Energy Performance of a University Building for Different Air Conditioning (AC) Technologies: A Case Study
Abstract
:1. Introduction
2. Methodology and Case Study
2.1. Case Study Description
2.2. Measurement of Indoor and Outdoor Environment Parameters
2.3. Measurement of Electrical Consumption
2.4. Energy Consumption Buildings Forecast
- : energy consumption of AC system;
- : AC technology load function;
- : building’s thermal load function;
- : stational thermal efficiency of AC system;
- to, tf: initial and final time.
2.5. Life Cycle Cost (LCC) of AC System
- —sum of yearly for 20 years, including the investment cost in year 0;
- —difference between the annual energy cost of the AC system and the energy cost of the alternatives for replacement in year n, with a discount rate .
2.6. AC Technologies Assesed
3. Building’s Model
4. Results and Discussion
4.1. Weather Data in the Simulation
4.2. Energy Consumption of the Building
4.3. Internal Building Heat Gains for the Building
4.4. Building Energy Consumption According to AC Technology
4.5. Life Cycle Cost (LCC) by AC Technology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Buildings—Topics—IEA; IEA: Paris, France, 2020. [Google Scholar]
- Balbis-Morejon, M.; Rey-Hernandez, J.M.; Amaris-castilla, C.; Velasco-Gómez, E.; José-Alonso, J.F.S.; Rey-Martínez, F.J. Experimental Study and Analysis of Thermal Comfort in a University Campus Building in Tropical Climate. Sustainability 2020, 12, 8886. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Li, H.; Lou, Y.; Li, J. A behavior-orientated prediction method for short-term energy consumption of air-conditioning systems in buildings blocks. Energy 2023, 263, 34–50. [Google Scholar] [CrossRef]
- McRae, S. Residential Electricity Consumption and Adaptation to Climate Change by Colombian Households. Econ. Disasters Clim. Chang. 2023, 7, 253–279. [Google Scholar] [CrossRef]
- Arif, S.; Taweekun, J.; Ali, H.M.; Noranai, Z.; Qadeer, A. Development of a cost effective approach toward energy efficient buildings by design, fabrication and economical analysis of air conditioning pods: A case study of a bus station in Thailand. Case Stud. Therm. Eng. 2023, 41, 102534. [Google Scholar] [CrossRef]
- Wang, Z.; Calautit, J.; Wei, S.; Tien, P.W.; Xia, L. Real-time building heat gains prediction and optimization of HVAC setpoint: An integrated framework. J. Build. Eng. 2022, 49. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, B. Does energy-efficiency label affect appliance price? Empirical analysis of the new national standard air conditioners in China. Energy 2023, 269, 126847. [Google Scholar] [CrossRef]
- Jiang, P.; Li, Y.; Bai, F.; Zhao, X.; An, M.; Hu, J. Coordinating to promote refrigerant transition and energy efficiency improvement of room air conditioners in China: Mitigation potential and costs. J. Clean. Prod. 2023, 382, 134916. [Google Scholar] [CrossRef]
- Spielvogel, L.G. Effects of HVAC on student performance. ASHRAE J. 2006, 48, 12. [Google Scholar]
- Sekartaji, D.; Ryu, Y.; Novianto, D.; Eto, K.; Gao, W. Energy-Use and Indoor Thermal Performance in Junior High School Building after Air-Conditioning Installation with the Private Finance Initiative. Buildings 2023, 13, 455. [Google Scholar] [CrossRef]
- Droutsa, K.G.; Balaras, C.A.; Dascalaki, E.G.; Kontoyiannidis, S.; Argiriou, A.A. Energy Use Intensities for Asset Rating of Hellenic Non-Residential Buildings. Glob. J. Energy Technol. Res. Updat. 2018, 5, 19–36. [Google Scholar] [CrossRef]
- Vaisi, S.; Firouzi, M.; Varmazyari, P. Energy benchmarking for secondary school buildings, applying the Top-Down approach. Energy Build. 2023, 279, 112689. [Google Scholar] [CrossRef]
- Gul, M.S.; Patidar, S. Understanding the energy consumption and occupancy of a multi-purpose academic building. Energy Build. 2015, 87, 155–165. [Google Scholar] [CrossRef]
- ISO 50001:2018; Energy Management Systems—Requirements with Guidance for Use. ISO: Geneva, Switzerland, 2018.
- ISO 50006:2023; Energy Management Systems—Evaluating Energy Performance Using Energy Performance Indicators and Energy Baselines. ISO: Geneva, Switzerland, 2023.
- Batlle, E.A.O.; Palacio, J.C.E.; Lora, E.E.S.; Reyes, A.M.M.; Moreno, M.M.; Morejon, M.B. A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). J. Clean. Prod. 2020, 244, 118551. [Google Scholar] [CrossRef]
- Almeida, A.P.; Sousa, V.; Silva, C.M. Methodology for estimating energy and water consumption patterns in university buildings: Case study, Federal University of Roraima (UFRR). Heliyon 2021, 7, 187–199. [Google Scholar] [CrossRef]
- Emil, F.; Diab, A. Energy rationalization for an educational building in Egypt: Towards a zero energy building. J. Build. Eng. 2021, 44, 103247. [Google Scholar] [CrossRef]
- Mackenzie, L. Some implications of the neoliberal massification of Colombian HE for achieving the sustainable development goals. Policy Futur. Educ. 2023, 22, 14782103231186846. [Google Scholar] [CrossRef]
- Surendran, V.M.; Irulappan, C.; Jeyasingh, V.; Ramalingam, V. Thermal Performance Assessment of Envelope Retrofits for Existing School Buildings in a Hot–Humid Climate: A Case Study in Chennai, India. Buildings 2023, 13, 1103. [Google Scholar] [CrossRef]
- Kathiravel, R.; Zhu, S.; Feng, H. LCA of net-zero energy residential buildings with different HVAC systems across Canadian climates: A BIM-based fuzzy approach. Energy Build. 2024, 306, 113905. [Google Scholar] [CrossRef]
- Huang, H.; Wang, H.; Hu, Y.J.; Li, C.; Wang, X. The development trends of existing building energy conservation and emission reduction—A comprehensive review. Energy Rep. 2022, 8, 13170–13188. [Google Scholar] [CrossRef]
- Wu, R.; Sansavini, G. Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids. Appl. Energy 2020, 272, 115254. [Google Scholar] [CrossRef]
- Hajian, H.; Pylsy, P.; Simson, R.; Ahmed, K.; Sankelo, P.; Mikola, A.; Kurnitski, J. Finnish energy renovation subsidies in multifamily apartment buildings: Lessons learnt and best practices. Energy Build. 2024, 307, 113986. [Google Scholar] [CrossRef]
- Asim, N.; Badiei, M.; Mohammad, M.; Razali, H.; Rajabi, A.; Chin Haw, L.; Jameelah Ghazali, M. Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview. Int. J. Environ. Res. Public Health 2022, 19, 1016. [Google Scholar] [CrossRef] [PubMed]
- Rahif, R.; Hamdy, M.; Homaei, S.; Zhang, C.; Holzer, P.; Attia, S. Simulation-based framework to evaluate resistivity of cooling strategies in buildings against overheating impact of climate change. Build. Environ. 2022, 208, 108599. [Google Scholar] [CrossRef]
- Wintaco, P.M.; Tellez, S.; Prias, O. End-use energy indicator approach to improve energy performance at the National University of Colombia-Bogotá, under the parameters of the ISO 50001 standard. Trans. Energy Syst. Eng. Appl. 2022, 3, 254–271. [Google Scholar]
- Castrillón, R. Herramientas de Gestión Energética para el Desarrollo Sostenible en Edificios Aplicado a un Campus Universitario en Colombia; Universidad de Valladolid: Valladolid, Spain, 2021. [Google Scholar]
- Zhang, M.; Gao, Y. Time of emergence in climate extremes corresponding to Köppen-Geiger classification. Weather Clim. Extrem. 2023, 41, 100593. [Google Scholar] [CrossRef]
- Balbis-Morejón, M. Análisis Multicriterio para la Selección de Sistemas de Climatización en Edificaciones en Zonas de Clima Cálido y Húmedo en Colombia; Universidad Pontificia Bolivariana: Medellín, Colombia, 2022. [Google Scholar]
- Design Builder Software Ltd. DesingBuilder; Design Builder Software Ltd.: Les Stroud, UK, 2018; Available online: https://www.designbuilder-lat.com/ (accessed on 1 March 2024).
- IFC. Guía de Construcción Sostenible Para el Ahorro de Agua y Energía en Edificaciones; no. 1; Bogotá, D.C., Ed.; IFC: Washington, DC, USA, 2013; p. 89. [Google Scholar]
- Rey Martínez, F.J.; Velasco Gómez, E.; Rey Hernández, J.M.; San José Alonso, J.F.; Tejero González, A.; Esquivias Fernández, P.M. Diseño y Gestión de Edificios de Consumo de Energía Casi Nulo; Parainfo: Madrid, Spain, 2020; pp. 30–33. [Google Scholar]
- Balbis-Morejón, M.; Cabello-Eras, J.J.; Rey-Hernández, J.M.; Rey-Martínez, F.J. Energy evaluation and energy savings analysis with the 2 selection of ac systems in an educational building. Sustainability 2021, 13, 7527. [Google Scholar] [CrossRef]
- Haicheng, S.; Shanghai Haicheng. Site Office Container. 2020. Available online: http://www.shs-house.com/site-officecontainer-15264373440020726.html# (accessed on 1 March 2024).
- Eras, J.J.C.; Morejón, M.B.; Gutiérrez, A.S.; García, A.P.; Ulloa, M.C.; Martínez FJ, R.; Rueda-Bayona, J.G. A look to the electricity generation from non-conventional renewable energy sources in Colombia. Int. J. Energy Econ. Policy 2019, 9, 15–25. [Google Scholar]
- Butler, D. Architects of a low-energy future. Nature 2008, 452, 520–523. [Google Scholar] [CrossRef] [PubMed]
- UPME. Inflación de Energía en Colombia; Enero 2021; UPME: Bogotá, Colombia, 2021. [Google Scholar]
- Shahrestani, M.; Yao, R.; Cook, G.K. Decision making for HVAC&R system selection for a typical office building in the UK. Ashrae Trans. 2012, 118, 222–229. [Google Scholar]
- Stephens, B. The impacts of duct design on life cycle costs of central residential heating and air-conditioning systems. Energy Build. 2014, 82, 563–579. [Google Scholar] [CrossRef]
Equipment | Range | Accurancy |
---|---|---|
Digital Thermometer Lutron TM-949 | −20 to 650 °C; (−4 to 1202 °F) | −20 to 400 °C: ±3%. |
Testo Multifunction Meter 435-4 with probes 0632 1535 and 0636 9736 | −50 to +150 °C; 0 to +100% RH; 0 to +20 m/s | ±0.3 °C (−25 to +74.9 °C); ±2% RH; ±(0.03 m/s + 5% of m.v.) |
Davis Weather Station Pro2 Plus 6162 | −40 to +65 °C; 1 to 100% | ±0.3 °C; ±2% RH |
Equipment | Magnitude | Range | Accurancy | Installed |
---|---|---|---|---|
Electrical Network Analyzer | Voltage (rms) | 1 V a 1000 V Phase to Neutral | ±0.1% of Nominal Voltage | |
Intensity (rms) | 5 A a 6000 A | ±0.5% | ||
Frequency | 51 Hz to 69 Hz | ±0.01 Hz | ||
Ct Meter With RS485 Modbus | Four-channel three-phase, 480 V, open-core of 200 A, BMS ZENNIO software for data loading. |
Day | kWh/Day | Day | kWh/Day |
---|---|---|---|
1 | 781.4 | 16 | 780.4 |
2 | 619.5 | 17 | 710.4 |
3 | 879.5 | 18 | 760.5 |
4 | 811.7 | 19 | 730.8 |
5 | 790.7 | 20 | 560.2 |
6 | 814.6 | 21 | 810.2 |
7 | 716.7 | 22 | 760.2 |
8 | 475.6 | 23 | 801.5 |
9 | 735.9 | 24 | 760.2 |
10 | 677.9 | 25 | 730.2 |
11 | 699.8 | 26 | 510.5 |
12 | 704.4 | 27 | 780.3 |
13 | 713.2 | 28 | 745.2 |
14 | 539.6 | 29 | 673.4 |
15 | 779.2 | 30 | 480.2 |
AC Technology | Characteristics | Diagrams | |
---|---|---|---|
Direct expansion | Split | Direct expansion system of type Split. Fan coil floor ceiling of 4TR 1PH-220V-60HZ per zone. | |
VRF | Direct expansion system with variable refrigerant flow (VRF). 130 TR 3PH-440V-60Hz. | ||
Air-condensed | VAV | Air-cooled system with screw compressor type Chiller. Variable air volume distribution system (VAV). 130 TR, 3PH-440V-60Hz. | |
Water-condensed | Chiller (Fan Coil) | Water-condensed system and a screw-type compressor chiller. Fan Coil terminal units. Cold water temperature was set at 7 °C and water returned the temperature to 12 °C. 120TR, 3PH-440V-60 Hz |
Façade Characteristics | Thermal Transmittance (U) |
---|---|
Wall Panel: Exterior cladding, galvanized-steel-coated, 0.5 mm thickness, 60 mm insulation, and 9 mm interior lining of agglomerated wood particle board, covered with galvanized and coated steel sheet of 0.5 mm. | 0.527 W/m2·K |
Floors: Structure-welded and cold-rolled steel profiles 3 mm thick, fiber cement floor 18 mm thick, density of 1.26 kg/m3, and water-resistant. | 0.330 W/m2·K |
Roof: Welded and cold-rolled steel profiles with 4 mm frame, covered with galvanized sheet, 0.5 mm, of roof tiles double-folded in the middle of the top; internally coated by 9 mm agglomerated wood particle boards and a 50 mm steel sandwich panel that is isolated. | 0.370 W/m2·K |
Windows: PVC frame with vacuum insulating glazing; double glazing of 6 mm/13 mm of air, sliding mechanism; size: 800 × 1100 mm. | 2.708 W/m2·K |
Cost (USD) | Split | VRF | VAV | Chiller (Fan Coil) |
---|---|---|---|---|
CInv | 75,082.00 | 149,622.90 | 298,247.76 | 333,358.28 |
COpM | 49,506.74 | 32,920.32 | 36,476.34 | 37,170.83 |
LCC | 1,444,051.53 | 1,193,318.85 | 1,213,713.18 | 1,261,470.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbis-Morejón, M.; Cabello-Eras, J.J.; Rey-Martínez, F.J.; Fandiño, J.M.M.; Rey-Hernández, J.M. Energy Performance of a University Building for Different Air Conditioning (AC) Technologies: A Case Study. Buildings 2024, 14, 1746. https://doi.org/10.3390/buildings14061746
Balbis-Morejón M, Cabello-Eras JJ, Rey-Martínez FJ, Fandiño JMM, Rey-Hernández JM. Energy Performance of a University Building for Different Air Conditioning (AC) Technologies: A Case Study. Buildings. 2024; 14(6):1746. https://doi.org/10.3390/buildings14061746
Chicago/Turabian StyleBalbis-Morejón, Milen, Juan José Cabello-Eras, Francisco J. Rey-Martínez, Jorge Mario Mendoza Fandiño, and Javier M. Rey-Hernández. 2024. "Energy Performance of a University Building for Different Air Conditioning (AC) Technologies: A Case Study" Buildings 14, no. 6: 1746. https://doi.org/10.3390/buildings14061746
APA StyleBalbis-Morejón, M., Cabello-Eras, J. J., Rey-Martínez, F. J., Fandiño, J. M. M., & Rey-Hernández, J. M. (2024). Energy Performance of a University Building for Different Air Conditioning (AC) Technologies: A Case Study. Buildings, 14(6), 1746. https://doi.org/10.3390/buildings14061746