A Study of Preload Detection Technology in Suspension Bridge Cable Clamp Bolts Based on the Pull-Out Method
Abstract
:1. Introduction
2. Theoretical Analysis
3. Full-Scale Test
3.1. Full-Scale Test Device
- (1)
- Use the hydraulic jack to apply a certain amount of tension to the bolt.
- (2)
- When the tension force on the bolt reaches the object value, tighten the nut through the clearance in the auxiliary device. Record the actual preload on the bolt measured by the vibrating wire pressure sensor (representing the actual preload) and the strain values on the washer.
- (3)
- Use the hydraulic jack to gradually apply tensile loads step by step, and measure the values of the vibrating wire pressure sensor and the strain on the washer at each load level.
- (4)
- Continuously monitor the strain data on the washer in real time. When a turning point is detected in the strain values, indicating that the nut is loosened, stop the tension operation and record each sensor reading.
3.2. Full-Scale Test Result
4. Finite Element Analysis
4.1. Finite Element Model and Verification
4.2. Finite Element Result
4.3. Parametric Study
4.3.1. Clamping Section Length
4.3.2. Bolt Area
5. Discussion
6. Conclusions
- (1)
- During the pull-out method detection process, the bolt preload increases. Therefore, the preload detected by the pull-out method is not the initial preload of the bolt, but rather it exceeds the initial preload.
- (2)
- The reason for the increase in preload is due to the gap between the threads, and under the same conditions, the increment of preload is a constant value. The theoretical value of this constant is . One can consider increasing the bolt preload design value by .
- (3)
- There is a close relationship between the tension force and the preload, where the change in the tension force is equal to the difference between the changes in the pressure of the non-tensioned end of the nut (bolt preload) and the tensioned end of the nut.
- (4)
- Under the same bolt area, a shorter clamping section length corresponds to a greater increase in preload. With the same clamping section length, the increment of preload increases with the bolt area. The influence of bolt area on the increase in preload is greater than that of clamping section length.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.F. Reason analysis and preventive maintenance countermeasures for the decrease of pre-tightening force of cable clamp bolt of suspension bridge. Highway 2019, 64, 101–105. [Google Scholar]
- Li, H.; Liu, Y.; Li, C.; Hu, H.; Sun, Q. Force analysis of self-anchored suspension bridges after cable clamp slippage. Symmetry 2021, 13, 1514. [Google Scholar] [CrossRef]
- Wang, Q.A.; Zhang, C.; Ma, Z.G.; Ni, Y.Q. Modelling and forecasting of SHM strain measurement for a large-scale suspension bridge during typhoon events using variational heteroscedastic Gaussian process. Eng. Struct. 2022, 251, 113554. [Google Scholar] [CrossRef]
- Petersen, Ø.W.; Øiseth, O.; Lourens, E.M. Estimation of the dynamic response of a slender suspension bridge using measured acceleration data. Procedia Eng. 2017, 199, 3047–3052. [Google Scholar] [CrossRef]
- Nicoletti, V.; Quarchioni, S.; Tentella, L.; Martini, R.; Gara, F. Experimental tests and numerical analyses for the dynamic characterization of a steel and wooden cable-stayed footbridge. Infrastructures 2023, 8, 100. [Google Scholar] [CrossRef]
- Nikravesh, S.M.Y.; Goudarzi, M. A review paper on looseness detection methods in bolted structures. Lat. Am. J. Solids Struct. 2017, 14, 2153–2176. [Google Scholar] [CrossRef]
- Nassar, S.A.; Sun, T.; Zou, Q.B. The Effect of Coating and Tightening Speed on the Torque-Tension Relationship in Threaded Fasteners; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Zou, Q.; Sun, T.S.; Nassar, S.A.; Barber, G.C.; Gumul, A.K. Effect of lubrication on friction and torque-tension relationship in threaded fasteners. Int. Jt. Tribol. Conf. 2007, 50, 127–136. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Cui, C. Measurement and control method for miniature fastener tension in precision instrument. Procedia CIRP 2018, 76, 110–114. [Google Scholar] [CrossRef]
- Nazarko, P.; Ziemianski, L. Force identification in bolts of flange connections for structural health monitoring and failure prevention. Procedia Struct. Integr. 2017, 5, 460–467. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, R.; Shao, C.; Chang, M.; Xu, X. Research review of principles and methods for ultrasonic measurement of axial stress in bolts. Chin. J. Mech. Eng. 2020, 33, 1–16. [Google Scholar] [CrossRef]
- Jhang, K.Y.; Quan, H.H.; Ha, J.; Kim, N.Y. Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement. Ultrasonics 2006, 44, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Pan, R.; Chang, M.; Shao, C.; Liu, X.; Xu, X. Reliability evaluation of bolt fastening force based on ultrasonic measurement method. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 2212–2217. [Google Scholar]
- Moradi Kelardeh, S.; Hosseini, S.V.; Heidari, M.; Parvaz, H. An investigation of the effect of bolt tightening stress on ultrasonic velocity in cylinder head and main bearing cap bolts of diesel engine. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 375. [Google Scholar] [CrossRef]
- Kim, N.; Hong, M. Measurement of axial stress using mode-converted ultrasound. NDT&E Int. 2009, 42, 164–169. [Google Scholar] [CrossRef]
- Chen, P.; He, X.; Song, W. Parameter Recognition of Mode-Converted Wave in Single-Source Ultrasound Using Gabor Transform for Bolt Axial Stress Evaluation. J. Sens. 2020, 2020, 8883845. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, R.; Chang, M.; Xu, X. A shape factor based ultrasonic measurement method for determination of bolt preload. NDT E Int. 2020, 111, 102210. [Google Scholar] [CrossRef]
- Sun, Q.; Yuan, B.; Mu, X.; Sun, W. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt. Smart Mater. Struct. 2019, 28, 055005. [Google Scholar] [CrossRef]
- Cai, Y.H.; Tao, S.; Zheng, X.D.; Yu, Q.; He, S.Y. Error analysis of measuring the axial force of the cable clamp screw using ultrasonic longitudinal wave method. Highway 2023, 68, 141–147. [Google Scholar]
- Nazarko, P.; Ziemiański, L. Application of elastic waves and neural networks for the prediction of forces in bolts of flange connections subjected to static tension tests. Materials 2020, 13, 3607. [Google Scholar] [CrossRef]
- Herbst, F.; Chadda, R.; Hartmann, C.; Peters, J.; Riehl, D.; Gwosch, T.; Hofmann, K.; Matthiesen, S.; Kupnik, M. Multi-Axis Force Sensor for Sensor-Integrating Bolts. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October 2022–2 November 2022. [Google Scholar]
- Tu, Y.; Huang, Y.K.; Tu, S.T. Real-time monitoring of bolt clamping force at high temperatures using metal-packaged regenerated fiber Bragg grating sensors. Int. J. Press. Vessel. Pip. 2019, 172, 119–126. [Google Scholar] [CrossRef]
- Wang, T.; Tan, B.; Lu, G.; Liu, B.; Yang, D. Bolt pretightening force measurement based on strain distribution of bolt head surface. J. Aerosp. Eng. 2020, 33, 04020034. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Z.; Ren, G.; Liao, C.; He, X.; Luo, K.; Li, R.; Jiang, W.; Zhan, H. Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Stoperalloy Smart Bolt. Sensors 2022, 23, 220. [Google Scholar] [CrossRef]
- Jiménez-Peña, C.; Lavatelli, A.; Balcaen, R.; Zappa, E.; Debruyne, D. A Novel Contactless Bolt Preload Monitoring Method Using Digital Image Correlation. J. Nondestruct. Eval. 2021, 40, 54. [Google Scholar] [CrossRef]
- Gotoh, Y.; Shigematsu, N. Slack Inspection Method of High-Tension Bolt Using Electromagnetic Field Without Influence of Lift-Off Between Bolt Head and Inspection Sensor. IEEE Trans. Magn. 2017, 53, 2500804. [Google Scholar] [CrossRef]
- Mori, K.; Horibe, T.; Maejima, K. Evaluation of the axial force in an FeCo bolt using the inverse magnetostrictive effect. Measurement 2020, 165, 108131. [Google Scholar] [CrossRef]
- Hasebe, K.; Wada, Y.; Nakamura, K. Non-contact bolt axial force measurement based on the deformation of bolt head using quartz crystal resonator and coils. Jpn. J. Appl. Phys. 2022, 61, SG1022. [Google Scholar] [CrossRef]
- Hashimura, S.; Komatsu, K.; Inoue, C.; Nakao, T. A new tightening method of bolt/nut assembly to control the clamping force. J. Adv. Mech. Des. Syst. Manuf. 2008, 2, 896–902. [Google Scholar] [CrossRef]
- Hashimura, S.; Komatsu, K. Development of New Detecting Method of Clamping Force of Bolted Joint; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Hashimura, S.; Komatsu, K.; Shinohara, N.; Nishioka, I.; Otsu, T. Development of Detection Method for Clamped Part Stiffness in Bolted Joint; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Hashimura, S.; Sakai, H.; Kubota, K.; Ohmi, N.; Otsu, T.; Komatsu, K. Influence of configuration error in bolted joints on detection error of clamp force detection method. Int. J. Autom. Technol. 2021, 15, 396–403. [Google Scholar] [CrossRef]
- Hashimura, S.; Kubota, K.; Ohmi, N.; Komatsu, K. Robustness of detection method for clamp force against configuration error in bolt/nut assemblies. In International Conference on Leading Edge Manufacturing/Materials and Processing; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 83624. [Google Scholar] [CrossRef]
- Pan, Q.; Shao, C.; Xiao, D.; Pan, R.; Liu, X. Study of Ultrasonic Measurement Method for Bolt Fastening Force Based on Shape Factor. Acta Armamentarii 2019, 40, 880–888. [Google Scholar]
Tension | 0 kN | 20 kN | 30 kN | 40 kN | 50 kN | 60 kN | 70 kN | 80 kN | 90 kN | 100 kN | 110 kN | 120 kN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Data | |||||||||||||
Pressure sensor 1 (kN) ① | 0 | 21.4 | 30.2 | 37.9 | 43.8 | 55.8 | 66.8 | 73.0 | 83.3 | 95.1 | 108.0 | 120.0 | |
Pressure sensor 2 (kN) ② | 25.77 | 29.92 | 32.89 | 36.80 | 40.36 | 48.64 | 57.94 | 62.98 | 72.07 | 85.11 | 94.43 | 105.37 | |
Strain gauge 1 strain value ε1 (με) | 39 | 34 | 26 | 19 | 14 | 6 | 4 | 3 | 2 | 2 | 2 | 3 | |
Strain gauge 2 strain value ε2 (με) | 30 | 13 | 5 | 4 | 4 | 3 | 1 | 0 | 1 | 1 | 0 | 2 | |
Washer pressure calculation value ③ | 27.31 | 18.60 | 12.27 | 9.10 | 7.12 | 3.56 | 1.98 | 1.19 | 1.19 | 1.19 | 0.79 | 1.98 |
Tension | 0 kN | 20 kN | 30 kN | 40 kN | 50 kN | 60 kN | 70 kN | 80 kN | 90 kN | 100 kN | 110 kN | 120 kN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Test Data | |||||||||||||
Pressure sensor 1 (kN) ① | 0 | 24.0 | 31.0 | 38.4 | 43.9 | 51.5 | 58.2 | 71.5 | 83.6 | 95.3 | 106.9 | 117.0 | |
Pressure sensor 2 (kN) ② | 27.16 | 31.02 | 34.26 | 37.67 | 41.16 | 45.98 | 51.76 | 62.47 | 73.20 | 83.74 | 94.54 | 103.83 | |
Strain gauge 1 strain value ε1 (με) | 41 | 34 | 29 | 22 | 17 | 10 | 8 | 5 | 5 | 5 | 4 | 6 | |
Strain gauge 2 strain value ε2 (με) | 29 | 13 | 9 | 5 | 5 | 5 | 5 | 3 | 3 | 3 | 2 | 2 | |
Washer pressure calculation value ③ | 27.71 | 18.60 | 15.04 | 10.69 | 8.71 | 5.94 | 5.15 | 3.17 | 3.17 | 3.17 | 2.37 | 3.17 |
Load Case | Pressure Change Value of Non-Tensioned End Nut (N) ① | Pressure Change Value of Tensioned-End Nut (N) ② | The Difference between the Nut Force Change at Both Ends (N) ③ = ① − ② | Tension Change Value (N) ④ | Difference and Tension Deviation (%) (③ − ④)/④ |
---|---|---|---|---|---|
Load case 1 | 2.97 | −6.33 | 9.30 | 8.8 | 5.68 |
3.91 | −3.17 | 7.08 | 7.70 | −8.05 | |
3.56 | −1.98 | 5.54 | 5.90 | −6.10 | |
8.28 | −3.56 | 11.84 | 12.00 | −1.33 | |
9.3 | −1.58 | 10.88 | 11.00 | −1.09 | |
Load case 2 | 3.24 | −3.56 | 6.80 | 7.00 | −2.86 |
3.41 | −4.35 | 7.76 | 7.40 | 4.86 | |
3.49 | −1.98 | 5.47 | 5.50 | −0.55 | |
4.82 | −2.77 | 7.59 | 7.60 | −0.13 | |
5.78 | −0.79 | 6.57 | 6.70 | −1.94 |
Material | Density (kg/m3) | Elastic Modulus (GPa) | Poisson’s Ratio | Yield Stress (MPa) | H (GPa) |
---|---|---|---|---|---|
40Cr | 7800 | 210 | 0.3 | 835 | 21 |
Bottom Nut Pressure Change Value (N) ① | Top Nut Pressure Change Value (N) ② | The Difference between the Nut Force Change at Both Ends (N) ③ = ① − ② | Tension Change Value (N) ④ | Difference and Tension Deviation (%) |③ − ④|/④ |
---|---|---|---|---|
115 | −3786 | 3901 | 4000 | 2.4 |
115 | −3785 | 3900 | 4000 | 2.5 |
172 | −5678 | 5850 | 6000 | 2.5 |
173 | −5678 | 5851 | 6000 | 2.5 |
57 | −1893 | 1950 | 2000 | 2.5 |
60 | −1889 | 1949 | 2000 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, F.; Zhu, G.; Zhou, Y.; Ma, Z.J.; Jing, Y.; Zhao, Y. A Study of Preload Detection Technology in Suspension Bridge Cable Clamp Bolts Based on the Pull-Out Method. Buildings 2024, 14, 976. https://doi.org/10.3390/buildings14040976
Mu F, Zhu G, Zhou Y, Ma ZJ, Jing Y, Zhao Y. A Study of Preload Detection Technology in Suspension Bridge Cable Clamp Bolts Based on the Pull-Out Method. Buildings. 2024; 14(4):976. https://doi.org/10.3390/buildings14040976
Chicago/Turabian StyleMu, Fengrui, Gui Zhu, Yongjun Zhou, Zhongguo John Ma, Yuan Jing, and Yu Zhao. 2024. "A Study of Preload Detection Technology in Suspension Bridge Cable Clamp Bolts Based on the Pull-Out Method" Buildings 14, no. 4: 976. https://doi.org/10.3390/buildings14040976
APA StyleMu, F., Zhu, G., Zhou, Y., Ma, Z. J., Jing, Y., & Zhao, Y. (2024). A Study of Preload Detection Technology in Suspension Bridge Cable Clamp Bolts Based on the Pull-Out Method. Buildings, 14(4), 976. https://doi.org/10.3390/buildings14040976