Equipped with an NSBD
2.1. Mechanism Characterization of the NSBD
2.2. Kinematic Equations for an NSBD-Equipped Structure
3. Equivalent Llinearization of the NSBD
3.1. Equivalent Linearization Method (ELM)
3.2. Monte Carlo Method
3.3. Numerical Analysis
4. Optimal Design of the NSBD
4.1. Control Equations of a Tall Building Installed with an NSBD
4.2. Equivalent Linearization of NSBD–Structure System
4.3. H∞ Norm of the NSBD–Tall Building System
4.4. General Optimization Procedure
4.5. Numerical Analysis
- (1)
- The range of negative stiffness values for the NSBD is set between −9 × 106 and −1 × 106;
- (2)
- The cubic stiffness of the NSBD varies from 2 × 1010 to 3 × 1010;
- (3)
- The damping for the NSBD falls within the range from 0 to 1,716,100.
5. Conclusions
- Utilizing the Monte Carlo simulation calculation method, the maximum root-mean-square error for applying the nonlinear NSBD and equivalent linear dampers to the structure is 0.7%, the maximum peak displacement error is 1.7%, and the maximum displacement variance error in the structure is 1.15%. The dynamic responses calculated using the equivalent linearization model show remarkable agreement with those of the original nonlinear system;
- According to the pseudo-excitation method (PEM), the simulation results suggest that the displacement response’s error in the structure will not exceed 4.5% when the building is equipped with the nonlinear NSBD and equivalent linear dampers for different earthquakes. The NSBD can be approximated by a linear system with the help of the ELM, which can be vital for the NSBD’s optimal design, as demonstrated by these simulation calculations;
- As a main objective function, the H∞ norm serves as a very precise method for optimizing parameters that influence the structure’s vibration reduction. The genetic algorithm (GA) is perfectly suitable for obtaining the design parameters of the NSBD within an appropriate range. After 100 generations, the H∞ norm converges to 2.4, indicating that the genetic algorithm can simulate and calculate optimization parameters very accurately and quickly;
- The displacement responses of the tall buildings with and without an NSBD are simulated utilizing the optimized parameters solved through the GA. The best damping for the Hollister-02 earthquake can achieve a displacement mitigation ratio of 52.99%, and the vibration mitigation ratios of the NSBD exceed 22% for all the selected earthquakes. The simulation results suggest that the effective restraint of the structural vibration for different earthquakes can be achieved using the NSBD with the optimal parameters. The proposed method is effective in implementing the optimal design of the NSBD.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, J. Concept of structural control. ASCE J. Struct. Div. 1972, 98, 1567–1574. [Google Scholar] [CrossRef]
- Soong, T.T.; Spencer, B.F. Active structural control: Theory and practice. J. Eng. Mech. 1992, 118, 1282–1285. [Google Scholar] [CrossRef]
- Hoang, N.; Fujino, Y.; Warnitchai, P. Optimal tuned mass damper for seismic applications and practical design formulas. Eng. Struct. 2008, 30, 707–715. [Google Scholar] [CrossRef]
- Hsiao, F.H.; Chen, C.W.; Liang, Y.W.; Xu, S.D. T-S fuzzy controllers for Nonlinear interconnected systems with multiple time delays. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1883–1893. [Google Scholar] [CrossRef]
- Rana, R.; Soong, T.T. Parametric study and simplified design of tuned mass dampers. Eng. Struct. 1998, 20, 193–204. [Google Scholar] [CrossRef]
- Sadek, F.; Mohraz, B.; Taylor, A.W.; Chung, R.M. A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 1997, 26, 617–635. [Google Scholar] [CrossRef]
- Soong, T.T.; Spencer, B.F. Supplemental energy dissipation: State-of-the-art and state-of-the practice. Eng. Struct. 2002, 24, 243–259. [Google Scholar] [CrossRef]
- Symans, M.D.; Charney, F.A.; Whittaker, A.S.; Constantinou, M.C. Energy dissipation systems for seismic applications: Current practice and recent developments. J. Struct. Eng. 2008, 134, 3–21. [Google Scholar] [CrossRef]
- Roffel, A.J.; Narasimhan, S.; Haskett, T. Performance of pendulum tuned mass dampers in reducing the responses of flexible structures. J. Struct. Eng. 2013, 139, 04013019. [Google Scholar] [CrossRef]
- Lu, X.; Chen, J. Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper. Struct. Des. Tall Spec. Build. 2011, 20, 435–452. [Google Scholar] [CrossRef]
- Pasala, D.T.R.; Sarlis, A.A.; Nagarajaiah, S.; Reinhorn, A.M. Adaptive negative stiffness: New structural modification approach for seismic protection. J. Struct. Eng. 2013, 139, 1112–1123. [Google Scholar] [CrossRef]
- Pasala, D.T.R.; Sarlis, A.A.; Reinhorn, A.M.; Nagarajaiah, S. Simulated bilinear-elastic behavior in a SDOF elastic structure using negative stiffness device: Experimental and analytical study. J. Struct. Eng. 2014, 140, 04013049. [Google Scholar] [CrossRef]
- Li, H.N.; Sun, T.; Lai, Z.L.; Nagarajaiah, S. Effectiveness of negative stiffness system in the benchmark structural-control problem for seismically excited highway bridges. J. Bridge Eng. 2018, 23, 04018001. [Google Scholar] [CrossRef]
- Sun, T.; Lai, Z.; Nagarajaiah, S.; Li, H.N. Negative stiffness device for seismic protection of smart base isolated benchmark building. Struct. Control Health Monit. 2017, 24, e1968. [Google Scholar] [CrossRef]
- Sun, F.F.; Wang, M.; Nagarajaiah, S. Multi-objective optimal design and seismic performance of negative stiffness damped outrigger structures considering damping cost. Eng. Struct. 2021, 229, 111615. [Google Scholar] [CrossRef]
- Wang, M.; Sun, F.F.; Nagarajaiah, S. Simplified optimal design of MDOF structures with negative stiffness amplifying dampers based on effective damping. Struct. Des. Tall Spec. Build. 2019, 28, e1664. [Google Scholar] [CrossRef]
- Wang, M.; Sun, F.F.; Yang, J.Q.; Nagarajaiah, S. Seismic protection of SDOF systems with a negative stiffness amplifying damper. Eng. Struct. 2019, 190, 128–141. [Google Scholar] [CrossRef]
- Zhou, P.; Li, H. Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct. Control Health Monit. 2016, 23, 764–782. [Google Scholar] [CrossRef]
- Chen, L.; Sun, L.; Nagarajaiah, S. Cable with discrete negative stiffness device and viscous damper: Passive realization and general characteristics. Smart Struct. Syst. 2015, 15, 627–643. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S. Magnetic negative stiffness dampers. Smart Mater. Struct. 2015, 24, 072002. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S. Simulation and optimization of magnetic negative stiffness dampers. Sens. Actuators A 2017, 259, 14–33. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, S.; Spencer, B.F., Jr. Experimental study on passive negative stiffness damper for cable vibration mitigation. J. Eng. Mech. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, J.; Nagarajaiah, S. Dimensional analysis of inelastic structures with negative stiffness and supplemental damping devices. J. Struct. Eng. 2017, 143, 04016184. [Google Scholar] [CrossRef]
- Hong, N.; Zhao, Z.; Du, Y.; Chen, Q. Energy spectra and performance assessment of isolated structures with a negative stiffness amplification system. Soil Dyn. Earthq. Eng. 2023, 169, 107857. [Google Scholar] [CrossRef]
- Kiran, K.K.; Al-Osta, M.A.; Ahmad, S. Optimum design and performance of a base-isolated structure with tuned mass negative stiffness inerter damper. Sci. Rep. 2023, 13, 4980. [Google Scholar] [CrossRef]
- Su, N.; Bian, J.; Peng, S.; Chen, Z. Analytical optimal design of inerter-based vibration absorbers with negative stiffness balancing static amplification and dynamic reduction effects. Mech. Syst. Signal Process. 2023, 192, 110235. [Google Scholar] [CrossRef]
- Tai, Y.J.; Wang, H.D.; Chen, Z.Q. Vibration isolation performance and optimization design of a tuned inerter negative stiffness damper. Int. J. Mech. Sci. 2023, 241, 107948. [Google Scholar] [CrossRef]
- Ul Islam, N.; Jangid, R.S. Closed form expressions for H2 optimal control of negative stiffness and inerter-based dampers for damped structures. Structures 2023, 50, 791–809. [Google Scholar] [CrossRef]
- Johnson, D.R.; Harne, R.L.; Wang, K.W. A disturbance cancellation perspective on vibration control using a bistable snap-through attachment. J. Vib. Acoust. 2014, 136, 4026673. [Google Scholar] [CrossRef]
- Farhangdoust, S.; Eghbali, P.; Younesian, D. Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges. Earthq. Struct. 2020, 18, 313–320. [Google Scholar]
- Yan, B.; Ma, H.; Zhang, L.; Zheng, W. A bistable vibration isolator with nonlinear electromagnetic shunt damping. Mech. Syst. Signal Process. 2020, 136, 106504. [Google Scholar] [CrossRef]
- Yan, B.; Ling, P.; Zhou, Y.; Wu, C. Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness. J. Vib. Acoust. 2022, 144, 4051850. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, K.; Nyangi, P. Optimum design of a tuned-mass damper with negative stiffness device subjected to ground excitation. Struct. Control Health Monit. 2022, 29, e3086. [Google Scholar] [CrossRef]
- Fan, L.; Huang, C.; Huo, L. Development of a negative stiffness bistable damper for structural vibration control. Shock Vib. 2022, 2022, 6397602. [Google Scholar] [CrossRef]
- Li, H.; Sun, T. Optimal design for rail-type negative stiffness control system. Earthq. Eng. Eng. Vib. 2018, 38, 21–27. [Google Scholar]
- Dai, H.; Zhao, Y. Equal-peak optimization of dynamic vibration absorber with negative stiffness and delay feedback control. J. Theor. Appl. Mech. 2021, 53, 1720–1732. [Google Scholar]
- Li, J.; Gu, X.; Zhu, S.; Yu, C. Parameter optimization for a novel inerter-based dynamic vibration absorber with negative stiffness. J. Nonlinear Math. Phys. 2022, 29, 280–295. [Google Scholar] [CrossRef]
- Ul Islam, N.; Jangid, R.S. Optimum parameters and performance of negative stiffness and inerter based dampers for base-isolated structures. Bull. Earthq. Eng. 2023, 21, 1411–1438. [Google Scholar] [CrossRef]
- Charef, O.A.; Khalfallah, S. A variant design of tuned mass damper with negative stiffness for vibration control of a damped primary system. Struct. Control Health Monit. 2022, 29, e3068. [Google Scholar]
- Liao, B.L.; Han, L.Y.; Cao, X.W.; Li, S. Double integral-enhanced zeroing neural network with linear noise rejection for time-varying matrix inverse. CAAI Trans. Intell. Technol. 2023, 9, 197–210. [Google Scholar] [CrossRef]
- Alattar, B.; Ghommem, M.; Puzyrev, V. Deep learning for nonlinear characterization of electrostatic vibrating beam MEMS. Int. J. Bifurc. Chaos 2023, 33, 2330038. [Google Scholar] [CrossRef]
- Luo, X.D.; Wen, X.H.; Li, Y.; Li, Q.F. Pruning method for dendritic neuron model based on dendrite layer significance constraints. CAAI Trans. Intell. Technol. 2023, 8, 308–318. [Google Scholar] [CrossRef]
- He, Y.L.; Li, X.; Zhang, M.J.; Fournier-Viger, P. A novel observation points-based positive-unlabeled learning algorithm. CAAI Trans. Intell. Technol. 2023, 8, 1425–1443. [Google Scholar] [CrossRef]
- Waziri, M.Y.; Yusuf, A.; Abubakar, A.B. Improved conjugate gradient method for nonlinear system of equations. Comput. Appl. Math. 2020, 39, 321. [Google Scholar] [CrossRef]
- Xu, B.; Kiani, K. Nonlinear nonlocal-surface energy-based vibrations of a bidirectionally excited nanobeam at its supports. Phys. Scr. 2021, 96, 025004. [Google Scholar] [CrossRef]
- Kiani, K. Nanoparticle delivery via stocky single-walled carbon nanotubes: A nonlinear-nonlocal continuum-based scrutiny. Compos. Struct. 2014, 116, 254–272. [Google Scholar] [CrossRef]
- Kiani, K. Nonlinear vibrations of a single-walled carbon nanotube for delivering of nanoparticles. Nonlinear Dyn. 2014, 76, 1885–1903. [Google Scholar] [CrossRef]
- Kiani, K.; Nikkhoo, A. On the limitations of linear beams for the problems of moving mass-beam interaction using a meshfree method. Acta Mech. Sin. 2012, 28, 164–179. [Google Scholar] [CrossRef]
- Haghpanahi, M.; Nikkhoo, M.; Peirovi, H.; Ghanavi, J.E. Mathematical Modeling of the Intervertebral Disc as an Infrastructure for Studying the Mechanobiology of the Tissue Engineering Procedure. WSEAS Trans. Appl. Theor. Mech. 2007, 2, 261–273. [Google Scholar]
- Nikkhoo, A.; Sharifinejad, M. The impact of a crack existence on the inertial effects of moving forces in thin beams. Mech. Res. Commun. 2020, 107, 103562. [Google Scholar] [CrossRef]
- Qiu, J.; Lang, J.H.; Slocum, A.H. A curved-beam bistable mechanism. J. Microelectromechanical Syst. 2004, 13, 137–146. [Google Scholar] [CrossRef]
- Lin, J.; Song, G.; Sun, Y.; Williams, F.W. Non-stationary random seismic responses of non-uniform beams. Soil Dyn. Earthq. Eng. 1995, 14, 301–306. [Google Scholar] [CrossRef]
- Lin, J.H.; Guo, X.L.; Zhi, H.; Howson, W.P. Computer simulation of structural random loading identification. Comput. Struct. 2001, 79, 375–387. [Google Scholar] [CrossRef]
- Lin, J.H.; Sun, D.K.; Zhong, W.X.; Zhang, W.S. High efficiency computation of the variances of structural evolutionary random responses. Shock Vib. 2000, 98, 31–35. [Google Scholar] [CrossRef]
- Kanai, K. An empirical formula for the spectrum of strong earthquake motions. Bull. Earthq. Res. Inst. 1961, 39, 85–95. [Google Scholar]
- Proppe, C.; Pradlwarter, H.J.; Schuller, G.I. Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probabilistic Eng. Mech. 2003, 18, 1–15. [Google Scholar] [CrossRef]
- Hammersley, J.M. Simulation and the Monte Carlo Method. Bull. Lond. Math. Soc. 2005, 14, 278–553. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kiureghian, A.D.; Ang, A.H.S. Life-cycle cost analysis based on a renewal model of earthquake occurrences. Earthq. Eng. Struct. Dyn. 2010, 33, 859–880. [Google Scholar] [CrossRef]
- GB50011-2010; Code for Seismic Design of Buildings. China Architecture and Building Press: Beijing, China, 2016.
- Yang, J.N.; Agrawal, A.K.; Samali, B.; Wu, J.C. Benchmark problem for response control of wind-excited tall buildings. J. Eng. Mech. 2004, 130, 437–446. [Google Scholar] [CrossRef]
- Ao, W.K.; Reynolds, P. Analysis and numerical evaluation of H∞ and H2 optimal design schemes for an electromagnetic shunt damper. J. Vib. Acoust. 2019, 142, 021003. [Google Scholar] [CrossRef]
- Raze, G.; Kerschen, G. H∞ optimization of multiple tuned mass dampers for multimodal vibration control. Comput. Struct. 2021, 248, 106485. [Google Scholar] [CrossRef]
- Meinsma, G.; Mirkin, L. H∞ control of systems with multiple I/O delays via decomposition to Adobe problems. IEEE Trans. Autom. Control 2005, 50, 199–211. [Google Scholar] [CrossRef]
- Bozorgvar, M.; Zahrai, S.M. Semi-active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm. J. Vib. Control 2019, 25, 273–285. [Google Scholar] [CrossRef]
- Colherinhas, G.B.; de Morais, M.V.G.; Shzu, M.A.M.; Avila, S. Optimal pendulum tuned mass damper design applied to high towers using genetic algorithms: Two-DOF modeling. Int. J. Struct. Stab. Dyn. 2019, 19, 1950125. [Google Scholar] [CrossRef]
- Li, Z.; Shu, G. Optimal placement of metallic dampers for seismic upgrading of multistory buildings based on a cost-effectiveness criterion using genetic algorithm. Struct. Des. Tall Spec. Build. 2019, 28, e1595. [Google Scholar] [CrossRef]
Parameter | Type of Site | |||
---|---|---|---|---|
I | II | III | IV | |
S0 (m2/s3) | 0.0072 | 0.0091 | 0.0111 | 0.0166 |
ζg | 0.64 | 0.72 | 0.80 | 0.90 |
ωg (rad/s) | 20.94 | 15.71 | 11.42 | 8.38 |
Site Classification | Earthquake Name | Year | Station Name | Magnitude |
---|---|---|---|---|
I | Northern Calif-07 | 1975 | Cape Mendocino | 5.2 |
Helena-01 | 1935 | Carroll College | 6.0 | |
San Fernando4 | 1971 | Castaic–Old Ridge Route | 6.61 | |
Parkfield | 1966 | Temblor Pre-1969 | 6.19 | |
II | Kern County1 | 1952 | Taft Lincoln School | 7.36 |
San Fernando2 | 1971 | Gormon–Oso Pumping Plant | 6.61 | |
Borrego Mtn. | 1968 | El Centro Array #9 | 6.63 | |
Northern Calif-03 | 1954 | Ferndale City Hall | 6.5 | |
III | Point Mugu | 1973 | Port Hueneme | 5.65 |
San Fernando3 | 1971 | Palmdale Fire Station | 6.61 | |
Hollister-02 | 1961 | Hollister City Hall | 5.5 | |
Kern County3 | 1952 | LA–Hollywood Stor FF | 7.36 | |
IV | Northern Calif-02 | 1952 | Ferndale City Hall | 5.2 |
Kern County2 | 1952 | Santa Barbara Courthouse | 7.36 | |
San Fernando1 | 1971 | Lake Hughes #1 | 6.61 | |
Kern County4 | 1952 | Pasadena–CIT Athenaeum | 7.36 |
Earthquake | Peak Displacement (cm) | ||
---|---|---|---|
Nonlinearity | Equivalent Linearity | Relative Error (%) | |
Northern Calif-07 | 0.144 | 0.149 | 3.0 |
Helena-01 | 0.512 | 0.5099 | 0.4 |
San Fernando4 | 0.6856 | 0.703 | 2.5 |
Parkfield | 0.8458 | 0.8707 | 3.0 |
Kern County1 | 2.158 | 2.118 | 1.85 |
San Fernando2 | 2.157 | 2.123 | 1.6 |
Borrego Mtn. | 4.904 | 4.783 | 2.5 |
Northern Calif-03 | 4.919 | 5.018 | 2 |
Point Mugu | 6.6 | 6.518 | 1.24 |
San Fernando3 | 6.846 | 6.631 | 3.1 |
Hollister-02 | 6.761 | 6.737 | 0.3 |
Kern County3 | 7.13 | 6.833 | 4.2 |
Northern Calif-02 | 7.704 | 7.511 | 2.5 |
Kern County2 | 7.999 | 7.87 | 1.6 |
San Fernando1 | 8.461 | 8.253 | 2.5 |
Kern County4 | 11.1 | 11.5 | 3.5 |
Earthquake | Peak Displacement (cm) | Vibration Mitigation Ratio (%) | |
---|---|---|---|
Uncontrolled | With Optimal NSBD | ||
Northern Calif-07 | 2.151 | 1.273 | 40.82 |
Helena-01 | 4.073 | 4.487 | 38.94 |
San Fernando4 | 3.528 | 2.130 | 39.63 |
Parkfield | 4.229 | 3.065 | 27.52 |
Kern County1 | 13.184 | 6.672 | 49.39 |
San Fernando2 | 20.51 | 12.64 | 38.37 |
Borrego Mtn. | 24.75 | 17.42 | 29.62 |
Northern Calif-03 | 24.48 | 16.57 | 32.29 |
Point Mugu | 43.94 | 26.49 | 39.71 |
San Fernando3 | 54.90 | 35.42 | 35.48 |
Hollister-02 | 47.33 | 22.25 | 52.99 |
Kern County3 | 55.64 | 35.45 | 36.29 |
Northern Calif-02 | 93.18 | 71.97 | 22.76 |
Kern County2 | 99.00 | 69.68 | 29.62 |
San Fernando1 | 84.77 | 57.23 | 32.49 |
Kern County4 | 96.61 | 51.59 | 46.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Huang, C.; Huo, L. Equivalent Linearization and Parameter Optimization of the Negative Stiffness Bistable Damper. Buildings 2024, 14, 744. https://doi.org/10.3390/buildings14030744
Fan L, Huang C, Huo L. Equivalent Linearization and Parameter Optimization of the Negative Stiffness Bistable Damper. Buildings. 2024; 14(3):744. https://doi.org/10.3390/buildings14030744
Chicago/Turabian StyleFan, Liming, Chen Huang, and Linsheng Huo. 2024. "Equivalent Linearization and Parameter Optimization of the Negative Stiffness Bistable Damper" Buildings 14, no. 3: 744. https://doi.org/10.3390/buildings14030744
APA StyleFan, L., Huang, C., & Huo, L. (2024). Equivalent Linearization and Parameter Optimization of the Negative Stiffness Bistable Damper. Buildings, 14(3), 744. https://doi.org/10.3390/buildings14030744