Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Compressive Strength
3.2. Sorptivity
3.3. Open Porosity and Density
3.4. Thermal Conductivity and Bulk Electrical Resistivity
3.5. Microstructure Characterisation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Li, W.; Guo, Y.; Dong, W.; Castel, A.; Wang, K. Biochar-Cement Concrete toward Decarbonisation and Sustainability for Construction: Characteristic, Performance and Perspective. J. Clean. Prod. 2023, 419, 138219. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T. Greener Cementitious Composites Incorporating Sewage Sludge Ash as Cement Replacement: A Review of Progress, Potentials, and Future Prospects. J. Clean. Prod. 2022, 371, 133364. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards Sustainable Concrete. Nat. Mater. 2017, 16, 698. [Google Scholar] [CrossRef]
- Arbelaez Perez, O.F.; Florez, D.R.; Zapata Vergara, L.M.; Hernández Benavides, K.V. Innovative Use of Agro-Waste Cane Bagasse Ash and Waste Glass as Cement Replacement for Green Concrete. Cost Analysis and Carbon Dioxide Emissions. J. Clean. Prod. 2022, 379, 134822. [Google Scholar] [CrossRef]
- Aksoylu, C.; Özkılıç, Y.O.; Bahrami, A.; Yıldızel, S.A.; Hakeem, I.Y.; Özdöner, N.; Başaran, B.; Karalar, M. Application of Waste Ceramic Powder as a Cement Replacement in Reinforced Concrete Beams toward Sustainable Usage in Construction. Case Stud. Constr. Mater. 2023, 19, e02444. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, Q.; Han, D.; Li, Z. Iron Ore Tailings, Phosphate Slags, and Lithium Slags as Ternary Supplementary Cementitious Materials for Concrete: Study on Compression Strength and Microstructure. Mater. Today Commun. 2023, 36, 106644. [Google Scholar] [CrossRef]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Charitha, V.; Athira, V.S.; Jittin, V.; Bahurudeen, A.; Nanthagopalan, P. Use of Different Agro-Waste Ashes in Concrete for Effective Upcycling of Locally Available Resources. Constr. Build. Mater. 2021, 285, 122851. [Google Scholar] [CrossRef]
- Chen, K.-T.; Wang, J.-X.; Dai, Y.-M.; Wang, P.-H.; Liou, C.-Y.; Nien, C.-W.; Wu, J.-S.; Chen, C.-C. Rice Husk Ash as a Catalyst Precursor for Biodiesel Production. J. Taiwan Inst. Chem. Eng. 2013, 44, 622–629. [Google Scholar] [CrossRef]
- Noaman, M.A.; Karim, M.R.; Islam, M.N. Comparative Study of Pozzolanic and Filler Effect of Rice Husk Ash on the Mechanical Properties and Microstructure of Brick Aggregate Concrete. Heliyon 2019, 5, e01926. [Google Scholar] [CrossRef]
- Van Tuan, N.; Ye, G.; Van Breugel, K.; Copuroglu, O. Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash. Cem. Concr. Res. 2011, 41, 1104–1111. [Google Scholar] [CrossRef]
- Fapohunda, C.; Akinbile, B.; Shittu, A. Structure and Properties of Mortar and Concrete with Rice Husk Ash as Partial Replacement of Ordinary Portland Cement—A Review. Int. J. Sustain. Built Environ. 2017, 6, 675–692. [Google Scholar] [CrossRef]
- Givi, A.; Abdul Rashid, S.; Nora, F.; Abdul aziz, F.; Amran, M.; Salleh, A. Contribution of Rice Husk Ash to the Properties of Mortar and Concrete: A Review. J. Am. Sci. 2010, 6, 157–165. [Google Scholar]
- Rodríguez De Sensale, G. Effect of Rice-Husk Ash on Durability of Cementitious Materials. Cem. Concr. Compos. 2010, 32, 718–725. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined Clay Limestone Cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Cancio Díaz, Y.; Sánchez Berriel, S.; Heierli, U.; Favier, A.R.; Sánchez Machado, I.R.; Scrivener, K.L.; Martirena Hernández, J.F.; Habert, G. Limestone Calcined Clay Cement as a Low-Carbon Solution to Meet Expanding Cement Demand in Emerging Economies. Dev. Eng. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Calcination Temperature and Impact of Calcination Products on OPC Hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- Obura, J.; OMbok, B.; Omugah, G. Analysis of Rice Supply Chain in Kenya. Int. J. Manag. Stud. Res. 2017, 5, 12–17. [Google Scholar] [CrossRef]
- Schaefer, C.E.G.R.; Fabris, J.D.; Ker, J.C. Minerals in the Clay Fraction of Brazilian Latosols (Oxisols): A Review. Clay Miner. 2008, 43, 137–154. [Google Scholar] [CrossRef]
- Oyebanjo, O.O.; Ekosse, G.E.; Odiyo, J.O. Mineralogy and Geochemistry of Clay Fractions in Soils Developed from Different Parent Rocks in Limpopo Province, South Africa. Heliyon 2021, 7, e07664. [Google Scholar] [CrossRef]
- ASTM C150-07; Standard Specification for Portland Cement. Standards & Publications: West Conshohocken, PA, USA, 2012.
- ASTM C618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Standards & Publications: West Conshohocken, PA, USA, 2019.
- ISO 1920-3:2019; Testing of Concrete, Part 3: Making and Curing Test Specimens. International Organization for Standards: Geneva, Switzerland, 2019.
- Liu, F.; Zhang, T.; Luo, T.; Zhou, M.; Zhang, K.; Ma, W. Study on the Deterioration of Concrete under Dry-Wet Cycle and Sulfate Attack. Materials 2020, 13, 4095. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, E.; Liu, J.; Zhang, B.; Niu, D.; Wang, Y. Deterioration of an Industrial Reinforced Concrete Structure Exposed to High Temperatures and Dry-Wet Cycles. Eng. Fail. Anal. 2022, 135, 106150. [Google Scholar] [CrossRef]
- ISO 1920-4:2019; Testing of Concrete, Part 4: Strength of hardened concrete. International Organization for Standards: Geneva, Switzerland, 2019.
- ASTM C1585-20; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. Standards & Publications: West Conshohocken, PA, USA, 2020.
- BS EN 12390-7; Testing Hardened Concrete—Density of Hardened Concrete. British Standards Institution: London, UK, 2019.
- ASTM D5334-22; Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure. Standards & Publications: West Conshohocken, PA, USA, 2022.
- Layssi, H.; Ghods, P.; Alizadeh, A.R.; Salehi, M. Electrical Resistivity of Concrete. Concr. Int. 2015, 37, 41–46. [Google Scholar]
- Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M. Rice Husk Ash as a Partial Replacement of Cement in High Strength Concrete Containing Micro Silica: Evaluating Durability and Mechanical Properties. Case Stud. Constr. Mater. 2017, 7, 73–81. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Ashish, D.K.; Rudžionis, Ž. A Review on Sustainable Use of Agricultural Straw and Husk Biomass Ashes: Transitioning towards Low Carbon Economy. Sci. Total Environ. 2022, 838, 156407. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Parhi, P.K.; Chandra Panda, B. Durability Properties of Concrete with Silica Fume and Rice Husk Ash. Clean. Eng. Technol. 2021, 2, 100067. [Google Scholar] [CrossRef]
- Zunino, F.; Martirena, F.; Scrivener, K. Limestone Calcined Clay Cements (LC3). ACI Mater. J. 2021, 118, 49–60. [Google Scholar] [CrossRef]
- Yao, W.; Bai, M.; Pang, J.; Liu, T. Performance Degradation and Damage Model of Rice Husk Ash Concrete under Dry–Wet Cycles of Sulfate Environment. Environ. Sci. Pollut. Res. 2022, 29, 59173–59189. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wong, H.S.; Buenfeld, N.R. Transport Properties of Concrete after Drying-Wetting Regimes to Elucidate the Effects of Moisture Content, Hysteresis and Microcracking. Cem. Concr. Res. 2017, 98, 136–154. [Google Scholar] [CrossRef]
- Sharma, M.; Bishnoi, S.; Martirena, F.; Scrivener, K. Limestone Calcined Clay Cement and Concrete: A State-of-the-Art Review. Cem. Concr. Res. 2021, 149, 106564. [Google Scholar] [CrossRef]
- Jerman, M.; Scheinherrová, L.; Medveď, I.; Krejsová, J.; Doleželová, M.; Bezdička, P.; Černý, R. Effect of Cyclic Wetting and Drying on Microstructure, Composition and Length Changes of Lime-Based Plasters. Cem. Concr. Compos. 2019, 104, 103411. [Google Scholar] [CrossRef]
- Rahbar, Y.; Mousavi, S.Y.; Nasserabadi, H.D. High-Strength Concrete Containing RHA and Nano-CaCO3. Micro Nano Lett. 2019, 14, 1213–1218. [Google Scholar] [CrossRef]
- Maddalena, R.; Taha, H.; Gardner, D. Self-Healing Potential of Supplementary Cementitious Materials in Cement Mortars: Sorptivity and Pore Structure. Dev. Built Environ. 2021, 6, 100044. [Google Scholar] [CrossRef]
- Cnudde, V.; Cwirzen, A.; Masschaele, B.; Jacobs, P.J.S. Porosity and Microstructure Characterization of Building Stones and Concretes. Eng. Geol. 2009, 103, 76–83. [Google Scholar] [CrossRef]
- Zajac, M.; Durdzinski, P.; Giergiczny, Z.; Ben Haha, M. New Insights into the Role of Space on the Microstructure and the Development of Strength of Multicomponent Cements. Cem. Concr. Compos. 2021, 121, 104070. [Google Scholar] [CrossRef]
- Ben Haha, M.; Termkhajornkit, P.; Ouzia, A.; Uppalapati, S.; Huet, B. Low Clinker Systems—Towards a Rational Use of SCMs for Optimal Performance. Cem. Concr. Res. 2023, 174, 107312. [Google Scholar] [CrossRef]
- Raheem, A.A.; Oriola, K.O.; Kareem, M.A.; Abdulwahab, R. Investigation on Thermal Properties of Rice Husk Ash-Blended Palm Kernel Shell Concrete. Environ. Chall. 2021, 5, 100284. [Google Scholar] [CrossRef]
- Khushefati, W.H.; Demirboğa, R.; Farhan, K.Z. Assessment of Factors Impacting Thermal Conductivity of Cementitious Composites—A Review. Clean. Mater. 2022, 5, 100127. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Pilvar, A.; Mahdikhani, M.; Moodi, F. Practical Evaluation of Relationship between Concrete Resistivity, Water Penetration, Rapid Chloride Penetration and Compressive Strength. Constr. Build. Mater. 2011, 25, 2472–2479. [Google Scholar] [CrossRef]
- Avet, F.; Scrivener, K. Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 124–135. [Google Scholar] [CrossRef]
- Yadak Yaraghi, A.H.; Ramezanianpour, A.M.; Ramezanianpour, A.A.; Bahman-Zadeh, F.; Zolfagharnasab, A. Evaluation of Test Procedures for Durability and Permeability Assessment of Concretes Containing Calcined Clay. J. Build. Eng. 2022, 58, 105016. [Google Scholar] [CrossRef]
- Lin, K.L.; Chiang, K.Y.; Lin, C.Y. Hydration Characteristics of Waste Sludge Ash That Is Reused in Eco-Cement Clinkers. Cem. Concr. Res. 2005, 35, 1074–1081. [Google Scholar] [CrossRef]
- Fuyuan, G.; Dawei, Z.; Evdon, S.; Tamon, U. Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete. J. Mater. Civil. Eng. 2014, 26, 4014023. [Google Scholar] [CrossRef]
- Ram, K.; Serdar, M.; Londono-Zuluaga, D.; Scrivener, K. The Effect of Pore Microstructure on Strength and Chloride Ingress in Blended Cement Based on Low Kaolin Clay. Case Stud. Constr. Mater. 2022, 17, e01242. [Google Scholar] [CrossRef]
- Maddalena, R.; Hamilton, A. Low-Pressure Silica Injection for Porosity Reduction in Cementitious Materials. Constr. Build. Mater. 2017, 134, 610–616. [Google Scholar] [CrossRef]
Composition | Rice Husk Ash (RHA) | Calcined Clay (CC) | Portland Cement (PC) |
---|---|---|---|
SiO2 | 83.34 | 59.22 | 20.25 |
Al2O3 | 1.46 | 15.57 | 4.88 |
Fe2O3 | 1.37 | 9.86 | 3.38 |
CaO | 1.34 | 1.54 | 62.86 |
MgO | 1.88 | 0.85 | 2.54 |
SO3 | 0.20 | 0.03 | 2.75 |
K2O | 2.49 | 4.73 | 0.28 |
Na2O | 0.17 | 3.21 | 0.36 |
LOI | 2.87 | 2.89 | 1.38 |
Specific gravity | 2.13 | 2.59 | 2.95 |
Sum (SiO2, Al2O3, Fe2O3) | 86.17 | 84.65 |
Series | Blend | PC | RHA | CC | Aggregate | Sand | Water |
---|---|---|---|---|---|---|---|
ID | PC:RHA:CC | kg/m3 | kg/m3 | kg/m3 | kg/m3 | kg/m3 | kg/m3 |
S1 | 100:00:00 | 342.9 | 0.0 | 0.0 | 1131.4 | 754.3 | 171.4 |
S2 | 50:50:00 | 171.4 | 171.4 | 0.0 | 1131.4 | 754.3 | 171.4 |
S3 | 50:40:10 | 171.4 | 137.2 | 34.3 | 1131.4 | 754.3 | 171.4 |
S4 | 50:25:25 | 171.4 | 85.7 | 85.7 | 1131.4 | 754.3 | 171.4 |
S5 | 50:10:40 | 171.4 | 34.3 | 137.2 | 1131.4 | 754.3 | 171.4 |
S6 | 50:00:50 | 171.4 | 0.0 | 171.4 | 1131.4 | 754.3 | 171.4 |
S7 | 40:50:10 | 137.2 | 171.4 | 34.3 | 1131.4 | 754.3 | 171.4 |
S8 | 40:35:25 | 137.2 | 120.0 | 85.7 | 1131.4 | 754.3 | 171.4 |
S9 | 40:10:50 | 137.2 | 34.3 | 171.4 | 1131.4 | 754.3 | 171.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marangu, J.M.; Sharma, M.; Scheinherrová, L.; Kafodya, I.; Mutai, V.K.; Latif, E.; Novelli, V.I.; Ashish, D.K.; Maddalena, R. Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay. Buildings 2024, 14, 1201. https://doi.org/10.3390/buildings14051201
Marangu JM, Sharma M, Scheinherrová L, Kafodya I, Mutai VK, Latif E, Novelli VI, Ashish DK, Maddalena R. Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay. Buildings. 2024; 14(5):1201. https://doi.org/10.3390/buildings14051201
Chicago/Turabian StyleMarangu, Joseph Mwiti, Meenakshi Sharma, Lenka Scheinherrová, Innocent Kafodya, Victor Kiptoo Mutai, Eshrar Latif, Viviana Iris Novelli, Deepankar Kumar Ashish, and Riccardo Maddalena. 2024. "Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay" Buildings 14, no. 5: 1201. https://doi.org/10.3390/buildings14051201
APA StyleMarangu, J. M., Sharma, M., Scheinherrová, L., Kafodya, I., Mutai, V. K., Latif, E., Novelli, V. I., Ashish, D. K., & Maddalena, R. (2024). Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay. Buildings, 14(5), 1201. https://doi.org/10.3390/buildings14051201