Combined Effects of Steel and Glass Fibres on the Fracture Performance of Recycled Rubber Concrete
Abstract
:1. Introduction
2. Experimental Setup
2.1. Raw Materials
2.2. Concrete Mixtures
2.3. Preparation of Test Specimens
2.4. Testing Schemes
3. Result and Discussion
3.1. Failure Mode Analysis
3.2. Load–Deflection Curves
3.3. Index Analysis
3.3.1. Compressive Strength
3.3.2. Flexural Strength
3.3.3. Brittleness Coefficient
3.3.4. Fracture Energy
3.3.5. Initial Fracture Toughness
3.3.6. Unstable Fracture Toughness
4. Mechanism Analysis
5. Conclusions
- (1)
- The fractured specimens without SFs were damaged by vertical cracks and their crack widths were smaller. The two GF lengths had no significant effect on the final morphology of the cracks. With the addition of the SFs, the cracks became more curved as the crack width increased. The SFs primarily played a bridging role after RRC cracking. At this point, the GFs located in the cracks had failed.
- (2)
- In general, the peak load increased with increasing dosages of both fibres. However, with 1.2% SFs, the excessive addition of GFs decreased the peak load. For specimens with only GFs, the peak deflection increased and then decreased, indicating brittle damage. The addition of SFs significantly improved the post-peak deformation capacity and smoothed the descending section of the load–deflection curves. The specimens of the 12 mm GFs series exhibited a greater enhancement of the deformation capacity when SFs were added.
- (3)
- When only SFs were added, the maximum increases or decreases in flexural strength, brittleness coefficient, fracture energy, initial fracture toughness, and unstable fracture toughness with increasing SF content were 38.1, −19.8, 570.8, 54.2, and 87.8%, respectively. When only GFs were added, the maximum increases or decreases in the above-mentioned indices with increasing GF content were 25.7, −19.1, 53.6, 58.0, and 57.8%, respectively. When SFs and GFs were added together, the maximum increases and decreases in the above-mentioned indices with increasing GF content were 64.9, −34.6, 775.6, 92.0, and 118.4%, respectively. Thus, although the addition of SFs or GFs alone also improved the mechanical performance indices of the RRC, the combination of SFs and GFs produced the most significant improvements.
- (4)
- In this study, the optimum GF content was found to be 0.4–0.6%. It decreases with increasing SF content ensuring the workability of the RRC.
- (5)
- The mechanism for the positive mixing effect of SFs and GFs was that they acted at different stages during the fracture test. A large number of GFs restricted the development of microcracks in the early stages of the test. After the RRC cracked, which caused the GFs to fail, the SFs still acted as bridges.
- (6)
- To prevent the cracking of rubber concrete pavement caused by external factors, adding SFs and GFs together is an effective solution. Before practical application, more performance indicators need to be quantitatively analysed. The durability and impact resistance of HFRRRC still needs to be studied.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neupane, R.; Imjai, T.; Makul, N.; Garcia, R.; Kim, B.; Chaudhary, S. Use of recycled aggregate concrete in structural members: A review focused on Southeast Asia. J. Asian Archit. Build. 2023, 1–24. [Google Scholar] [CrossRef]
- Xiong, Z.; Mai, G.; Pan, Z.; Chen, Z.; Jian, J.; Wang, D.; Ling, Z.; Li, L. Synergistic effect of expansive agents and glass fibres on fatigue bending performance of seawater sea sand concrete. Constr. Build. Mater. 2024, 421, 135665. [Google Scholar] [CrossRef]
- Asaro, L.; Gratton, M.; Seghar, S.; Hocine, N.A. Recycling of Rubber Wastes by Devulcanization. Resour. Conserv. Recy. 2018, 133, 250–262. [Google Scholar] [CrossRef]
- Li, Y.; Chai, J.; Wang, R.; Zhou, Y.; Tong, X. A Review of the Durability-Related Features of Waste Tyre Rubber as a Partial Substitute for Natural Aggregate in Concrete. Buildings 2022, 12, 1975. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Chen, Z.; Nong, Y.; Guan, S.; Sun, J. Fracture behavior of a sustainable material: Recycled concrete with waste crumb rubber subjected to elevated temperatures. J. Clean. Prod. 2021, 318, 128553. [Google Scholar] [CrossRef]
- Gupta, T.; Chaudhary, S.; Sharma, R.K. Assessment of Mechanical and Durability Properties of Concrete Containing Waste Rubber Tire as Fine Aggregate. Constr. Build. Mater. 2014, 73, 562–574. [Google Scholar] [CrossRef]
- Pham, T.M.; Renaud, N.; Pang, V.; Shi, F.; Hao, H.; Chen, W. Effect of Rubber Aggregate Size on Static and Dynamic Compressive Properties of Rubberized Concrete. Struct. Concr. 2021, 23, 2510–2522. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Si, R.; Sun, X.; Lu, C. Evaluation of Properties and Performance of Rubber-modified Concrete for Recycling of Waste Scrap Tire. J. Clean. Prod. 2017, 148, 681–689. [Google Scholar] [CrossRef]
- Xie, J.; Guo, Y.; Liu, L.; Xie, Z. Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Constr. Build. Mater. 2015, 79, 263–272. [Google Scholar] [CrossRef]
- Pacheco-Torres, R.; Cerro-Prada, E.; Escolano, F.; Varela, F. Fatigue Performance of Waste Rubber Concrete for Rigid Road Pavements. Constr. Build. Mater. 2018, 176, 539–548. [Google Scholar] [CrossRef]
- Msallam, M.; Asi, I. Improvement of Local Asphalt Concrete Binders Using Crumb Rubber. J. Mater. Civil Eng. 2018, 30, 04018048. [Google Scholar] [CrossRef]
- Chen, J.; Zhuang, J.; Shen, S.; Dong, S. Experimental Investigation on the Impact Resistance of Rubber Self-compacting Concrete. Structures 2022, 39, 691–704. [Google Scholar] [CrossRef]
- Gupta, T.; Tiwari, A.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Response Assessment under Dynamic Loading and Microstructural Investigations of Rubberized Concrete. J. Mater. Civil Eng. 2017, 29, 04017062. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, Z.; Luo, Y.; Qiu, L.; Liu, J. Experimental Investigation on the Semi-rigid Behaviour of Aluminium Alloy Gusset Joints. Thin Wall. Struct. 2015, 87, 30–40. [Google Scholar] [CrossRef]
- Xiong, Z.; Guo, X.; Luo, Y.; Zhu, S. Elasto-plastic Stability of Single-layer Reticulated Shells with Aluminium Alloy Gusset Joints. Thin Wall. Struct. 2017, 115, 163–175. [Google Scholar] [CrossRef]
- Fang, Z.; Wu, J.; Xian, B.; Zhao, G.; Fang, S.; Ma, Y.; Jiang, H. Shear Performance and Design Recommendations of Single Embedded Nut Bolted Shear Connectors in Prefabricated Steel–UHPC Composite Beams. Steel Compos. Struct. 2024, 50, 319–336. [Google Scholar] [CrossRef]
- Lin, J.; Luo, R.; Su, J.; Guo, Y.; Chen, W. Coarse synthetic fibers (PP and POM) as a replacement to steel fibers in UHPC: Tensile behavior, environmental and economic assessment. Constr. Build. Mater. 2024, 412, 134654. [Google Scholar] [CrossRef]
- Fang, Z.; Wu, J.; Xu, X.; Ma, Y.; Fang, S.; Zhao, G.; Jiang, H. Grouped rubber-sleeved studs–UHPC pocket connections in prefabricated steel–UHPC composite beams: Shear performance under monotonic and cyclic loadings. Eng. Struct. 2024, 305, 117781. [Google Scholar] [CrossRef]
- He, L.; Cai, H.; Huang, Y.; Ma, Y.; Bergh, W.V.D.; Gaspar, L.; Valentin, J.; Vasiliev, Y.E.; Kowalski, K.J.; Zhang, J. Research on the Properties of Rubber Concrete Containing Surface-modified Rubber Powders. J. Build. Eng. 2021, 35, 101991. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Zhang, P.; Guo, J.; Hu, S. Enhanced Effect and Mechanism of Colloidal Nano-SiO2 Modified Rubber Concrete. Constr. Build. Mater. 2023, 378, 131203. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Y.; Yuan, J.; Chen, C.; Wang, L.; Yu, Z. Effectiveness of Surface Treatment on Rubber Particles towards Compressive Strength of Rubber Concrete: A Numerical Study on Rubber-cement Interface. Constr. Build. Mater. 2022, 350, 128820. [Google Scholar] [CrossRef]
- Zhu, H.; Xiong, Z.; Song, Y.; Zhou, K.; Su, Y. Effect of Expansion Agent and Glass Fiber on the Dynamic Splitting Tensile Properties of Seawater–Sea-Sand Concrete. Buildings 2024, 14, 217. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, F.; Li, H.; Li, X.; Wang, D.; Ling, Z.; Zhu, H.; Zhu, Y. Performance Evaluation of Thermal Insulation Rubberized Mortar Modified by Fly Ash and Glass Fiber. Buildings 2024, 14, 221. [Google Scholar] [CrossRef]
- Wang, X.; Shao, J.; Wang, J.; Ma, M.; Zhang, B. Influence of Basalt Fiber on Mechanical Properties and Microstructure of Rubber Concrete. Sustainability 2022, 14, 12517. [Google Scholar] [CrossRef]
- Zhen, H.; Xiong, Z.; Song, Y.; Li, L.; Qiu, Y.; Zou, X.; Chen, B.; Chen, D.; Liu, F.; Ji, Y. Early Mechanical Performance of Glass Fibre-reinforced Manufactured Sand Concrete. J. Build. Eng. 2024, 83, 108440. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled Fibers in Reinforced Concrete: A Systematic Literature Review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar] [CrossRef]
- Gong, C.; Kang, L.; Zhou, W.; Liu, L.; Lei, M. Tensile Performance Test Research of Hybrid Steel Fiber—Reinforced Self-Compacting Concrete. Materials 2023, 16, 1114. [Google Scholar] [CrossRef]
- Bhosale, A.; Rasheed, M.A.; Prakash, S.S.; Raju, G. A study on the efficiency of steel vs. synthetic vs. hybrid fibers on fracture behavior of concrete in flexure using acoustic emission. Constr. Build. Mater. 2019, 199, 256–268. [Google Scholar] [CrossRef]
- Gong, Y.; Song, J.; Zhang, Y.; Jiang, T. Sustainable Utilization of Foundry Waste: Cracking Property Analysis of Basalt Fiber-Reinforced Rubber Concrete. J. Mater. Civil Eng. 2023, 35, 04023181. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, J.; Wang, Z.; Huo, L.; Guan, J.; Zhao, Y.; Sun, Y. Numerical Simulation of the Casting Process of Steel Fiber Reinforced Self-compacting Concrete: Influence of Material and Casting Parameters on Fiber Orientation and Distribution. Constr. Build. Mater. 2021, 312, 125337. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Q.; Guo, S.; Si, R. Study on Rubberized Concrete Reinforced with Different Fibers. ACI Mater. J. 2019, 116, 21–31. [Google Scholar] [CrossRef]
- Gültekin, A.; Beycioğlu, A.; Arslan, M.; Serdar, A.; Dobiszewska, M.; Ramyar, K. Fresh Properties and Fracture Energy of Basalt and Glass Fiber–Reinforced Self-Compacting Concrete. J Mater. Civil. Eng. 2021, 34, 04021406. [Google Scholar] [CrossRef]
- Muhyaddin, G. Mechanical and fracture characteristics of ultra-high performance concretes reinforced with hybridization of steel and glass fibers. Heliyon 2023, 9, e17926. [Google Scholar] [CrossRef] [PubMed]
- Akça, K.R.; Çakır, Ö.; Ipek, M. Properties of Polypropylene Fiber Reinforced Concrete using Recycled Aggregates. Constr. Build. Mater. 2015, 98, 620–630. [Google Scholar] [CrossRef]
- GB/T 14684-2011; Sand for Construction. General Administration of Quality Supervision. Inspection and Quarantine: Beijing, China, 2011.
- GB/T 14685-2011; Pebble and Crushed Stone for Construction. General Administration of Quality Supervision. Inspection and Quarantine: Beijing, China, 2011.
- DL/T 5332-2005; Norm for Fracture Test of Hydraulic Concrete. Inspection and Quarantine: Beijing, China, 2005.
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021.
- Xu, S.; Reinhardt, H.W. A Simplified Method for Determining Double-K Fracture Parameters for Three-point Bending Tests. Int. J. Fract. 2000, 104, 181–209. [Google Scholar] [CrossRef]
- Li, X.; Dong, W.; Wu, Z.; Chang, Q. Experimental Investigation on Double-K Fracture Parameters for Small Specimens of Concrete. Eng. Mech. 2010, 27, 166–171. (In Chinese) [Google Scholar]
- Xie, J.; Li, J.; Lu, Z.; Li, Z.; Fang, C.; Huang, L.; Li, L. Combination Effects of Rubber and Silica Fume on the Fracture Behaviour of Steel-fibre Recycled Aggregate Concrete. Constr. Build. Mater. 2019, 203, 164–173. [Google Scholar] [CrossRef]
- Abdallah, M.A.; Elakhras, A.A.; Reda, R.M.; Sallam, H.E.-D.M.; Moawad, M. Applicability of CMOD to Obtain the Actual Fracture Toughness of Rightly-Cracked Fibrous Concrete Beams. Buildings 2023, 13, 2010. [Google Scholar] [CrossRef]
- Soetens, T.; Matthys, S. Different Methods to Model the Post-cracking Behaviour of Hooked-end Steel Fibre Reinforced Concrete. Constr. Build. Mater. 2014, 73, 458–471. [Google Scholar] [CrossRef]
- Akbari, J.; Abed, A. Experimental evaluation of effects of steel and glass fibers on engineering properties of concrete. Frat. Integrita Strut. 2020, 54, 116–127. [Google Scholar] [CrossRef]
- Karihaloo, B.; Abdalla, H.; Imjai, T. A simple method for determining the true specific fracture energy of concrete. Mag. Concr. Res. 2003, 55, 471–481. [Google Scholar] [CrossRef]
Contents | CaO | SiO2 | Fe2O3 | Al2O3 | SO3 | MgO | Fineness | Loss on Ignition |
---|---|---|---|---|---|---|---|---|
Composition (%) | 63–67 | 19–23 | 4–6 | 3–7 | 1.9 | 1 | 1.1 | 1.7 |
Aggregate Type | Particle Size (mm) | Apparent Density (kg/m3) | Bulk Density (kg/m3) | Water Absorption (%) |
---|---|---|---|---|
Sand | <5 | 2636 | 1543 | 0.5 |
Recycled rubber | <2.5 | 750 | - | - |
Coarse aggregate | 5–16 | 2641 | 1344 | 2.1 |
Fibre Type | Length (mm) | Specific Gravity | Equivalent Diameter (μm) | Tensile Strength (MPa) | Elastic Modulus (GPa) |
---|---|---|---|---|---|
Steel fibres (SFs) | 12 | 7.8 | 200 | 3000 | 200 |
Glass fibres (GFs) | 6/12 | 2.68 | 14 | 1700 | 72 |
Mix Number | Cement | Water | GFs | SFs | Coarse Aggregate | Sand | Recycled Rubber | SP |
---|---|---|---|---|---|---|---|---|
S0G0 | 554.10 | 245.30 | 0.00 | 0.00 | 966.30 | 531.20 | 17.10 | 2.80 |
S0.4G0 | 551.90 | 244.40 | 0.00 | 31.20 | 962.40 | 529.10 | 17.00 | 2.80 |
S0.8G0 | 549.70 | 243.40 | 0.00 | 62.40 | 958.50 | 527.00 | 16.90 | 2.80 |
S1.2G0 | 547.50 | 242.40 | 0.00 | 93.60 | 954.70 | 524.80 | 16.90 | 2.70 |
S0G0.2L6 | 553.00 | 244.90 | 5.40 | 0.00 | 964.30 | 530.20 | 17.00 | 2.80 |
S0.4G0.2L6 | 550.80 | 243.90 | 5.40 | 31.20 | 960.50 | 528.00 | 17.00 | 2.80 |
S0.8G0.2L6 | 548.60 | 242.90 | 5.40 | 62.40 | 956.60 | 525.90 | 16.90 | 2.70 |
S1.2G0.2L6 | 546.40 | 241.90 | 5.40 | 93.60 | 952.70 | 523.80 | 16.80 | 2.70 |
S0G0.4L6 | 551.90 | 244.40 | 10.70 | 0.00 | 962.40 | 529.10 | 17.00 | 2.80 |
S0.4G0.4L6 | 549.70 | 243.40 | 10.70 | 31.20 | 958.50 | 527.00 | 16.90 | 2.80 |
S0.8G0.4L6 | 547.50 | 242.40 | 10.70 | 62.40 | 954.70 | 524.80 | 16.90 | 2.70 |
S1.2G0.4L6 | 545.20 | 241.40 | 10.70 | 93.60 | 950.80 | 522.70 | 16.80 | 2.70 |
S0G0.6L6 | 550.80 | 243.90 | 16.10 | 0.00 | 960.50 | 528.00 | 17.00 | 2.80 |
S0.4G0.6L6 | 548.60 | 242.90 | 16.10 | 31.20 | 956.60 | 525.90 | 16.90 | 2.70 |
S0.8G0.6L6 | 546.40 | 241.90 | 16.10 | 62.40 | 952.70 | 523.80 | 16.80 | 2.70 |
S1.2G0.6L6 | 544.10 | 240.90 | 16.10 | 93.60 | 948.90 | 521.70 | 16.70 | 2.70 |
S0G0.2L12 | 553.00 | 244.90 | 5.40 | 0.00 | 964.30 | 530.20 | 17.00 | 2.80 |
S0.4G0.2L12 | 550.80 | 243.90 | 5.40 | 31.20 | 960.50 | 528.00 | 17.00 | 2.80 |
S0.8G0.2L12 | 548.60 | 242.90 | 5.40 | 62.40 | 956.60 | 525.90 | 16.90 | 2.70 |
S1.2G0.2L12 | 546.40 | 241.90 | 5.40 | 93.60 | 952.70 | 523.80 | 16.80 | 2.70 |
S0G0.4L12 | 551.90 | 244.40 | 10.70 | 0.00 | 962.40 | 529.10 | 17.00 | 2.80 |
S0.4G0.4L12 | 549.70 | 243.40 | 10.70 | 31.20 | 958.50 | 527.00 | 16.90 | 2.80 |
S0.8G0.4L12 | 547.50 | 242.40 | 10.70 | 62.40 | 954.70 | 524.80 | 16.90 | 2.70 |
S1.2G0.4L12 | 545.20 | 241.40 | 10.70 | 93.60 | 950.80 | 522.70 | 16.80 | 2.70 |
S0G0.6L12 | 550.80 | 243.90 | 16.10 | 0.00 | 960.50 | 528.00 | 17.00 | 2.80 |
S0.4G0.6L12 | 548.60 | 242.90 | 16.10 | 31.20 | 956.60 | 525.90 | 16.90 | 2.70 |
S0.8G0.6L12 | 546.40 | 241.90 | 16.10 | 62.40 | 952.70 | 523.80 | 16.80 | 2.70 |
S1.2G0.6L12 | 544.10 | 240.90 | 16.10 | 93.60 | 948.90 | 521.70 | 16.70 | 2.70 |
Mix Number | Compressive Strength | Flexural Strength | Brittleness Coefficient | Fracture Energy | Initial Fracture Toughness | Unstable Fracture Toughness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RV * (MPa) | PC * (%) | RV (MPa) | PC (%) | RV | PC (%) | RV(J/m2) | PC(%) | RV(MPa·m1/2) | PC(%) | RV(MPa·m1/2) | PC(%) | |
S0G0 | 34.36 | - | 5.81 | - | 5.91 | - | 228 | - | 0.60 | - | 1.24 | - |
S0.4G0 | 36.93 | 7.5 | 6.13 | 5.5 | 6.03 | 1.92 | 405 | 77.3 | 0.79 | 30.2 | 1.74 | 40.3 |
S0.8G0 | 35.06 | 2.0 | 6.87 | 18.3 | 5.10 | −13.7 | 917 | 301.7 | 0.88 | 46.1 | 2.29 | 84.8 |
S1.2G0 | 38.09 | 10.9 | 8.03 | 38.1 | 4.74 | −19.8 | 1531 | 570.8 | 0.93 | 54.2 | 2.32 | 87.8 |
S0G0.2L6 | 34.24 | −0.3 | 6.53 | 12.3 | 5.25 | −11.3 | 297 | 30.3 | 0.72 | 19.0 | 1.79 | 44.5 |
S0.4G0.2L6 | 36.57 | 6.4 | 7.18 | 23.6 | 5.09 | −13.9 | 480 | 110.4 | 0.91 | 50.0 | 1.94 | 57.1 |
S0.8G0.2L6 | 38.57 | 12.3 | 8.26 | 42.2 | 4.67 | −21.0 | 1063 | 365.7 | 0.90 | 49.4 | 2.44 | 97.6 |
S1.2G0.2L6 | 42.55 | 23.8 | 8.78 | 51.0 | 4.85 | −18.0 | 1755 | 669.2 | 0.96 | 58.3 | 2.63 | 112.8 |
S0G0.4L6 | 34.77 | 1.2 | 7.27 | 25.1 | 4.78 | −19.1 | 333 | 46.0 | 0.80 | 32.2 | 1.71 | 38.5 |
S0.4G0.4L6 | 34.77 | 1.2 | 7.40 | 27.4 | 4.70 | −20.6 | 736 | 222.4 | 0.91 | 51.4 | 1.88 | 51.8 |
S0.8G0.4L6 | 40.05 | 16.6 | 8.48 | 45.9 | 4.72 | −20.1 | 1175 | 415.0 | 0.89 | 47.7 | 2.31 | 87.0 |
S1.2G0.4L6 | 36.87 | 7.3 | 8.84 | 52.0 | 4.17 | −29.4 | 1737 | 661.2 | 0.98 | 61.6 | 2.70 | 118.4 |
S0G0.6L6 | 35.26 | 2.6 | 7.31 | 25.7 | 4.83 | −18.4 | 351 | 53.6 | 0.90 | 49.5 | 1.95 | 57.8 |
S0.4G0.6L6 | 39.53 | 15.0 | 7.59 | 30.5 | 5.21 | −11.9 | 903 | 295.6 | 1.08 | 79.5 | 2.07 | 67.5 |
S0.8G0.6L6 | 37.58 | 9.4 | 8.75 | 50.5 | 4.30 | −27.3 | 1283 | 462.1 | 1.09 | 80.3 | 2.39 | 93.4 |
S1.2G0.6L6 | 33.73 | −1.8 | 8.73 | 50.1 | 3.87 | −34.6 | 1798 | 687.9 | 1.07 | 77.8 | 2.69 | 117.7 |
S0G0.2L12 | 35.68 | 3.8 | 6.09 | 4.8 | 5.86 | −0.9 | 298 | 30.6 | 0.91 | 51.3 | 1.31 | 5.6 |
S0.4G0.2L12 | 37.95 | 10.4 | 7.37 | 26.7 | 5.15 | −12.8 | 755 | 230.9 | 1.01 | 67.4 | 1.63 | 31.6 |
S0.8G0.2L12 | 39.81 | 15.9 | 7.99 | 37.5 | 4.98 | −15.8 | 1331 | 483.3 | 0.94 | 56.3 | 2.25 | 82.2 |
S1.2G0.2L12 | 41.59 | 21.0 | 9.06 | 55.9 | 4.59 | −22.4 | 1727 | 656.8 | 1.02 | 68.6 | 2.24 | 80.8 |
S0G0.4L12 | 36.36 | 5.8 | 6.71 | 15.4 | 5.42 | −8.3 | 267 | 16.9 | 0.90 | 49.3 | 1.33 | 7.2 |
S0.4G0.4L12 | 38.49 | 12.0 | 7.88 | 35.5 | 4.89 | −17.4 | 901 | 294.7 | 0.99 | 63.2 | 1.71 | 38.6 |
S0.8G0.4L12 | 38.99 | 13.5 | 8.07 | 38.8 | 4.83 | −18.3 | 1403 | 514.6 | 0.95 | 56.7 | 2.26 | 82.3 |
S1.2G0.4L12 | 43.60 | 26.9 | 9.59 | 64.9 | 4.55 | −23.1 | 1998 | 775.6 | 1.16 | 92.0 | 2.57 | 107.6 |
S0G0.6L12 | 37.18 | 8.2 | 6.83 | 17.4 | 5.45 | −7.9 | 325 | 42.5 | 0.95 | 58.0 | 1.43 | 15.6 |
S0.4G0.6L12 | 39.90 | 16.1 | 8.16 | 40.4 | 4.89 | −17.3 | 942 | 312.9 | 0.97 | 61.1 | 1.73 | 39.9 |
S0.8G0.6L12 | 38.02 | 10.7 | 9.01 | 55.0 | 4.22 | −28.6 | 1357 | 494.7 | 1.09 | 80.1 | 2.05 | 65.5 |
S1.2G0.6L12 | 40.28 | 17.2 | 9.19 | 58.1 | 4.38 | −25.9 | 1702 | 645.9 | 1.13 | 86.7 | 2.29 | 85.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Pan, Z.; Zhen, H.; Luo, W.; Chen, Z.; Li, H.; Wu, Z.; Liu, F.; Li, L. Combined Effects of Steel and Glass Fibres on the Fracture Performance of Recycled Rubber Concrete. Buildings 2024, 14, 864. https://doi.org/10.3390/buildings14040864
Li X, Pan Z, Zhen H, Luo W, Chen Z, Li H, Wu Z, Liu F, Li L. Combined Effects of Steel and Glass Fibres on the Fracture Performance of Recycled Rubber Concrete. Buildings. 2024; 14(4):864. https://doi.org/10.3390/buildings14040864
Chicago/Turabian StyleLi, Xiaohui, Zezhou Pan, Hao Zhen, Wenhua Luo, Zhuangwei Chen, Hongming Li, Zhichao Wu, Feng Liu, and Lijuan Li. 2024. "Combined Effects of Steel and Glass Fibres on the Fracture Performance of Recycled Rubber Concrete" Buildings 14, no. 4: 864. https://doi.org/10.3390/buildings14040864
APA StyleLi, X., Pan, Z., Zhen, H., Luo, W., Chen, Z., Li, H., Wu, Z., Liu, F., & Li, L. (2024). Combined Effects of Steel and Glass Fibres on the Fracture Performance of Recycled Rubber Concrete. Buildings, 14(4), 864. https://doi.org/10.3390/buildings14040864