Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel
Abstract
:1. Introduction
1.1. Prefabrication Definition
1.2. Prefabrication Advantages
1.3. Prefabrication Difficulties
1.4. Challenges
1.5. How to Increase Prefabrication
1.6. Aim of this Article
2. Materials and Methods
2.1. Phase 0: State-of-the-Art Review and Building Features
- Keeping the first two floors facing the water only since the other side faces the rockface;
- Designing alternatives according to the same building code (2010);
- Avoiding foundation design for the new timber building;
- Conserving similar building organization, dimensions, and the number of storeys.
- Conserving an equal or slightly higher number of G0 rooms;
- Conserving a similar column layout;
- Conserving a similar number of rooms of each type.
2.2. Phase 1: Architecture
2.3. Phase 2: Industrial Engineering
2.4. Phase 3: Civil Engineering
2.5. Phase 4: Analysis
3. Results and Discussion
3.1. Reconceptualization of Developments and Planning: Architectural Analysis
3.2. Understanding How the Choice of an Industrialized Construction System Impacts Both the Architectural and Structural Systems: Industrial Engineering Analysis
3.3. Modelling of the New Wooden Structure: Civil Engineering Analysis
3.4. Integration of the Three Disciplines (Architecture, Industrial Engineering, and Civil Engineering)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutrisna, M.; Cooper-Cooke, B.; Goulding, J.; Ezcan, V. Investigating the cost of offsite construction housing in western Australia. Int. J. Hous. Mark. Anal. 2019, 12, 5–24. [Google Scholar] [CrossRef]
- Pan, W.; Hon, C.K. Briefing: Modular integrated construction for high-rise buildings. Proc. Inst. Civ. Eng. Munic. Eng. 2020, 173, 64–68. [Google Scholar] [CrossRef]
- Hussein, M.; Eltoukhy, A.E.E.; Karam, A.; Shaban, I.A.; Zayed, T. Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction. J. Clean. Prod. 2021, 310, 127503. [Google Scholar] [CrossRef]
- Svatoš-Ražnjević, H.; Orozco, L.; Menges, A. Advanced timber construction industry: A review of 350 multi-storey timber projects from 2000–2021. Buildings 2022, 12, 404. [Google Scholar] [CrossRef]
- Assaf, M.; Hussein, M.; Abdelkhalek, S.; Zayed, T. A multi-criteria decision-making model for selecting the best project delivery systems for offsite construction projects. Buildings 2023, 13, 571. [Google Scholar] [CrossRef]
- Ramaji, I.J.; Memari, A.M. Identification of structural issues in design and construction of multi-story modular buildings. In Proceedings of the 1st Residential Building Design and Construction Conference, Bethlehem, PA, USA, 20–21 February 2013; pp. 294–303. [Google Scholar]
- Sotorrío Ortega, G.; Cobo Escamilla, A.; Tenorio Ríos, J.A. Industrialized construction and sustainability: A comprehensive literature review. Buildings 2023, 13, 2861. [Google Scholar] [CrossRef]
- Wilson, J. Design for Modular Construction: An Introduction for Architects; American Institute of Architects: Washington, DC, USA, 2019. [Google Scholar]
- Pan, W.; Dainty AR, J.; Gibb AG, F. Establishing and weighting decision criteria for building system selection in housing construction. J. Constr. Eng. Manag. 2012, 138, 1239–1250. [Google Scholar] [CrossRef]
- Choi, J.O.; Chen, X.B.; Kim, T.W. Opportunities and challenges of modular methods in dense urban environment. Int. J. Constr. Manag. 2019, 19, 93–105. [Google Scholar] [CrossRef]
- ARUP. Rethinking Timber Buildings: Seven Perspectives on the Use of Timber in Building Design and Construction; ARUP: London, UK, 2019. [Google Scholar]
- Connolly, T.; Loss, C.; Iqbal, A.; Tannert, T. Feasibility Study of Mass-Timber Cores for the UBC Tall Wood Building. Buildings 2018, 8, 98. [Google Scholar] [CrossRef]
- Hough, M.J.; Lawson, R.M. Design and construction of high-rise modular buildings based on recent projects. Proc. Inst. Civ. Eng.-Civ. Eng. 2019, 172, 37–44. [Google Scholar] [CrossRef]
- Wozniak-Szpakiewicz, E.; Zhao, S. Modular construction industry growth and its impact on the built environment. Tech. Trans. 2020, 115, 43–52. [Google Scholar] [CrossRef]
- Boafo, F.; Kim, J.-H.; Kim, J.-T. Performance of modular prefabricated architecture: Case study-based review and future pathways. Sustainability 2016, 8, 558. [Google Scholar] [CrossRef]
- Noordzy, G.; Whitfield, R. The new hotel development project life cycle: Doing the right new hotel project holistically, and doing it the right way. J. Mod. Proj. Manag. 2021, 8, 89–99. [Google Scholar] [CrossRef]
- Kosbar, M.M.; Elbeltagi, E.; Mahdi, I.; Kassem, M.; Ehab, A. Off-Site Manufacturing: Determining Decision-Making Factors. Buildings 2023, 13, 2856. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Barriers to the adoption of modular integrated construction: Systematic review and meta-analysis, integrated conceptual framework, and strategies. J. Clean. Prod. 2020, 249, 119347. [Google Scholar] [CrossRef]
- Abdelmageed, S.; Zayed, T. A study of literature in modular integrated construction–critical review and future directions. J. Clean. Prod. 2020, 277, 124044. [Google Scholar] [CrossRef]
- Hu, X.; Chong, H.-Y.; Wang, X. Sustainability perceptions of off-site manufacturing stakeholders in Australia. J. Clean. Prod. 2019, 227, 346–354. [Google Scholar] [CrossRef]
- Žegarac Leskovar, V.; Premrov, M. A Review of Architectural and Structural Design Typologies of Multi-Storey Timber Buildings in Europe. Forests 2021, 12, 757. [Google Scholar] [CrossRef]
- Khalfan, M.M.A.; Maqsood, T. Current state of off-site manufacturing in Australian and Chinese residential construction. J. Constr. Eng. 2014, 2014, 164863. [Google Scholar] [CrossRef]
- Salama, T.; Figgess, G.; Elsharawy, M.; El-Sokkary, H. Financial modeling for modular and offsite construction. Int. J. Eng. Adv. Technol. 2020, 10, 207–213. [Google Scholar] [CrossRef]
- Stein, A. Disruptive Development: Modular Manufacturing in Multifamily Housing. Master’s Thesis, University of California, Berkeley, CA, USA, 2016. [Google Scholar]
- Xu, J.; Ye, M.; Lu, W.; Bao, Z.; Webster, C. A four-quadrant conceptual framework for analyzing extended producer responsibility in offshore prefabrication construction. J. Clean. Prod. 2021, 282, 124540. [Google Scholar] [CrossRef] [PubMed]
- Smith, R. Solid Timber Construction, Process Practice Performance; Report Sponsored by American Institute of Architects; USDA Forest Products Laboratory and FPI Innovations: Madison, WI, USA, 2015.
- Lopez, R.; Chong, H.-Y.; Pereira, C. Obstacles preventing the off-site prefabrication of timber and mep services: Qualitative analyses from builders and suppliers in Australia. Buildings 2022, 12, 1044. [Google Scholar] [CrossRef]
- Bildsten, L. Buyer-supplier relationships in industrialized building. Constr. Manag. Econ. 2014, 32, 146–159. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Wu, J.; Shi, W.; Ji, D.; Wang, X.; Zhao, X. Constraints Hindering the Development of High-Rise Modular Buildings. Appl. Sci. 2020, 10, 7159. [Google Scholar] [CrossRef]
- Barati, R.; Charehzehi, A.; Preece, C.N. Enhancing planning and scheduling program by using benefits of BIM-based applications. Civ. Environ. Res. 2013, 3, 41–48. [Google Scholar]
- Wang, Y.; Bian, S.; Dong, L.; Li, H. Multiresolution modeling of a modular building design process based on design structure matrix. Buildings 2023, 13, 2330. [Google Scholar] [CrossRef]
- Adel, M.; Cheng, Z.; Lei, Z. Integration of building information modeling (bim) and virtual design and construction (VDC) with stick-built construction to implement digital construction: A Canadian general contractor’s perspective. Buildings 2022, 12, 1337. [Google Scholar] [CrossRef]
- Agapiou, A. Factors influencing the selection of a procurement route for UK off-site housebuilding. Proc. Inst. Civ. Eng.-Manag. Procure. Law 2022, 175, 3–15. [Google Scholar] [CrossRef]
- Programme D’Appui AU Développement de L’Industrie Québécoise de L’Habitation. Neuf Cas D’Intégration de Systèmes de Construction Préfabriqués. Available online: http://www.habitation.gouv.qc.ca/fileadmin/internet/publications/Neuf-cas-integration-Rapport-final.pdf (accessed on 3 April 2023).
- Charlson, J.; Dimka, N. Design, manufacture and construct procurement model for volumetric offsite manufacturing in the UK housing sector. Constr. Innov. 2021, 21, 800–817. [Google Scholar] [CrossRef]
- Canadian Wood Council. Green–the Canadian Wood Council–CWC. The Canadian Wood Council–CWC. 22 September 2021. Available online: https://cwc.ca/en/why-build-with-wood/sustainable/green/ (accessed on 14 September 2022).
- National Research Council of Canada. Canadian Commission on Building and Fire Codes. In National Building Code of Canada 2015; National Research Council of Canada: Ottawa, ON, Canada, 2015. [Google Scholar]
- RFEM, Version 6.03. Structural Engineering Software for Analysis and Design. Dlubal Software GmbH: Tiefenbach, Germany, 2021.
- CSA O86-19; Engineering Design in Wood. CSA Group: Toronto, ON, Canada, 2019.
- Nordic Structures|Nordic.ca|Engineered Wood|Documentation|Technical Documents. (s. d.). Available online: https://www.nordic.ca/en/documentation/technical-documents#nordicxlam (accessed on 3 April 2023).
- Gestimat, V2.0. Cecobois. 2024. Available online: https://gestimat.ca (accessed on 15 March 2024).
- Cardinal, T.; Alexandre, C.; Elliot, T.; Kouchaki-Penchah, H.; Levasseur, A. Climate change substitution factors for Canadian forest-based products and bioenergy. Ecol. Indic. 2024, 160, 111940. [Google Scholar] [CrossRef]
- Lecours, S.; Nguyen, T.-T.; Sorelli, L.; Blanchet, P.; Durand, K. Optimizing composite floors for sustainability and efficiency: Cross laminated timber, concrete types, and ductile notch connectors with enhanced shape. Clean. Eng. Technol. 2023, 14, 100635. [Google Scholar] [CrossRef]
- Halfen. Deha Spherical Head Lifting Anchor System; Halfen: Langenfeld, Germany, 2015. [Google Scholar]
- Getzner. Solid Timber Apartment Building by Meickl; Case study report; Getzner Engineering a Quiet Future: Bürs, Austria, 2015. [Google Scholar]
- Publications Québec. C-24.2, r. 31–Règlement Sur Les Normes de Charges ET de Dimensions Applicables Aux véhicules Routiers ET Aux Ensembles de Véhicules Routiers. Available online: http://legisquebec.gouv.qc.ca/fr/showdoc/cr/C-24.2,r.31 (accessed on 19 October 2022).
- Gijzen, R.P.T. Modular Cross Laminated Timber Buildings. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar]
Type of Room | Number of Rooms | Width (m) | Area (m2) |
---|---|---|---|
G0 | 14 | 4.34 | 31.68 |
C3 | 32 | 3.80 | 33.74 |
C4 | 40 | 5.70 | 36.23 |
A3 | 20 | 3.80 | 41.45 |
A4 | 10 | 7.60 | 48.09 |
Concrete Columns | Timber Columns |
---|---|
275 × 400 mm | 265 × 418 mm |
275 × 500 mm | 265 × 532 mm |
275 × 600 mm | 265 × 608 mm |
350 × 500 mm | 365 × 494 mm |
600 × 275 mm | 315 × 608 mm |
600 × 600 mm | 365 × 988 mm |
Iterations | Compliance with Number of Rooms | Compliance with Room Type | Compliance with Corridor Dimension | Hotel Profitability | Compliance with Club Med Criteria | Minimization of Materials | Minimizing Modifications | Total |
---|---|---|---|---|---|---|---|---|
Weight | 5 | 4 | 5 | 2 | 5 | 3 | 1 | 25 |
Close to concrete | 4 | 2 | 1 | 1 | 5 | 1 | 0 | 14 |
Standardization | 4 | 2 | 1 | 2 | 2 | 2 | 0 | 13 |
Profitability | 3 | 2 | 3 | 2 | 2 | 2 | 0 | 14 |
Large rooms facing water | 3 | 3 | 1 | 1 | 5 | 2 | 0 | 15 |
Pyramid | 3 | 2 | 5 | 1 | 5 | 3 | 0 | 19 |
Additions | 4 | 2 | 5 | 2 | 5 | 2 | 0 | 20 |
Item | Value | Units | Comments | Source |
---|---|---|---|---|
Location category | C | Structure Plan | ||
Risk category | 1 | Normal | Structure Plan | |
Dead Load | ||||
Self-weight | N.A. | Managed by RFEM | ||
Mechanic + architecture | 1.5 | kPa | Structure Plan | |
Live Load | ||||
Roof | 1 | kPa | Table 4.1.5.3 | |
Corridors | 4.8 | kPa | Table 4.1.5.3 | |
Floors | 1.9 | kPa | Table 4.1.5.3 | |
Stairs | 4.8 | kPa | Table 4.1.5.3 | |
Snow Load | ||||
Importance factor | 1 | ULS | Table 4.1.6.2A | |
0.9 | SLS | Table 4.1.6.2A | ||
Sr (1/50) | 0.6 | kPa | Baie-St-Paul | Table C-2 |
Ss (1/50) | 3.4 | kPa | Baie-St-Paul | Table C-2 |
Snow load of the roof | 3.32 | kPa | ULS | 4.1.6.2 |
2.99 | kPa | SLS | 4.1.6.2 |
Cases | D | L | S |
---|---|---|---|
ULS 1 | 1.4 | ||
ULS 2 | 1.25 | 1.5 | |
ULS 3 | 1.25 | 1.5 | 1 |
ULS 4 | 1.25 | 1 | 1.5 |
ULS 5 | 1.25 | 1.5 | |
SLS 1 | 1 | ||
SLS 2 | 1 | 1 | |
SLS 3 | 1 | 1 | 0.31 |
SLS 4 | 1 | 0.3 | 0.9 |
SLS 5 | 1 | 0.9 |
As-Built | Volumetric Modular | |
---|---|---|
Area of Storey 1–2 (m2) | 542.84 | 587.04 |
Area of Storey 3–6 (m2) | 949.17 | 932.20 |
Area of Storey 7–8 (m2) | 717.49 | 766.18 |
Total area (m2) | 6317.34 | 6435.23 |
Type | Number of Rooms | Difference from the Original Concrete Plan |
---|---|---|
G0 | 18 | +4 |
C3 | 36 | +4 |
C4 | 36 | −4 |
A3 | 20 | 0 |
A4 | 10 | 0 |
Total | 120 | +4 |
Type | Actual Dimensions (m) | New Modular Dimensions (m) | New Modular Dimensions (Imperial) | Transport Consideration |
---|---|---|---|---|
G0 | 4.34 × 7.30 | 4.32 × 7.32 | 14′-2″ × 24′ | 1 escort |
A3 | 3.80 × 10.91 | 3.65 × 10.90 | 12′ × 35′10″ | Sign “D” + flash |
C3 | 3.80 × 8.80 | 3.65 × 8.80 | 12′ × 28′10″ | Sign “D” + flash |
A4 | 7.60 × 6.33 | 2 * (3.65 × 6.35) | 2 * (12′ × 20′10″) | Sign “D” + flash |
C4 | 5.70 × 6.36 | (2.5 × 6.36) + (3.2 × 6.36) | (8′2″ × 20′10″) + (10′6″ × 20′10″) | Sign “D” + flash |
Concrete (Reference) | Column–Slab | Volumetric Modular | |
---|---|---|---|
Column (m3) | 140 | 160 | 0 |
Slab (m2) | 6317 | 6317 | 6435 |
Interior walls (m2) | 7044 | 7044 | 7009 |
Exterior walls (m2) | 3332 | 3332 | 3270 |
Concrete (Reference) | Column–Slab | Volumetric Modular | |
---|---|---|---|
Steel (Kg CO2 equivalent) | 227,263 | 89,298 | 15,842 |
Concrete (Kg CO2 equivalent) | 578,023 | 0 | 0 |
Wood (Kg CO2 equivalent) | 0 | 157,742 | 258,312 |
Others (Kg CO2 equivalent) | 7375 | 7375 | 0 |
Total (Kg CO2 equivalent) | 812,661 | 254,415 | 274,154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filion, M.-L.; Ménard, S.; Carbone, C.; Bader Eddin, M. Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel. Buildings 2024, 14, 1151. https://doi.org/10.3390/buildings14041151
Filion M-L, Ménard S, Carbone C, Bader Eddin M. Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel. Buildings. 2024; 14(4):1151. https://doi.org/10.3390/buildings14041151
Chicago/Turabian StyleFilion, Marie-Laure, Sylvain Ménard, Carlo Carbone, and Mohamad Bader Eddin. 2024. "Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel" Buildings 14, no. 4: 1151. https://doi.org/10.3390/buildings14041151
APA StyleFilion, M. -L., Ménard, S., Carbone, C., & Bader Eddin, M. (2024). Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel. Buildings, 14(4), 1151. https://doi.org/10.3390/buildings14041151