Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step 1
- (1)
- Image Classification,
- (2)
- Object Detection
- (3)
- Image Segmentation
- (4)
- Semantic Segmentation
- (5)
- Instance Segmentation
- (6)
- Object Tracking
- (7)
- Pose Estimation
- (8)
- Image Generation
- (9)
- Image Super-resolution
- (10)
- Image Denoizing
- (11)
- Image Restoration
- (12)
- Image Style Transfer
- (13)
- Image Captioning
- (14)
- Anomaly Detection
- (15)
- Image Registration
- (16)
- Image Compression
- (17)
- Image Enhancement
- (18)
- Image Reconstruction
- (19)
- Image Transformation
- (20)
- Image Matching.
- (1)
- Remote Sensing Image Classification
- (2)
- Object Detection
- (3)
- Land Cover Segmentation
- (4)
- Land Surface Temperature Estimation
- (5)
- Land Use/Land Cover Change Detection.
2.2. Step 2
3. Results
- (1)
- Innovation: Whether the methods addressed critical challenges and offered innovative solutions.
- (2)
- Reliability of results: Quality of results, adequacy of data, convincing statistical analysis, comparison, and discussion.
- (3)
- Clarification of algorithm implementation: Clarity regarding the principle and sufficient details provided to reproduce results.
- (4)
- Novelty: The first-time application of an innovative method (such as Transformer around 2020) in this field.
- (5)
- Citation count.
4. Analysis: Remote Sensing-Based Methods for Post-Disaster Building Damage
4.1. Only Post-Event Data
4.1.1. Visual Approaches
4.1.2. Pure Algorithm-Based Methods
4.1.3. Data-Driven Methods
- (1)
- Machine Learning-Based Methods
- (2)
- Deep Learning-Based Methods
- I.
- CNN-based Methods
- II.
- Other Nat-based Methods
- III.
- Transformer-based Methods
- IV.
- Transfer Learning
- V.
- Pixel-level single-temporal-phase building damage detection
4.2. Building Damage Detection Using Both Pre- and Post-Event Data
4.2.1. Visual Approaches
4.2.2. Pure Algorithm-Based Methods
- I.
- Texture-based Methods
- II.
- Threshold Segmentation
- III.
- Multi-feature Methods
- IV.
- SAR Sample-based Methods
- V.
- Others
4.2.3. Data-Driven Methods
- (1)
- Machine Learning-Based Methods
- (2)
- Deep Learning-Based Methods
- I.
- CNN-based Methods
- II.
- View2 Challenge and xBD Dataset
- III.
- Siamese Neural Network Structure
- IV.
- SAR Sample-based Method
- V.
- Studies of Non-natural Disaster Samples
- VI.
- Transfer Learning
- VII.
- Object-level Change Detection
5. Evaluation of Seven Cutting-Edge Open-Source Approaches/Models
5.1. Methods, Datasets, and Implementation Details
5.2. Results
5.2.1. CMI-Otsu
5.2.2. CVA-Otsu
5.2.3. Tras-LEVIR
5.2.4. Siam-CNN
5.2.5. Siam-ResNet
5.2.6. YOLOv8
5.2.7. Sate-CNN
5.3. Discussion on Analysis Results
6. Challenges and Future Directions
6.1. Acquisition of High-Quality Samples
6.2. Integration of Multimodal Data
6.3. Focus on Object-Level Identification Task
6.4. Exploration of New Methods
6.5. Method Selection
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parisi, F.; Augenti, N. Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng. Fail. Anal. 2013, 34, 735–760. [Google Scholar] [CrossRef]
- Goretti, A.; Di Pasquale, G. An overview of post-earthquake damage assessment in Italy. In Proceedings of the Eeri Invitational Workshop. An Action Plan to Develop Earthquake Damage and Loss Data Protocols, Pasadena, CA, USA, 19–20 September 2002. [Google Scholar]
- Wang, Y. Damage Assessment in Asymmetric Buildings Using Vibration Techniques. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2018. [Google Scholar]
- Pan, H.; Kusunoki, K.; Hattori, Y. Capacity-curve-based damage evaluation approach for reinforced concrete buildings using seismic response data. Eng. Struct. 2019, 197, 109386. [Google Scholar] [CrossRef]
- Takeuchi, T.; Mita, A. Damage localization for multi-story buildings focusing on shift in the center of rigidity using an adaptive extended Kalman filter. In Proceedings of the Structural Health Monitoring and Inspection of Advanced Materials, Aerospace, and Civil Infrastructure, San Diego, CA, USA, 9–12 March 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9437, pp. 258–271. [Google Scholar]
- Lei, Y.; Jiang, Y.; Xu, Z. Structural damage detection with limited input and output measurement signals. Mech. Syst. Signal Process. 2012, 28, 229–243. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J. Finite element model updating through derivative-free optimization algorithm. Mech. Syst. Signal Process. 2023, 185, 109726. [Google Scholar] [CrossRef]
- He, X.; Unjoh, S.; Li, D. Unscented Kalman filter with performance recovery strategy for parameter estimation of isolation structures. Struct. Control Health Monit. 2022, 29, e3116. [Google Scholar] [CrossRef]
- Soltaninejad, M.; Soroushian, S.; Livani, H. Application of short-time matrix pencil method for high-frequency damage detection in structural system. Struct. Control Health Monit. 2020, 27, e2589. [Google Scholar] [CrossRef]
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens. 2006, 27, 4433–4447. [Google Scholar] [CrossRef]
- Mardiyono, M.; Suryanita, R.; Adnan, A. Intelligent monitoring system on prediction of building damage index using neural-network. TELKOMNIKA (Telecommun. Comput. Electron. Control) 2012, 10, 155–164. [Google Scholar] [CrossRef]
- Chiauzzi, L.; Masi, A.; Mucciarelli, M.; Vona, M.; Pacor, F.; Cultrera, G.; Gallovič, F.; Emolo, A. Building damage scenarios based on exploitation of Housner intensity derived from finite faults ground motion simulations. Bull. Earthq. Eng. 2012, 10, 517–545. [Google Scholar] [CrossRef]
- Ogawa, N.; Yamazaki, F. Photo-interpretation of building damage due to earthquakes using aerial photographs. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 20 January–4 February 2000; p. 1906. [Google Scholar]
- Zhu, X.X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Li, W.; Zou, B.; Zhang, L. A Robust Man-Made Target Detection Method Based on Relative Spectral Stationarity for High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5240320. [Google Scholar] [CrossRef]
- Peng, B.; Peng, B.; Zhou, J.; Xie, J.; Liu, L. Scattering model guided adversarial examples for SAR target recognition: Attack and defense. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5236217. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; Matgen, P.; Pelich, R.; Hostache, R.; Wagner, W.; Chini, M. Urban-aware U-Net for large-scale urban flood mapping using multitemporal Sentinel-1 intensity and interferometric coherence. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4209121. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sensing 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Ge, P.; Gokon, H.; Meguro, K. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sens. Environ. 2020, 240, 111693. [Google Scholar] [CrossRef]
- Ghaedi, K.; Gordan, M.; Ismail, Z.; Hashim, H.; Talebkhah, M. A literature review on the development of remote sensing in damage detection of civil structures. J. Eng. Res. Rep. 2021, 20, 39–56. [Google Scholar] [CrossRef]
- Yamazaki, F.; Kouchi, K.; Matsuoka, M.; Kohiyama, M.; Muraoka, N. Damage detection from high-resolution satellite images for the 2003 Boumerdes, Algeria earthquake. In Proceedings of the 13th World Conference on Earthquake Engineering, International Association for Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004; p. 13. [Google Scholar]
- Kaya, Ş.; Curran, P.; Llewellyn, G. Post-earthquake building collapse: A comparison of government statistics and estimates derived from SPOT HRVIR data. Int. J. Remote Sens. 2005, 26, 2731–2740. [Google Scholar] [CrossRef]
- Jin, D.; Wang, X.; Dou, A.; Dong, Y. Post-earthquake building damage assessment in Yushu using airborne SAR imagery. Earthq. Sci. 2011, 24, 463–473. [Google Scholar] [CrossRef]
- Yamazaki, F.; Matsuoka, M. Remote sensing technologies in post-disaster damage assessment. J. Earthq. Tsunami 2007, 1, 193–210. [Google Scholar] [CrossRef]
- Polli, D.; Dell’Acqua, F.; Gamba, P.; Lisini, G. Earthquake damage assessment from post-event only radar satellite data. In Proceedings of the Eighth International Workshop on Remote Sensing for Disaster Response, Tokyo, Japan, 30 September–1 October 2010; Volume 1. [Google Scholar]
- Li, X.; Yang, W.; Ao, T.; Li, H.; Chen, W. An improved approach of information extraction for earthquake-damaged buildings using high-resolution imagery. J. Earthq. Tsunami 2011, 5, 389–399. [Google Scholar] [CrossRef]
- Balz, T.; Liao, M. Building-damage detection using post-seismic high-resolution SAR satellite data. Int. J. Remote Sens. 2010, 31, 3369–3391. [Google Scholar] [CrossRef]
- Shi, L.; Sun, W.; Yang, J.; Li, P.; Lu, L. Building collapse assessment by the use of postearthquake Chinese VHR airborne SAR. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2021–2025. [Google Scholar] [CrossRef]
- Gong, L.; Wang, C.; Wu, F.; Zhang, J.; Zhang, H.; Li, Q. Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery. Remote Sens. 2016, 8, 887. [Google Scholar] [CrossRef]
- Bai, Y.; Adriano, B.; Mas, E.; Koshimura, S. Machine learning based building damage mapping from the ALOS-2/PALSAR-2 SAR imagery: Case study of 2016 Kumamoto earthquake. J. Disaster Res. 2017, 12, 646–655. [Google Scholar] [CrossRef]
- Bai, Y.; Adriano, B.; Mas, E.; Gokon, H.; Koshimura, S. Object-based building damage assessment methodology using only post event ALOS-2/PALSAR-2 dual polarimetric SAR intensity images. J. Disaster Res. 2017, 12, 259–271. [Google Scholar] [CrossRef]
- Ji, Y.; Sri Sumantyo, J.T.; Chua, M.Y.; Waqar, M.M. Earthquake/tsunami damage assessment for urban areas using post-event PolSAR data. Remote Sens. 2018, 10, 1088. [Google Scholar] [CrossRef]
- Cooner, A.J.; Shao, Y.; Campbell, J.B. Detection of urban damage using remote sensing and machine learning algorithms: Revisiting the 2010 Haiti earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef]
- Bhangale, U.; Durbha, S.; Potnis, A.; Shinde, R. Rapid earthquake damage detection using deep learning from VHR remote sensing images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NY, USA, 2019; pp. 2654–2657. [Google Scholar]
- Ma, H.; Liu, Y.; Ren, Y.; Yu, J. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sens. 2019, 12, 44. [Google Scholar] [CrossRef]
- Valentijn, T.; Margutti, J.; van den Homberg, M.; Laaksonen, J. Multi-hazard and spatial transferability of a cnn for automated building damage assessment. Remote Sens. 2020, 12, 2839. [Google Scholar] [CrossRef]
- Miura, H.; Aridome, T.; Matsuoka, M. Deep learning-based identification of collapsed, non-collapsed and blue tarp-covered buildings from post-disaster aerial images. Remote Sens. 2020, 12, 1924. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, C.; Singh, S.; Koch, M.; Adriano, B.; Mas, E.; Koshimura, S. A framework of rapid regional tsunami damage recognition from post-event TerraSAR-X imagery using deep neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 15, 43–47. [Google Scholar] [CrossRef]
- Qiao, W.; Shen, L.; Wang, J.; Yang, X.; Li, Z. A weakly supervised semantic segmentation approach for damaged building extraction from postearthquake high-resolution remote-sensing images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6002705. [Google Scholar] [CrossRef]
- Nex, F.; Duarte, D.; Tonolo, F.G.; Kerle, N. Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions. Remote Sens. 2019, 11, 2765. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, W.; Maruyama, Y. Damaged building extraction using modified mask R-CNN model using post-event aerial images of the 2016 Kumamoto earthquake. Remote Sens. 2022, 14, 1002. [Google Scholar] [CrossRef]
- Seydi, S.T.; Rastiveis, H.; Kalantar, B.; Halin, A.A.; Ueda, N. BDD-Net: An End-to-End Multiscale Residual CNN for Earthquake-Induced Building Damage Detection. Remote Sens. 2022, 14, 2214. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Ren, Y.; Wang, D.; Yu, L.; Yu, J. Improved CNN classification method for groups of buildings damaged by earthquake, based on high resolution remote sensing images. Remote Sens. 2020, 12, 260. [Google Scholar] [CrossRef]
- Khajwal, A.B.; Cheng, C.; Noshadravan, A. Post-disaster damage classification based on deep multi-view image fusion. Comput.-Aided Civ. Infrastruct. Eng. 2022, 38, 528–544. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.; Jiang, K.; Li, Q.; Lv, R.; Tu, J. Real-Time Damaged Building Region Detection Based on Improved YOLOv5s and Embedded System From UAV Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4205–4217. [Google Scholar] [CrossRef]
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 sulawesi earthquake and tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef]
- Song, D.; Tan, X.; Wang, B.; Zhang, L.; Shan, X.; Cui, J. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery. Int. J. Remote Sens. 2020, 41, 1040–1066. [Google Scholar] [CrossRef]
- Nie, Y.; Zeng, Q.; Zhang, H.; Wang, Q. Building damage detection based on OPCE matching algorithm using a single post-event PolSAR data. Remote Sens. 2021, 13, 1146. [Google Scholar] [CrossRef]
- Hu, D.; Li, S.; Du, J.; Cai, J. Automating Building Damage Reconnaissance to Optimize Drone Mission Planning for Disaster Response. J. Comput. Civ. Eng. 2023, 37, 04023006. [Google Scholar] [CrossRef]
- Xie, Y.; Feng, D.; Chen, H.; Liu, Z.; Mao, W.; Zhu, J.; Hu, Y.; Baik, S.W. Damaged building detection from post-earthquake remote sensing imagery considering heterogeneity characteristics. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4708417. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, X.; Luo, P. Transferability of convolutional neural network models for identifying damaged buildings due to earthquake. Remote Sens. 2021, 13, 504. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, X.; Xu, Y.; Cui, L.; Zhang, Q.; Li, H. Geometry-guided semantic segmentation for post-earthquake buildings using optical remote sensing images. Earthq. Eng. Struct. Dyn. 2023, 52, 3392–3413. [Google Scholar] [CrossRef]
- Gong, L.; Li, Q.; Zhang, J. Earthquake building damage detection with object-oriented change detection. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3674–3677. [Google Scholar]
- Sakamoto, M.; Takasago, Y.; Uto, K.; Kakumoto, S.; Kosugi, Y.; Doihara, T. Automatic detection of damaged area of Iran earthquake by high-resolution satellite imagery. In Proceedings of the IGARSS 2004—2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2, pp. 1418–1421. [Google Scholar]
- Saito, K.; Spence, R.; de C Foley, T.A. Visual damage assessment using high-resolution satellite images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 309–318. [Google Scholar] [CrossRef]
- Yamazaki, F.; Yano, Y.; Matsuoka, M. Visual damage interpretation of buildings in Bam city using QuickBird images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 329–336. [Google Scholar] [CrossRef]
- Adams, B.J.; Mansouri, B.; Huyck, C.K. Streamlining Post-Earthquake Data Collection and Damage Assessment for the 2003 Bam, Iran, Earthquake Using VIEWS™ (Visualizing Impacts of Earthquakes With Satellites). Earthq. Spectra 2005, 21, 213–218. [Google Scholar] [CrossRef]
- Gamba, P.; Casciati, F. GIS and image understanding for near-real-time earthquake damage assessment. Photogramm. Eng. Remote Sens. 1998, 64, 987–994. [Google Scholar]
- Hancilar, U.; Taucer, F.; Corbane, C. Empirical fragility functions based on remote sensing and field data after the 12 January 2010 Haiti earthquake. Earthq. Spectra 2013, 29, 1275–1310. [Google Scholar] [CrossRef]
- Yusuf, Y.; Matsuoka, M.; Yamazaki, F. Damage assessment after 2001 Gujarat earthquake using Landsat-7 satellite images. J. Indian Soc. Remote Sens. 2001, 29, 17–22. [Google Scholar] [CrossRef]
- Sugiyama, M.; Abe, H.S.K. Detection of earthquake damaged areas from aerial photographs by using color and edge information. In Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, Australia, 22–25 January 2002; pp. 23–25. [Google Scholar]
- Dou, A.; Zhang, J.; Tian, Y. Retrieve seismic damages from remote sensing images by change detection algorithm. In Proceedings of the IGARSS 2003—2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 4, pp. 2407–2409. [Google Scholar]
- Kohiyama, M.; Yamazaki, F. Damage detection for 2003 Bam, Iran, earthquake using Terra-ASTER satellite imagery. Earthq. Spectra 2005, 21, 267–274. [Google Scholar] [CrossRef]
- Adriano, B.; Yokoya, N.; Xia, J.; Miura, H.; Liu, W.; Matsuoka, M.; Koshimura, S. Learning from multimodal and multitemporal earth observation data for building damage mapping. ISPRS J. Photogramm. Remote Sens. 2021, 175, 132–143. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Haag, F. Rapid damage assessment of built-up structures using VHR satellite data in tsunami-affected areas. Int. J. Remote Sens. 2007, 28, 3013–3036. [Google Scholar] [CrossRef]
- Miura, H.; Modorikawa, S.; Chen, S.H. Texture characteristics of high-resolution satellite images in damaged areas of the 2010 Haiti earthquake. In Proceedings of the 9th International Workshop on Remote Sensing for Disaster Response, Stanford, CA, USA, 15–16 September 2011; pp. 15–16. [Google Scholar]
- Janalipour, M.; Mohammadzadeh, A. Building damage detection using object-based image analysis and ANFIS from high-resolution image (case study: BAM earthquake, Iran). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1937–1945. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Q.; Dou, A.; Wang, X. Extracting damages caused by the 2008 Ms 8.0 Wenchuan earthquake from SAR remote sensing data. J. Asian Earth Sci. 2011, 40, 907–914. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Matsuoka, M. Building damage assessment using high-resolution satellite SAR images of the 2010 Haiti earthquake. Earthq. Spectra 2016, 32, 591–610. [Google Scholar] [CrossRef]
- Park, S.E.; Yamaguchi, Y.; Kim, D.j. Polarimetric SAR remote sensing of the 2011 Tohoku earthquake using ALOS/PALSAR. Remote Sens. Environ. 2013, 132, 212–220. [Google Scholar] [CrossRef]
- Park, S.E.; Jung, Y.T. Detection of earthquake-induced building damages using polarimetric SAR data. Remote Sens. 2020, 12, 137. [Google Scholar] [CrossRef]
- Wang, X.; Feng, G.; He, L.; An, Q.; Xiong, Z.; Lu, H.; Wang, W.; Li, N.; Zhao, Y.; Wang, Y.; et al. Evaluating urban building damage of 2023 Kahramanmaras, Turkey earthquake sequence using SAR change detection. Sensors 2023, 23, 6342. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, S.E.; Lee, S.J. Detection of Damaged Buildings Using Temporal SAR Data with Different Observation Modes. Remote Sens. 2023, 15, 308. [Google Scholar] [CrossRef]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. 2018, 210, 166–178. [Google Scholar] [CrossRef]
- Yan, Z.; Huazhong, R.; Desheng, C. The research of building earthquake damage object-oriented change detection based on ensemble classifier with remote sensing image. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 4950–4953. [Google Scholar]
- Hajeb, M.; Karimzadeh, S.; Matsuoka, M. SAR and LIDAR datasets for building damage evaluation based on support vector machine and random forest algorithms—A case study of Kumamoto earthquake, Japan. Appl. Sci. 2020, 10, 8932. [Google Scholar] [CrossRef]
- Ma, H.; Lu, N.; Ge, L.; Li, Q.; You, X.; Li, X. Automatic road damage detection using high-resolution satellite images and road maps. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 3718–3721. [Google Scholar]
- Zhao, K.; Liu, J.; Wang, Q.; Wu, X.; Tu, J. Road damage detection from post-disaster high-resolution remote sensing images based on tld framework. IEEE Access 2022, 10, 43552–43561. [Google Scholar] [CrossRef]
- Gong, L.; An, L.; Liu, M.; Zhang, J. Road damage detection from high-resolution RS image. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 990–993. [Google Scholar]
- Moya, L.; Geiß, C.; Hashimoto, M.; Mas, E.; Koshimura, S.; Strunz, G. Disaster intensity-based selection of training samples for remote sensing building damage classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8288–8304. [Google Scholar] [CrossRef]
- Sublime, J.; Kalinicheva, E. Automatic post-disaster damage mapping using deep-learning techniques for change detection: Case study of the Tohoku tsunami. Remote Sens. 2019, 11, 1123. [Google Scholar] [CrossRef]
- Qing, Y.; Ming, D.; Wen, Q.; Weng, Q.; Xu, L.; Chen, Y.; Zhang, Y.; Zeng, B. Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102899. [Google Scholar] [CrossRef]
- Loerch, A.C.; Stow, D.A.; Coulter, L.L.; Nara, A.; Frew, J. Comparing the Accuracy of sUAS Navigation, Image Co-Registration and CNN-Based Damage Detection between Traditional and Repeat Station Imaging. Geosciences 2022, 12, 401. [Google Scholar] [CrossRef]
- Gupta, R.; Goodman, B.; Patel, N.; Hosfelt, R.; Sajeev, S.; Heim, E.; Doshi, J.; Lucas, K.; Choset, H.; Gaston, M. Creating xBD: A dataset for assessing building damage from satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 4–19 June 2019; pp. 10–17. [Google Scholar]
- Weber, E.; Kané, H. Building disaster damage assessment in satellite imagery with multi-temporal fusion. arXiv 2020, arXiv:2004.05525. [Google Scholar]
- Omoya, M.; Ero, I.; Zaker Esteghamati, M.; Burton, H.V.; Brandenberg, S.; Sun, H.; Yi, Z.; Kang, H.; Nweke, C.C. A relational database to support post-earthquake building damage and recovery assessment. Earthq. Spectra 2022, 38, 1549–1569. [Google Scholar] [CrossRef]
- Dong, Z. Construction of a Sample Set of Earthquake-Damaged Buildings Based on Post-Disaster UAV Remote Sensing Images. Artif. Intell. Robot. Res. 2022. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Kerle, N.; Pasolli, E.; Jokar Arsanjani, J. Post-disaster building database updating using automated deep learning: An integration of pre-disaster OpenStreetMap and multi-temporal satellite data. Remote Sens. 2019, 11, 2427. [Google Scholar] [CrossRef]
- Hao, H.; Baireddy, S.; Bartusiak, E.R.; Konz, L.; LaTourette, K.; Gribbons, M.; Chan, M.; Delp, E.J.; Comer, M.L. An attention-based system for damage assessment using satellite imagery. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4396–4399. [Google Scholar]
- Ismail, A.; Awad, M. Bldnet: A semi-supervised change detection building damage framework using graph convolutional networks and urban domain knowledge. arXiv 2022, arXiv:2201.10389. [Google Scholar]
- Ismail, A.; Awad, M. Towards Cross-Disaster Building Damage Detection with Graph Convolutional Networks. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 223–226. [Google Scholar]
- Xu, S.; He, X.; Cao, X.; Hu, J. Damaged Building Detection with Improved Swin-Unet Model. Wirel. Commun. Mob. Comput. 2022, 2022, 2124949. [Google Scholar] [CrossRef]
- Karlbrg, T.; Malmgren, J. Deep Learning for Building Damage Assessment of the 2023 Turkey Earthquakes: A comparison of two remote sensing methods. Int. J. Disaster Risk Sci. 2023, 14, 947–962. [Google Scholar]
- Kaur, N.; Lee, C.C.; Mostafavi, A.; Mahdavi-Amiri, A. Large-scale building damage assessment using a novel hierarchical transformer architecture on satellite images. Comput.-Aided Civ. Infrastruct. Eng. 2023, 38, 2072–2091. [Google Scholar] [CrossRef]
- Ge, J.; Tang, H.; Yang, N.; Hu, Y. Rapid identification of damaged buildings using incremental learning with transferred data from historical natural disaster cases. Isprs J. Photogramm. Remote Sens. 2023, 195, 105–128. [Google Scholar] [CrossRef]
- Bai, Y.; Su, J.; Zou, Y.; Adriano, B. Knowledge distillation based lightweight building damage assessment using satellite imagery of natural disasters. GeoInformatica 2023, 27, 237–261. [Google Scholar] [CrossRef]
- Gupta, S.; Nair, S. A Novel Approach for Infrastructural Disaster Damage Assessment Using High Spatial Resolution Satellite and UAV Imageries Using Deep Learning Algorithms; Technical report, Copernicus Meetings; EGU: Vienna, Austria, 2023. [Google Scholar]
- Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay neural network. Adv. Neural Inf. Process. Syst. 1993, 6, 25. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Wu, C.; Zhang, F.; Xia, J.; Xu, Y.; Li, G.; Xie, J.; Du, Z.; Liu, R. Building damage detection using U-Net with attention mechanism from pre-and post-disaster remote sensing datasets. Remote Sens. 2021, 13, 905. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, L.; Qiao, W. Building damage detection in VHR satellite images via multi-scale scene change detection. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 8570–8573. [Google Scholar]
- Alizadeh, N.; Beirami, B.A.; Mokhtarzade, M. Damage Detection After the Earthquake Using Sentinel-1 and 2 Images and Machine Learning Algorithms (Case Study: Sarpol-e Zahab Earthquake). In Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 17–18 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 343–347. [Google Scholar]
- Kalantar, B.; Ueda, N.; Al-Najjar, H.A.; Halin, A.A. Assessment of convolutional neural network architectures for earthquake-induced building damage detection based on pre-and post-event orthophoto images. Remote Sens. 2020, 12, 3529. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Liu, Y.; Zhang, X.P.; He, Y. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1551–1566. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, F.; Li, L.; Huang, Q.; Jiao, Y.; Shao, Y. Assessing Buildings Damage from Multi-Temporal Sar Images Fusion Using Semantic Change Detection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 6292–6295. [Google Scholar]
- Mazzanti, P.; Scancella, S.; Virelli, M.; Frittelli, S.; Nocente, V.; Lombardo, F. Assessing the Performance of Multi-Resolution Satellite SAR Images for Post-Earthquake Damage Detection and Mapping Aimed at Emergency Response Management. Remote Sens. 2022, 14, 2210. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Yang, L.; Wang, W.; Zhou, X.; Wang, L.; Yao, Y. Using insar and polsar to assess ground displacement and building damage after a seismic event: Case study of the 2021 baicheng earthquake. Remote Sens. 2022, 14, 3009. [Google Scholar] [CrossRef]
- Cho, S.; Xiu, H.; Matsuoka, M. Backscattering Characteristics of SAR Images in Damaged Buildings Due to the 2016 Kumamoto Earthquake. Remote Sens. 2023, 15, 2181. [Google Scholar] [CrossRef]
- Rao, A.; Jung, J.; Silva, V.; Molinario, G.; Yun, S.H. Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning. Nat. Hazards Earth Syst. Sci. 2023, 23, 789–807. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhong, Y.; Wang, J.; Ma, A.; Zhang, L. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to human-made disasters. Remote Sens. Environ. 2021, 265, 112636. [Google Scholar] [CrossRef]
- Yuan, X.; Azimi, S.; Henry, C.; Gstaiger, V.; Codastefano, M.; Manalili, M.; Cairo, S.; Modugno, S.; Wieland, M.; Schneibel, A.; et al. Automated building segmentation and damage assessment from satellite images for disaster relief. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 741–748. [Google Scholar] [CrossRef]
- Abdi, G.; Jabari, S. A multi-feature fusion using deep transfer learning for earthquake building damage detection. Can. J. Remote Sens. 2021, 47, 337–352. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Zhang, M.; Shu, Z.; Zhou, H. Object-level change detection with a dual correlation attention-guided detector. ISPRS J. Photogramm. Remote Sens. 2021, 177, 147–160. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, L.; Zhang, C.; Chen, W.; Xu, Y.; Zhang, Q. A Two-Stage Seismic Damage Assessment Method for Small, Dense, and Imbalanced Buildings in Remote Sensing Images. Remote Sens. 2022, 14, 1012. [Google Scholar] [CrossRef]
Category | Method | Paper Number |
---|---|---|
single-temporal method | Visual | (13, 22–24) |
Pure algorithm-based | (25–28) | |
Data-driven | (29–53) | |
multi-temporal method | Visual | (55–58) |
Pure algorithm-based | (54, 59, 60, 62–73, 107) | |
Data-driven | (61, 74–84, 87, 89–98, 100–106, 108–115) |
Neural Network | Paper Number |
---|---|
CNN-based | (35, 37–41, 45, 61, 81, 82, 83, 94, 102, 112) |
ResNet | (43, 44, 46, 96) |
transformer | (51, 93, 105) |
KNN | (29, 30, 31, 32, 34, 47, 75) |
MLR | (76) |
BPNN | (76) |
SVM | (30, 33, 75, 77, 78, 99) |
RF | (30, 50, 77) |
YOLO | (18, 36, 46, 82, 114) |
Deeplab | (48) |
BDD-Net | (42) |
Transfer Learning | (52, 113) |
RBM | (80) |
DHFF(VGG-based) | (104) |
ResNet50 | (85) |
U-Net | (53, 89, 92, 100, 109) |
Siamese | (87, 89, 96, 100, 101, 105, 111) |
ChangeOS | (97, 111) |
BLDNET | (90, 91) |
Incre-Trans | (95) |
PANet | (50) |
DCA-Det | (115) |
Dataset or Events’ Name | Paper Number |
---|---|
2008 Wenchuan Earthquake | (27, 28, 30, 36, 48, 52, 53, 70, 78, 84) |
2016 Kumamoto Earthquake | (31, 40, 41, 49, 72, 74, 76) |
xBD(xView/xView2) | (39, 52, 83, 85, 89–97, 100) |
1995 Kobe Earthquake | (13, 22, 40, 63) |
2017 Mexico City Earthquake | (115) |
1999 Turkey Earthquake | (23) |
2004 Indian Ocean Tsunami | (66) |
2019 China Changning Earthquake | (44) |
2003 Bam Earthquake in Iran | (55–58, 65, 68, 109) |
2010 Haiti Earthquake | (26, 34, 35, 42, 44, 51, 60, 67, 71, 101, 104) |
2010 Yushu Earthquake | (24, 29, 36, 38, 49, 53, 54) |
2015 Nepal Earthquake | (32) |
2011 Tohoku Earthquake | (33, 43, 49, 70, 79, 80, 104) |
2006 Yogyakarta Earthquake in Central Java | (25) |
2013 Ya’an(Lushan) Earthquake | (46, 84) |
1997 The Umbria Earthquake | (59) |
2001 Gujarat Earthquake in India | (62) |
2003 Xinjiang Earthquake | (64) |
2019 Chiba Typhoon | (40) |
2023 Turkey Earthquake | (73) |
2009 L’Aquila Earthquake in Italy | (75) |
2014 Yunnan Earthquake in China | (81) |
2016 Central Italy Earthquake | (106) |
2021 Maduo Earthquake in China | (44) |
2023 Tennessee Tornado | (50) |
2019 Beira Mozambique | (112) |
2020 Beirut Lebanon | (112) |
2017 Hurricane Harvey | (45) |
2018 Okayama Floods | (79) |
Aleppoin in the syrian civil war | (105) |
2020 Lagred Earthquake | (110) |
2018 Sarpol-e Zahab Earthquake | (47, 102) |
Algorithm Name | Category | Publication | Citations | Gitstars | Network Architecture | Source of Weights |
---|---|---|---|---|---|---|
CMI-Otsu | PA-CD | 2021 | 10 | 10 | ||
CVA-Otsu | PA-CD | 2019 | / | 148 | ||
Tras-LEVIR | DL-CD | 2020 | 699 | 371 | CNN and Transformer | Open accept |
Siam-CNN | DL-CD | 2020 | 73 | 57 | CNN-based | Open accept |
Siam-ResNet | DL-CD | 2021 | 36 | 78 | ResNet50 | Open accept |
YOLOv8 | DL-SP | 2023 | / | 18.4 k | YOLOv8 | Acquired through training |
Sate-CNN | DL-SP | 2019 | 125 | 4 | CNN-based | Open accept |
Algorithm Name | Train Set/Sample Size | OA(%) | TEST(Jp/Tk/xV2) OA(%) | Time(s) | Shortages |
---|---|---|---|---|---|
CMI-Otsu | N | 73.22 | 52.3/46.8/62.4 | 300+ | Low precision |
CVA-Otsu | N | 74.46 | 67.2/59.2/65.1 | 60 | Low precision |
Tras-LEVIR | LEVIR/314 | 98.92 | 12.8/54.6/73.3 | 3 | Poor generalization ability |
Siam-CNN | Xview2/11464 | 90.6 | 55.6/67.8/88.7 | 2 | Poor generalization ability |
Siam-ResNet | Xview2/11464 | 83.7 | 67.4/37.1/80.2 | 5 | Poor generalization ability |
YOLOv8 | Xview/848 | 84 | 34.7/76.7/79.3 | 10 | Low precision |
Sate-CNN | N/1096 | 95 | 94.0/16.7/96.8 | 17 | Unstable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Xie, Z.; Zhang, J.; He, X. Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey. Buildings 2024, 14, 898. https://doi.org/10.3390/buildings14040898
Gu J, Xie Z, Zhang J, He X. Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey. Buildings. 2024; 14(4):898. https://doi.org/10.3390/buildings14040898
Chicago/Turabian StyleGu, Jiancheng, Zhengtao Xie, Jiandong Zhang, and Xinhao He. 2024. "Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey" Buildings 14, no. 4: 898. https://doi.org/10.3390/buildings14040898
APA StyleGu, J., Xie, Z., Zhang, J., & He, X. (2024). Advances in Rapid Damage Identification Methods for Post-Disaster Regional Buildings Based on Remote Sensing Images: A Survey. Buildings, 14(4), 898. https://doi.org/10.3390/buildings14040898